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Abstract

MicroRNAs (miRNAs) posttranscriptionally regulate targeted messenger RNAs (mRNAs) by inducing cleavage or otherwise
repressing their translation. We address the problem of detecting m/miRNA targeting relationships in homo sapiens from
microarray data by developing statistical models that are motivated by the biological mechanisms used by miRNAs. The
focus of our modeling is the construction, activity, and mediation of RNA-induced silencing complexes (RISCs) competent
for targeted mRNA cleavage. We demonstrate that regression models accommodating RISC abundance and controlling for
other mediating factors fit the expression profiles of known target pairs substantially better than models based on m/
miRNA expressions alone, and lead to verifications of computational target pair predictions that are more sensitive than
those based on marginal expression levels. Because our models are fully independent of exogenous results from sequence-
based computational methods, they are appropriate for use as either a primary or secondary source of information
regarding m/miRNA target pair relationships, especially in conjunction with high-throughput expression studies.
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Introduction
Micro RNAs (miRNAs) are small (20–22 bp) RNAs transcribed

by a wide variety of organisms, from viruses [1], to plants [2,3], to

animals such as C. elegans, Drosophila and humans [4–6]. While

most RNAs function in ribosomes or splicesomes, or are translated

into proteins necessary for cellular function, miRNAs instead serve

as negative regulators of gene expression by preventing the

translation of messenger RNAs (mRNAs). Through their regula-

tory activities, miRNAs have been shown to affect organismal

development, physiological function and stress responses. Abnor-

mal miRNA production has also been associated with the

development of several types of cancer [7–10].

Posttranscriptional gene silencing through miRNA activity occurs

through a multistep process (Figure 1) [11–17] with an overall

structure that has been remarkably conserved across organisms. This

process begins with primary miRNA transcripts (pri-miRNAs) being

either transcribed from ‘‘miRNA genes’’ or spliced from the intronic

regions of mRNAs. In the nucleus, pri-miRNAs fold into hairpin

structures from which trailing 39 and 59 ends are cleaved away by the

RNase Drosha. The resulting precursors to mature miRNAs (pre-

miRNAs) are then exported from the nucleus to the cytoplasm, where

a second RNase enzyme (Dicer) removes the hairpin loop. This

produces a segment of double stranded RNA that is separated into

two single strands by helicase enzymes. After separation, one of the

single stranded RNAs is combined with an Argonaute (Ago) protein

to form an RNA-induced silencing complex (RISC). (Although other

proteins may be incorporated into the structure, an Ago protein and

miRNA compose a minimal functional RISC [18,19].) Once

assembled, RISCs composed of a given miRNA interfere with the

translation of select mRNAs by hybridizing to them at target sites

complementary to the miRNA sequence and either cleaving the

mRNA or blocking its translation while leaving the molecule intact.

Any mRNA translationally regulated by a particular miRNA can be

anticipated to have a limited number of target sites usable by that

miRNA. Each miRNA can target multiple mRNAs, and an mRNA

may contain target sites for multiple miRNAs.

While both mRNA cleavage and blocking ribosomal activity

disrupt translation, the latter does not directly alter mRNA

abundance. Whether a particular RISC cleaves or blocks

translation is determined by both the qualities of the hybridization

and properties of the Ago protein contained in the RISC. The

number and function of distinct Ago proteins shows substantial

variability across organisms. For example, in Arabidopsis there are

10 different variants of Ago and miRNAs preferentially associate

with only one in forming RISCs [20,21], while in humans there

are 4 commonly coexpressed Ago proteins, and miRNAs can be

effectively regarded to have equal propensity to combine with each

[22,23]. The variant of Ago primarily utilized by miRNAs in
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Arabidopsis is competent for target cleavage [21], which is consistent

with previous observations that the dominant means of miRNA-

based regulation of mRNA translation is cleavage rather than

translational repression. In humans, only RISCs composed of Ago

2 have been demonstrated to have the ability to cleave and

degrade targeted mRNAs [22,24]. Since miRNAs have equal

propensity to combine with each of these, it is reasonable to

conclude that targeted mRNAs are repressed through a combi-

nation of both cleavage and ribosomal blockage. This is consistent

with results described by Nakamoto et al [25] which demonstrate

simultaneous increases in both target mRNA and polyribosomal

fraction in human miRNA knockdown studies, and recent

experiments reported by Bartel et al [26] that suggest in mice

(which share many of the complexities found in human Ago

properties and RISC formation), most mRNA targets of miRNA-

mediated repression are cleaved.

To determine whether a miRNA targets a particular mRNA,

sequence-based computational target prediction methods may be

used to identify potential miRNA hybridization sites within that

mRNA [27–34]. Algorithms such as miRanda [35] use m/miRNA

alignments and hybridization energies as metrics to score mRNA

subsequences, and report high-scoring subsequences as putative

target sites. More recently proposed methods additionally utilize

evolutionary conservation of a predicted site across multiple

organisms (PicTar [36]), information regarding target site position

and base content (TargetScan [37–39]), or mRNA secondary

structure [40] to improve prediction performance. Although

existing computational target prediction algorithms provide

important information regarding potential m/miRNA target

pairings, they are acknowledged to have issues with specificity

and sensitivity [29,30] as well as inter-algorithm consistency

[30,34]. (These issues are discussed in relation to this study in the

Methods and Discussion sections.) The problem of how to reliably

predict target pair relationships from sequence data alone is

currently unresolved.

With the limitations of purely sequence-based methods of miRNA

target prediction, it has been suggested that the statistical analysis of

expression data may play an important role not only in verifying

computationally predicted m/miRNA targeting relationships, but

also for generating de novo target pair predictions [27,29]. Such

analysis would require that both mRNA and miRNA abundance be

measured on the same tissue samples, and naturally would consider

the marginal correlation between a miRNA and its putative target.

Marginal approaches are attractive because they are simple and

they aim to capture the fundamental negative relationship between

miRNAs and their targets. However, determining reliable and

replicable targeting relationships through marginal expression

comparisons either on their own or in combination with

computational prediction has proven to be difficult both previously

[41] and in our own analysis (see following results).

We hypothesize that statistical models guided by knowledge of

the miRNA pathway can be used to reduce error in both

validating and predicting targeting relationships. The premise of

our approach is that although a negative abundance relationship

may exist in an m/miRNA pair, this relationship may only be

detectable within the context of the abundance of other molecules

that participate in mRNA silencing. In a marginal comparison of

m/miRNA expression levels for the purpose of verifying a

predicted targeting relationship, miRNA expressions are com-

Figure 1. miRNA biogenesis and gene silencing. miRNA biogenesis begins with transcription of a pri-miRNA which is processed into a hairpin,
exported from the nucleus, processed into a mature miRNA, and incorporated into a RISC. Minimal functional RISCs consist of an Argonaute protein
and a miRNA. RISCs hybridize to mRNAs at targeting sites complementary with the miRNA, and prevent translation by either cleaving the mRNA or
maintaining its position at the target site and stopping ribosomal activity.
doi:10.1371/journal.pcbi.1000516.g001

Author Summary

MicroRNAs are a family of small RNAs that play important
roles in the development, physiological function and stress
responses of a wide variety of organisms, and if abnormally
expressed are associated with multiple types of cancer in
humans. Rather than being translated into proteins,
members of the family of microRNAs operate by prevent-
ing the translation of messenger RNAs to which they have
some degree of sequence complementarity. Although
sequence-based bioinformatics techniques have yielded
large numbers of predicted messenger- and microRNA
targeting relationships, verifying these as bona fide has
proven practically difficult. We have developed a novel
statistical approach based on the system biology of
microRNAs in humans to detect such targeting relation-
ships using high-throughput RNA expression data. Be-
cause our approach is not based on information from
external target pair predictions, it can play a fully
independent role in verifying such predictions as well as
be used to obtain de novo target pair predictions. Using
two separate data studies, we show that our approach is
capable of both reproducing previously observed target
pairs and verifying putative target pairs predicted from
sequence data, at rates substantially better than marginal
comparisons of messenger- and microRNA expression
levels.

Statistical Use of RISC in miRNA Identification
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pared directly to those of a putatively targeted mRNA. When

expression data from homo sapiens are under study, such a

comparison uses miRNA expressions as a direct substitute for

those of RISC composed of Ago 2 protein and a targeting miRNA.

Additionally, marginal comparisons do not compensate for

indirect effects on mRNA abundance caused by the blocking

RISCs composed of Ago 1, 3 or 4 proteins and the targeting

miRNA. Although ceteris parabis increases of the levels of these

RISCs cannot observably reduce the concentration of the targeted

mRNA, because they utilize the same target sites as RISCs

containing Ago 2 such increases can be anticipated to affect the

ability of Ago 2 RISCs to cleave targeted mRNAs. Finally,

marginal comparisons do not compensate for either the targeting

of the mRNA in a putative target pair by RISCs constructed from

miRNAs other than that under consideration, or targeting of

mRNAs other than the one under analysis by the miRNA.

In this paper, we develop a linear regression model that

accounts for a variety of elements and interactions in the human

miRNA pathway and that compensates for idiosyncratic aspects of

two data collections on which it is applied. Central to this model is

the comparison of the expression levels of a putatively targeted

mRNA to a proxy for RISC expression composed of an

interaction between Ago 2 and a targeting miRNA, rather than

to miRNA expression alone. To demonstrate that our approach

offers superior performance to marginal m/miRNA comparisons,

we compare the two methods on sets of m/miRNA pairs both

previously shown and predicted to have targeting relationships

using expression data from two different studies as well as a

combination of the data. We find that: 1) the system biological

regression approach explains a higher proportion of the observed

variation in known mRNA target levels, even after compensating

for increases in model complexity. 2) The estimated effects of

proxies to targeting Ago 2 RISC expressions on the expressions of

known mRNA targets are more consistently and appropriately

negative than those of marginal miRNA expressions. 3) A larger

number of known m/miRNA target pairs are identified as such

using the regression approach compared to marginal m/miRNA

methods. 4) The system biological regression approach provides

evidence supporting substantially more computationally predicted

m/miRNA pairs as bona fide than do marginal m/miRNA

comparisons. Because we obtain these improvements in perfor-

mance without directly utilizing exogenous information from

sequence-based computational target prediction methods, our

approach provides a basis for statistical methods to putative m/

miRNA target pair analysis that can play useful roles in both

verifying computational target predictions as well as generating de

novo information regarding m/miRNA target relationships.

Methods

Regression modeling
There are two categories of covariates that ought to be

compensated for when comparing the expression levels from a

putative m/miRNA target pair in homo sapiens for the purpose of

inferring a targeting relationship: those corresponding to elements

of the miRNA system biology, and those corresponding to

idiosyncratic data effects (if any). Of these two categories,

covariates related to the miRNA system biology can be further

subdivided into those pertaining to the effect of the particular

miRNA under analysis on the putatively targeted mRNA rather

than that of other miRNAs potentially targeting the mRNA, those

related to observable target cleavage rather than those resulting in

translational repression without cleavage through a maintained

hybridization at a target site, and those related to the affinity of

both the miRNA under analysis as well as other miRNAs to

mRNAs not under direct consideration.

It can be presumed that the covariates in these categories are

related to one another and to target mRNA expression in a

complicated and nonlinear manner, and any statistical or

computational procedure for inferring m/miRNA targeting rela-

tionships ought to have some degree of fidelity to the system biology

represented by the model it is explicitly or implicitly based upon.

However, the fidelity of the model also should be balanced against

the need for a computationally efficient procedure that works well

given the limitations of sample size and the levels of variation in the

system. A well-formulated regression model is computationally

tractable (especially if large numbers of putative m/miRNA pairs

are to be evaluated) and is a standard approach to decomposing

variation in a response. Further, although a linear formulation may

not emerge from first principles, it may capture the dominant

relationships sufficiently well to identify bona fide targeting

relationships. Thus we relate the categories of system biologic

covariates to the expression of a putatively targeted mRNA as in (1):

½message�~½putative cleaving RISC�z½putative blocking RISC�

z½non-specific cleaving RISC�

z½non-specific blocking RISC�

z½other targets�z½idiosyncratic effects�znoise

ð1Þ

where [message] refers to expression of the putative targeted mRNA;

[putative cleaving RISC] represents the effect of RISCs composed of

the putative targeting miRNA and Ago 2 on the targeted mRNA;

[putative blocking RISC] is the effect of RISCs composed of the

putative targeting miRNA and Ago 1, 3 or 4; [non-specific cleaving

RISC] is the effect of RISCs composed of Ago 2 and miRNAs not

under particular consideration; [non-specific blocking RISC] is the effect

of RISC composed of Ago 1, 3 or 4 and the unconsidered miRNAs;

[other targets] refers to the effect that the expression of other mRNAs

have on the putative targeted mRNA, especially through their

affinity for interactions with the putative targeting miRNA;

[idiosyncratic effects] are dataset-specific effects; noise represents natural

variation in [message] as well as that due to systemic effects not

adequately captured in our model.

Although the levels of RISCs of various types used in (1) are

unobserved in RNA microarray expression level measurements,

proxies to them can be obtained using available microarray

expression data by constructing interaction terms from observable

targeting miRNA Ago RNA levels. This preserves a representation

of the relevant miRNA biology leading to target cleavage while

avoiding complications leading to model nonlinearities, such as

seen in equilibrium points of typical chemical kinetics systems. We

note that Ago RNA levels are proxies to (unobserved) protein

levels. As discussed in Protocol S1, the microarray data was

processed to approximate mRNA concentration levels. We assume

that these levels are positively related to protein concentration, and

so the interaction between Ago mRNA and targeting miRNA

levels ought to be positively related to RISC concentration.

Model (2) refines the system biological elements in (1) and provides

the beginnings of a formal statistical model. Let i index tissue sample,

j index an m/miRNA pair, and consider that expression levels are

measured on the logarithmic scale. Further, let mRNAi
j represent the

level of the putative target mRNA in the ith tissue sample of the jth

pair; Ago2i and Ago134i be levels of Ago 2 and Ago 1, 3 and 4

(combined); miRNAi
j and miRNAi

2j be levels of the targeting miRNA

in the jth pair and the combined levels from other miRNAs; and ei
j

be a random error term assumed to be normally distributed. As

Statistical Use of RISC in miRNA Identification
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suggested, proxies for the concentration of targeting RISCs

composed of Ago 2 and Ago 1, 3 or 4 are obtained as products of

miRNAi
j and Ago2i or Ago134i respectively, and analogously for such

RISCs composed of miRNAs not under explicit study.

mRNA
j
i~bj

0zbj
1Ago2imiRNA

j
izbj

2Ago2izbj
3miRNA

j
i

zbj
4Ago134izbj

5Ago134imiRNA
j
izbj

6miRNA
{j
i

zb
j
7Ago2imiRNA

{j
i zb

j
8Ago134imiRNA

{j
i

zb
j
9mRNA

{j
i ze

j
i

ð2Þ

Under model (2), if the jth m/miRNA pair have a targeting

relationship then b1
j,0 (indicating a negative relationship between

expression levels of the mRNA and putatively targeting Ago 2

RISC proxy) would be anticipated. Therefore, a targeting

relationship between the jth m/miRNA pair under consideration

can be inferred by evaluating the no-targeting relationship

hypothesis H0: b1
j = 0 vs. HA: b1

j,0. To contrast this approach

with marginal expression level comparisons of mRNAs to

miRNAs, note that an alternative to correlating m- and miRNA

levels and evaluating the analogous no-targeting hypothesis H0:

rj = 0 vs. HA: rj,0 (where r represents the true correlation level

between m- and miRNA expression levels) would be to estimate

the simple linear regression:

mRNA
j
i~bj

0zbj
1miRNA

j
izej

i ð3Þ

and evaluate the hypothesis H0: b1
j = 0 vs. HA: b1

j,0. Of the other

effect terms in (2), b5
j has arguably the most compelling physical

interpretation - if the m/miRNA possess a targeting relationship

(as evidenced by rejection of the no-targeting hypothesis), b5
j is

anticipated to be positive and scaling in magnitude with b1
j due to

the aforementioned competition for targeting sites between RISCs

composed of Ago 2 and Ago 1, 3 or 4. The remainder of covariates

and effects used in (2) are included to conform to statistical

modeling standards that require inclusion of individual covariates

in models that analyze interaction terms (e.g. miRNAi
j and Ago2i

terms), and to have a full representation of the variety of possible

effects justified by the system biology (e.g. Ago2imiRNAi
2j).

Expression data
Regression models (2) and (3) were developed on and fit to data

from two studies in which both human m- and miRNA expression

levels were measured on a reasonably large set of tissue samples. A

study of nasopharyngeal cancer (NPC) by researchers in Madison,

WI and elsewhere [10,42] derived whole genome Affymetrix

hgu133plus2 microarrays for mRNA profiling, a custom cDNA

array for miRNA profiling and RT-PCR for the expression of

Epstein-Barr (EBV) genes. Data are available on 31 NPC and 10

normal tissue samples. The second data source was derived from

that produced from a study of miRNA expression patterns over a

wide variety of tumor and normal tissue types conducted by the

Broad Institute [43]. This data collection measures m- and

miRNA expression across 67 tissue samples from 10 different

normal and tumor tissue types, each tissue type is represented by at

least 5 sample observations. Additionally, we merged the Madison

and Broad data to create a third dataset in order to fit (2) and (3) to

data from the largest number of tissue samples possible. The

merged dataset measured m- and miRNA expression across 108

tissue samples from 12 different normal and tissue types (the tissue

states from the Madison dataset were not represented in the Broad

study). Details of the Madison, Broad and combined data

collections is provided in Protocol S1.

Known target pairs
In order to validate the system biological regression model, the

TarBase miRNA target database [44] was used to derive a set of

m/miRNA target pairs that both had been previously validated

through the use of gene mRNA and protein-specific techniques

(such as PCR, luciferase reporters and immunoblotting) and were

represented in the Madison and Broad datasets. (We did not

include relationships that were supported by microarray data

alone.) In total, there were 76 such m/miRNA target pairs that

were commonly measured in both the Madison and Broad

datasets and that fit the above criteria (these target pairs were used

in the combined data analysis), and 23 additional pairs measured

in the Madison data alone. See Table S1 for information

pertaining to each of these m/miRNA target pairs.

We note that TarBase classifies target pairs into those reported

to result in cleavage or translational repression. To assure that the

known target pairs used in this study are competent for observable

cleavage, we examined the original studies supporting their

inclusion in TarBase. We found no reason to reject any of the

pairs labeled in TarBase as resulting in mRNA cleavage as being

so competent. However, simultaneous translational repression and

cleavage of was demonstrated by a number of target pairs

classified in TarBase as translationally repressive [25], and in other

studies the use of only protein to miRNA comparisons could not

justify such a distinction. Based on our examination of the

supporting studies and underlying system biology (as previously

described), we did not reject any of the known target pairs based

on their TarBase cleavage/translational repression classification

and instead regarded all target pairs as competent for Ago 2

RISC-mediated cleavage.

Computationally predicted target pairs
To evaluate the performance of the system biological regression

model on computationally predicted but unverified m/miRNA

target pairs we used the results of sequence-based comparisons

summarized in the miRBase [45–47] and TargetScan databases

and expression data from the Madison dataset to derive a set of

putative target pairs that met three criteria: 1) They were predicted

by both miRBase and TargetScan simultaneously, rather than

either database singularly; 2) The putative targeting miRNAs in

the pairs under consideration were previously identified as

differentially expressed between NPC and normal tissue samples

[10]; 3) The putative targeted mRNAs in the pairs were those that

had above median expression variability. These criteria were used

to assure confidence in both the computational target predictions

as well as the data used to verify them. The use of putative target

pairs simultaneously predicted by both miRBase and TargetScan

was motivated by the relatively low overlap between predicted

target pairs from these databases – conditional on the miRNA

under consideration, TargetScan averaged 301 predicted targets

meeting criteria (2) and (3) and miRBase averaged 379, with 48 in

common. Constraining the analysis to those pairs with differen-

tially expressed miRNAs and targeted mRNAs with above average

expression variability assured that there was sufficient variability in

expression levels to permit a statistical analysis to be conducted.

(Using mRNAs with above median mean expression rather than

variability yielded no substantial differences in the results of our

study.) In total, there were 874 putative m/miRNA target pairs

that were evaluated using the Madison dataset. See Table S2 for

the specific predicted target pairs studied.

Model refinement
The Madison, Broad and combined data collections each

exhibit a number of idiosyncratic data effects that might affect the

Statistical Use of RISC in miRNA Identification
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ability to detect m/miRNA target pair relationships. Both

Madison and Broad datasets consist of expression measurements

from multiple tissue types with highly differentiated expression

profiles not directly related to m/miRNA targeting. In the

Madison data the tumor samples exhibit varying levels of EBV

activity, which has been related to the up- and downregulation of a

wide variety of genes both previously [48] and in the Madison data

set [42]. In the Broad data, no measurements for Ago 3 expression

are available. Finally, in addition to the idiosyncratic effects from

the Madison and Broad datasets individually, the composition of

the merged dataset from two data studies can be anticipated to

introduce complications to even a marginal analysis of m/miRNA

expressions.

To compensate for these issues, when analyzing target pair

expressions isolated from the Madison data we added two

covariates to model (2): a dichotomous variable representing

tumor/normal tissue sample state and the expression of the EBV

gene EBNA 1. When analyzing target pairs from the Broad data,

we added a vector of dichotomous covariates representing tissue

type to compensate for tissue type effects and substituted terms

aggregating only Ago 1 and 4 for those using Ago 1, 3 and 4. In

marginal analyses of the Madison and Broad datasets, no

compensation for tissue state was made – as described below,

introduction of similar dichotomous variables to model (3) had no

effect on the substantive results of the marginal analyses. When

analyzing target pairs from the combined dataset, we added to

model (3) a dichotomous covariate that represented the dataset

origin (Madison/Broad) of the observation under analysis, and

added to model (2) the expression of the EBV gene EBNA 1, a

vector of dichotomous covariates representing tissue state, and a

dichotomous covariate that represented dataset origin.

Model selection and hypothesis testing
As for (2) and (3), models that include idiosyncratic data

covariates can be used to infer a targeting relationship for the jth

m/miRNA pair by evaluating the suggested no targeting

relationship hypothesis. Evaluation of such a hypothesis is typically

performed via a t-test, and for marginal m/miRNA comparisons

using any of the Madison, Broad or combined datasets this

procedure is appropriate as the number of parameters are

relatively low compared to the number of tissue samples available.

However, the high parameterization of the system biological

models motivated an alternative analysis based on AIC score

minimization [49]. From a fully specified model containing both

system biology and idiosyncratic data effects, minimum AIC

submodels were computed and examined to determine whether

the proxy variable to RISCs composed of Ago 2 and the putatively

targeting miRNA was retained as a covariate, and if so, whether

the effect of that variable was negative. For observational studies,

estimated parameters in models selected for parsimony are

sufficient to infer an effect of the associated covariate and so such

cases were taken as rejections of the no targeting hypothesis.

Additionally, we note that models selected by the AIC criterion

can be regarded as implicitly passing a cross-validation test [50].

Therefore, there is a strong relationship between our technique

and those that would be predicated upon dividing the data into

training and validation sets (e.g. for developing a predictive model

for mRNA expression, in which putatively targeting miRNAs

might be evaluated as a potential predictor).

Randomization controls
To evaluate the significance of the numbers of positive

identifications we repeatedly applied the marginal and system

biology-based regression model approaches to randomized control

data, recording the number of m/miRNA pairs identified as

targeting for each repetition. Two complementary randomization

schemes were used. In the ‘‘no-targeting null’’ scheme miRNA

expressions from each pair under study were permuted across tissue

samples, holding the m/miRNA pairing constant – i.e. we condition

on the set of m/miRNA expression levels in a given pair, but we

randomize their association by resampling the observed miRNA

levels. (This randomization was done separately in the two sources

to preserve dataset-specific effects in the combined dataset analysis.)

By contrast, in our ‘‘random pairs’’ scheme sets of non-targeting m/

miRNA pairs were constructed by independently sampling

unrelated m- and miRNAs from those under study (i.e. from the

set of known target pairs), thus randomizing the pairings while

holding the expression levels unchanged across tissue samples.

For the analysis of the known target pair data, multiple (1000)

iterations of both randomization procedures were used to

construct no-targeting null and random pairs distributions of

numbers of positive identification. These distributions provided

the basis for calculating p-values for the numbers of positively

identified target pairs actually obtained by the marginal m/

miRNA comparisons and system biology-based regression models.

Under the no-targeting null randomization, dependency between

m- and miRNA expressions is explicitly removed. Therefore the

distributions of numbers of identifications across repetitions

obtained from this procedure can be regarded to be what might

be expected if none of the m/miRNA pairs under consideration

had true targeting relationships, and the p-values correspond to

tests of the hypothesis that the statistical procedure detects more

targeting relationships that what would be anticipated if none of

the m/miRNA pairs under consideration were bona fide target

pairs. Further, the median numbers of identifications from the

distributions can be used to infer measures of test specificity. We

note that the random pairs procedure does not guarantee that the

pairs under analysis do not have a targeting relationship (although

known target pairs are rejected from those used in the method, it is

possible that the m/miRNA pair is targeting but not yet verified as

such), and so inflated numbers of identifications relative to what

might be observed under the no-targeting null are expected. In

other respects, the distribution and p-values of observed numbers

of identifications against the random pairs distribution can be used

in the same manner as those from the no-targeting null.

We performed two different analyses that verified the intuitions

and results from our randomization tests on the known target pair

data. To assure that our no-targeting null distributions were

composed of a sufficient number of samples, we reconstructed no-

targeting null distributions for the Madison data using 10000

iterations of the procedure described above (rather than the 1000

originally used), and recomputed p-values for the numbers of

positive identifications obtained by the marginal and model-based

procedures. These p-values were substantially identical to those

obtained using 1000 iterations, and considering the heavy

computational resources these procedures require we therefore

constrained our analysis to the 1000 iteration case. Next, to verify

our expectations regarding inflated numbers of identifications in

the random pairs distribution we constructed a version of this

distribution for the Madison data that was composed of randomly

paired m/miRNA expressions taken from the full set of

measurements (rather than the subset of m- and miRNAs involved

in known target pairs), recomputed p-values as previously and

compared these p-values to those originally obtained. In this

analysis, no effort was made to remove known target pairs from

those randomly sampled. The results of this version of the random

pairs scheme are described below, however the test strongly

verified our original intuitions.
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In the analysis of the computationally predicted target pairs, we

conditioned on miRNA and used no-targeting null distributions to

obtain 95% upper bounds for the numbers of verifications that

might observed from either the marginal comparisons or system

biology-based models if none of the predicted m/miRNA target

pairs were bona fide. The numbers obtained from the marginal and

system biology-based methods on the actual data were then

compared to these bounds to provide an indicator of the relative

commonality of the results and an informal assessment of the

specificity of the methods, analogous to those obtained on the

known target pairs. The 95% upper bounds of the no-targeting

null distributions were generated using 100 iterations – again,

considering the computational resources required we regarded this

number as sufficient to obtain a reasonable estimate of the 95%

level.

Implementation
We began by analyzing the expression data from known target

pairs. Marginal m/miRNA comparisons were made initially in

order to provide a performance baseline for the regression models

that incorporated system biological covariates. For the Madison

and Broad data analyses, we calculated Pearson correlation

statistics on m/miRNA expression levels to measure negative

marginal associations, and R2 statistics from the simple linear

regression described in model (3) to determine the amount of

variation in targeted mRNA expressions attributable to that of

targeting miRNA. For the combined data analysis partial

correlations of m/miRNA expression controlling for data source

were calculated, and adjusted R2 statistics were computed to

compensate for the increase in model complexity due to the

introduction of the dichotomous data origin covariate. (A partial

correlation is a measure of the amount of common variation

between two variables after accounting for the effects of a set of

related covariates on both. It is analogous to a standard marginal

correlation between two variables, which does not account for

covariate effects. An adjusted R2 statistic is a measure of model fit

analogous to the standard R2 statistic that compensates for the

number of covariates in the model. See [51], Chapter 7.10 and 7.7

for technical descriptions of the partial correlation and adjusted R2

statistic respectively.) In each data analysis using marginal

methods, the total numbers of positive identifications of m/

miRNA target pairing obtained from evaluation of the no-

targeting hypothesis through a t-test at the 5% level were obtained.

Next, the performance of the system biological regression model

on the data from known target pairs was evaluated. Partial

correlation statistics for pairs of targeted mRNAs and proxies to

RISCs constructed of targeting miRNA and Ago 2, adjusted R2

statistics, and numbers of positive identifications of m/miRNA

target pairing obtained from use of the minimum AIC submodel

procedures on the versions of model (2) that included data

idiosyncratic covariates were computed and compared to the

analogous baselines from the marginal m/miRNA comparisons.

The number of positive identifications were additionally evaluated

using the randomization controls to assure that we obtained

greater numbers of identifications than what would be expected

under the null hypothesis of none of the m/miRNA pairs under

analysis being a legitimate target pair.

We continued by analyzing the computationally predicted

target pairs using the Madison dataset. For each putative target

pair, the simple linear regression described in model (3) and the

version of the system biology-based regression model (2) that

incorporated idiosyncratic data effects was used to evaluate the no-

targeting hypothesis through a t-test at the 5% level and the

minimum AIC submodel procedure respectively. The results from

the marginal procedure provided a baseline for evaluating the

performance of the system biology-based regression model. The

total numbers of verifications both the marginal and system

biology-based procedures were conditioned on miRNA and

compared directly to one another.

Our analyses were implemented as scripts in the R program-

ming language [52], which were executed on Macintosh OS X

computers with installations of R 2.8.0 (earlier versions of R were

used at earlier stages in our analysis). Dataset S1 contains the

scripts and associated data used to study the known target pairs in

the Madison, Broad and combined datasets. Alternatively, the first

author may be contacted to provide the archive directly. The

archive is commented and can be used to provide further

information regarding our procedures, or to rerun our analyses

on any system with an R installation (available through the

Comprehensive R Archive Network, http://cran.r-project.org).

Please direct any questions regarding the archive to the first

author.

Results

Marginal m/miRNA associations identify very few known
target pairs

Because the known target pairs under examination were

previously observed to have targeting relationships, it was

anticipated that the marginal correlations between m/miRNA

expression levels using any of the Madison, Broad and combined

datasets would typically be significantly negative. Contrary to these

expectations, the sensitivity of marginal m/miRNA expression

level comparisons was demonstrated to be quite low. Only 5 of the

99 target pairs in the Madison dataset, 6 of the 76 pairs in the

Broad dataset and 7 of the 76 pairs in the combined dataset have

significantly negative marginal relationships between m/miRNA

expressions (Table 1), and the majority of observed correlations

are positive (Figure 2). An example of the relationship between

marginal m- and miRNA expression levels in the Madison data is

provided in Figure 3 (top row, left column). The example provided

compares miR-17-5p to E2F1, a known oncogene. Although miR-

17-5p is known to target E2F1, the relationship between m- and

miRNA levels is positive.

As suggested in Methods, adding idiosyncratic data effects to

our marginal m/miRNA comparison in (3) resulted in nearly no

differences in the number of known m/miRNA target pairs

successfully identified as such. Using t-testing procedures to

evaluate the no-targeting hypothesis after doing so yields 3 of

Table 1. Identification performances of marginal and
regression models.

Marginal
comparison

AIC-optimal
submodel

Madison 5/99 (5.05%) 33/99 (33.33%)

Broad 6/76 (7.89%) 20/76 (26.31%)

Madison (Common subset) 2/76 (2.63%) 27/76 (35.52%)

Combined 7/76 (9.21%) 36/76 (47.36%)

The AIC-optimal submodel procedures associated with regression models
compensating for biological and idiosyncratic covariates capture more of the
known targeting relationships than marginal m/miRNA expression level
comparisons in all of the datasets under consideration. The Madison (Common
subset) data refers to those target pairs in the Madison dataset which were in
common with those in the Broad dataset.
doi:10.1371/journal.pcbi.1000516.t001
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99, 7 of 76 and 6 of 76 known m/miRNA target pairs identified as

such in the Madison, Broad and combined datasets respectively.

Similarly, a variety of data transformations were used to attempt to

generate an improvement in the overall results without success,

and the model fits were checked to assure that the results were not

due to systemic outlier effects, model misspecifications or non-

normal error terms.

Finally, it was notable that the number of detections obtained by

marginal comparisons was well within what might be observed

under either the no-targeting null or random pairs distributions

(Figure 5, second row). For the analysis of the Madison data, the p-

values of the number of positive identifications under the no-

targeting null and random pairs distributions were 0.491 and

0.279 respectively, for the Broad data p = 0.193 and 0.800

respectively, and for the combined analysis p = 0.947 and 0.419

(Table 2). In the context of the previously discussed identification

performance, these values suggest that the specificity of the

marginal procedure approximates the false positive rate under the

null hypothesis of no targeting, and therefore that marginal m/

miRNA expression level comparisons are as likely to detect

evidence of a targeting relationship for unrelated m- and miRNAs

as they are for bona fide target pairs.

miRNA abundance alone explains only a small fraction of
targeted mRNA variation

The observed R2 values from marginal m/miRNA expression

level comparisons using data from known target pairs range from

less than 0.001 to 0.365 with an average score of 0.061 for the

pairs in the Madison data, less than 0.001 to 0.196 with an average

of 0.035 for the pairs in the Broad data, and 0.008 to 0.880 with

an average score of 0.411 for the pairs in the combined data

(Figure 2). In the case of the Madison and Broad analyses, these

values indicate that variation in the expression levels of targeting

miRNAs explains only a small proportion of that in targeted

mRNA levels. As a consequence of this, it would be anticipated

that marginal comparisons of m/miRNA expression levels would

not be useful for determining whether or not a targeting

relationship exists, and therefore the low R2 values rationalize

the previously observed performance of the marginal m/miRNA

comparisons in identifying the known target pairs as such. In the

case of the combined data analysis the observed R2 scores are

substantially larger. However, the true relationships of the known

m- and miRNA target pairs were not captured when analyzing the

combined dataset with the marginal model. Therefore, these high

R2 scores simply suggest that the majority of the observed variance

in targeted mRNA expression is explained by the origin of the data

observation, rather than the appropriateness of the model.

Statistical models including system biological covariates
better represent the known target pair data

The mean and range of adjusted R2 values for fits of the system

biological regression model were (0.524, 20.102–0.922) for the

Madison data, (0.310, 20.077–0.602) for the Broad data and

(0.712, 0.055–0.974) for the combined data (Figure 4). The

increases in observed R2 scores from the baselines obtained from

fits of the marginal model indicate that the regression model

Figure 2. Marginal expression level comparisons of known target pairs. Marginal correlations of m- and miRNA expression levels are
typically and inappropriately positive in all datasets under analysis. Further, in the Madison and Broad datasets the amount of variation in targeted
mRNA expression captured by that of targeting miRNA is extremely low. In the combined dataset, high R2 values are indicative only of the amount of
variation in mRNA expression due to data origin.
doi:10.1371/journal.pcbi.1000516.g002
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captures a greater percentage of the variation in targeted mRNA

levels, even after compensating for its increased complexity.

Because inclusion of the system biological covariates yielded a

model that explained greater amounts of variation in target

mRNA levels explained than the marginal model, it was

anticipated that it would also better represent the true negative

relationship between m/miRNA expression levels from the known

target pairs. In fact, partial correlations between targeted mRNAs

and proxies to targeting Ago 2 RISCs under model (2) were

appropriately negative at substantially higher rates than marginal

m/miRNA correlations (53% vs. 38%, 59% vs. 42% and 61% vs.

32% for the target pairs in the Madison, Broad and combined

datasets respectively). Additionally, there was a reduction in

observed correlation scores taken across the sample of m/miRNA

target pairs (mean marginal and partial scores were (0.0934,

20.0247), (0.057, 20.012) and (0.232, 20.083) for the Madison,

Broad and combined data). To formalize this comparison, a null

hypothesis of equality of marginal and partial correlation scores

Figure 3. Marginal and system biology-compensated E2F1 and miR-17-5p expression levels. E2F1 and miR-17-5p expression levels in the
Madison data are compared marginally in the top left and after compensation for biological and idiosyncratic covariates on the top right. Analogous
results for the OSU data are provided in the bottom row. In either dataset, marginal RNA expression levels are not representative of the known
targeting relationship between miR-17-5p and E2F1. After compensation the relationship between these RNAs can be observed.
doi:10.1371/journal.pcbi.1000516.g003

Table 2. Significances of numbers of correct identifications under randomization nulls.

No-targeting null, marginal
comparison

Random pairs, marginal
comparison

No-targeting null, AIC-optimal
submodel

Random pairs, AIC-optimal
submodel

Madison 0.491 0.279 0.008 0.053

Broad 0.193 0.800 0.096 0.241

Combined 0.947 0.419 0.001 0.072

Table 2 provides p-values of the numbers of correct identifications for each of the Madison, Broad and combined datasets under no-targeting null and random pairs
distributions. The number of correct identifications obtained after compensating for biological and idiosyncratic covariates is typically at least marginally significant in
any of the datasets under study, using either randomization null. Marginal comparisons do not yield significant numbers of correct identifications in any of the cases
under study.
doi:10.1371/journal.pcbi.1000516.t002
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was tested and rejected for all three datasets using a paired

Wilcoxon rank-sum test (p = 0.014, 0.018 and ,0.001 for the

Madison, Broad and combined data).

Validation of these results consisted of checking the model fits

for evidence of systemic outlier effects, model misspecifications or

non-normal error terms, as was done for the marginal model fits.

A comparative example of the model fits achieved in the Madison

data is provided in the top row, right column of Figure 3. After

controlling for system biological and idiosyncratic covariates, the

relationship between miR-17-5p (which was positive under the

marginal model) is appropriately negative.

In a further examination, the effects of the covariates used in the

AIC-optimal submodels of the fits of (2) on the Madison data were

studied to assure that the model was not overspecified. Of the

variety of covariates used in the version of (2) compensating for the

idiosyncratic data effects, only the dichotomous variable indicating

tissue type found low levels of use in the AIC-optimal submodel –

in fact, it was never included in the AIC-optimal submodels,

indicating that tissue type never had a substantive effect on a

targeted mRNA level after compensating for other effects. Because

few if any of the known m/miRNA target pairs under

consideration have been previously observed to be differentially

expressed in NPC, this might be reasonable. Alternatively, this

result can be explained by noting that EBV expression in the

Madison data is highly associated with NPC, and therefore

statistical control of EBV expressions rather than tissue type may

be sufficient for both.

Related to this analysis, the estimated effects of proxies for

targeting RISCs composed of Ago 1, 3 and 4 from the AIC-

optimal submodels were compared to those composed of Ago 2 in

order to assure that the model was performing in a reasonable

manner. Figure 6 displays the relationships of estimated effects of

targeting Ago 2 RISC proxies to targeting Ago 1, 3 and 4 RISC

proxies, for AIC-optimal submodels estimated on the Madison

data in which both covariates were included and the estimated

effect of the targeting Ago 2 RISC covariate was appropriately

negative (there were 13 such cases out of the 33 in which the effect

of the targeting covariate was so). It can be observed that, as

anticipated, the estimated effects of targeting Ago 1, 3 and 4

RISCs on targeted mRNA levels are indeed generally positive with

effect sizes scaling with those of targeting Ago 2 RISCs.

Overall, these results demonstrate that the relationships

between targeted mRNAs and proxies to targeting Ago 2 RISC,

compensating for other relevant biological covariates, better

represent the actual relationship of the known target pairs than

marginal m/miRNA expression level correlations.

Figure 4. System biology-compensated expression level comparisons of known target pairs. Improvements in the percentages of
variation in targeted mRNA expression are observed through use of the adjusted R2 statistic. Partial correlations of proxies to targeting Ago 2 RISCs
and targeted mRNAs are lower than those of m/miRNA expressions. Paired Wilcoxon tests of the hypothesis H0: m02m1 = 0 vs. HA: m02m1?0 were
rejected for the Madison (p = 0.0135), Broad (p = 0.0186) and combined (p,0.0001) datasets, where m0 and m1 refer to mean correlations of marginal
m/miRNA expression and mean partial correlations respectively.
doi:10.1371/journal.pcbi.1000516.g004
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m/miRNA associations compensating for the system
biology identify a substantial portion of the known
targets

Based on the improvements in model fit, it was further

anticipated that evaluating the no-targeting hypothesis using the

system biological model and the minimum AIC submodel

procedure would indicate a greater number of positive identifica-

tions of targeting relationships than obtained by marginal m/

miRNA comparisons. In fact, model (2) identified 33 of 99, 20 of

76 and 36 of 76 known m/miRNA target pairs as having

expression profiles consistent with targeting relationships in the

Madison, Broad and combined datasets respectively. This

represents up to a sevenfold increase from the baseline obtained

by marginal m/miRNA expression level comparisons (Table 1),

and demonstrates the improved sensitivity of model (2) in detecting

m/miRNA target pair relationships. We note that although under

50% of known target pairs were recovered by model (2), this level

of identification performance is similar to the individual

performances obtained by a number of sequence-based compu-

tational methods [30]. In particular, using the Madison and

combined datasets we were able to successfully identify 33 and

47% of the known targets pairs we evaluated, whereas TargetScan

and miRBase are reported to have 21 and 48% consistency with

experimentally supported target pairs.

The numbers of detections obtained by model (2) relative to

what might be expected under either of the randomization

techniques show similar improvements from the baseline obtained

by marginal m/miRNA expression level comparisons (Figure 5,

first row). For the analysis of the Madison, Broad and combined

datasets, the p-values of the number of positive identifications

under the no-targeting null were 0.008, 0.096 and 0.001

respectively. Likewise, under the random pairs distributions the

p-values were 0.053, 0.241 and 0.072. In the case of the Madison,

Broad and combined data analyses, the numbers of identifications

obtained are at least marginally significantly greater than what is

typically observed under the no-targeting null. Under the random

pairs distribution the Madison and combined data analysis show

similar results, while the number of identifications made using the

Broad data is not significantly greater than what might be

expected under the null. As suggested above we anticipated an

overall inflation in p-values under the random pairs technique due

to inadvertent sampling of as-of-yet unverified target pairs from

the sets of known target pairs used as a basis for the technique. As

discussed in Methods, to verify this intuition we performed a

secondary analysis of the number of detections obtained for the

Madison data against a random pairs distribution constructed

from the full set of m- and miRNAs for which expression

measurements were available. The p-value from this study was

Figure 5. p-values of observed correct identifications under no-targeting and random pair nulls. The AIC-optimal procedure
compensating for biological and idiosyncratic covariates yields numbers of correct identifications that are typically at least marginally significant in
any of the datasets under study, using either randomization null. In no case is the number of correct identifications achieved by marginal correlation
significantly greater than what would be expected.
doi:10.1371/journal.pcbi.1000516.g005
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0.007; based on this result we regarded the inflated p-values under

the random pairs distributions as a statistical artifact and focused

our attention on the results from the no-targeting null.

In total, the results from our analysis imply that the

improvements in sensitivity for detecting target pairs obtained

through model (2) are greater than any loss in specificity that might

be incurred relative to that of the marginal procedure. The overall

specificity of (2) for rejecting non-targeting pairs in the Madison

and combined datasets are approximately 80%, as can be

observed from median numbers of acceptances under the non-

targeting null distribution. The analysis of the Broad data did not

yield significantly larger numbers of correct identifications under

either the no-targeting null or random pairs distributions, however

it is useful to note that the high number of tissue types and missing

Ago 3 measurements in the Broad dataset can be anticipated to

negatively affect our ability to detect m/miRNA target pair

relationships from expression levels. As well, the Madison dataset

was processed to provide measurements in terms of concentration

estimates that can more naturally be aggregated than the RMA

measurements provided in the Broad data.

Regression-based m/miRNA association verifies
substantial portions of the predicted target pairs as bona
fide

The overall results of evaluating the computationally predicted

m/miRNA target pairs on the Madison data with the system

biological regression model and marginal m/miRNA comparison

are described in Figure 7. (Table S2 provides further detail on

results obtained for particular m/miRNA pairs analyzed by the

system biologic regression model.) For each miRNA under

consideration, the first, second and third columns of Fig. 7 provide

the numbers of putative target pairs evaluated and positive

validations obtained by the system biological model and marginal

m/miRNA comparisons respectively. In the second and third

columns, 95% upper bounds on number of positive validations

expected under the no-targeting null are provided.

Visual inspection of Figure 7 suggests that model (2) yields

substantially more verifications than the marginal method in

nearly every case. In fact, the marginal method most often yields

no verifications of computationally predicted targets of any of the

miRNAs considered. The average percentage of predicted targets

validated by the system biologic regression model is 25.68%, taken

across all miRNAs. For 6 of the 18 miRNAs conditioned upon, the

Figure 6. Estimated effects of targeting Ago 2 and Ago 1,3,4
RISC proxies. X- and y-axes correspond to estimated effects of
targeting RISC proxies composed of Ago 2 (b1) and Ago 1, 3 or 4 (b5) on
targeted mRNA levels for those cases where the model successfully
identifies the known targeting pair and estimates both effects in the
minimum AIC submodel. Observed values are inversely related in sign
with similar magnitudes of effect strength. This is consistent with the
hypothesized interference of observable target cleavage by RISCs
composed of Ago 2 by those composed of Ago 1,3 or 4.
doi:10.1371/journal.pcbi.1000516.g006

Figure 7. Validation of computationally predicted targets. Hash marks denote the 95% confidence level of identification numbers under the
no-targeting null for the miRNA and validation technique under consideration. Overall, 7.83% of computational predicted targets were verified using
marginal expression level comparisons, and 4 miRNAs showed substantially larger numbers of verifications than what would be typically expected.
After compensating for biological and idiosyncratic effects, 25.68% of these targets were verified, and 9 miRNAs showed large numbers of
identifications.
doi:10.1371/journal.pcbi.1000516.g007
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number of verifications obtained was significantly (p,0.05) greater

than what might be expected under the no-targeting null (miR-

130b, -15a, -16, -181a, -181c, -30d), and analyses conducted on

targets predicted for an additional three miRNAs (miR-192, -224

and -212) yielded numbers of identifications that were substantially

greater (p = 0.08, 0.13 and 0.28 respectively). In comparison,

marginal comparisons validate an average of 7.83% of predicted

targets, and yielded three miRNAs (miR-212, -29a and –29c)

associated with significantly greater numbers of verifications than

what might be expected under the no-targeting null with one

additional miRNA (miR-133a) having a substantially greater

number (p = 0.21). Although some inflation in the number of

verifications that might be observed under the no-targeting null

was incurred through when using the system biologic regression

model rather than marginal m/miRNA comparisons, the results

obtained here are roughly consistent with the performance of the

marginal and system biologic regression methods on the set of

known target pairs.

Based on these results, a further comparative inspection was

made of the distributions of the estimated marginal and Ago 2

mediated effects from fits of the miRNAs under analysis against all

mRNAs in the Madison dataset. Sample distributions for

estimated and normalized marginal effects of miR-29c and

estimated miR-30d Ago 2 RISC effects are provided in Figure 8.

(These were selected due to their high numbers of predicted target

pair verifications, as seen in Figure 7.) The estimated marginal

effects of miR-29c are clearly negatively biased, explaining the

high numbers of validations. The estimated miR-30d Ago 2 RISC

effects do not have such a bias. Instead, they demonstrate a

bimodality with a main mass centered at 0 effect and a smaller

mass centered at 21.5. Such a distribution is consistent with a

categorization of genes into two classes: those regulated by miR-

30d, and those not. Although analyses of such large-scale screen

results are ongoing, the results in Figures 7 and 8 provide further

evidence that that use of statistical models which compensate for

the system biology related to miRNA-based gene silencing are

more appropriate for validating and predicting m/miRNA

targeting relationships than marginal expression level compari-

sons.

Discussion

The effects of miRNAs on mRNA stability and translation are

presently understood to have effects on organism development and

physiological function, and have been linked to diseases such as

cancer. It is of acknowledged importance to develop greater

insight into the targeting relationships between m- and miRNAs.

In this paper, we considered the role that biology-based statistical

modeling and methods might play in the m/miRNA target

prediction problem. Currently, the statistical techniques used for

these purposes are typically based on marginal comparisons of

individual m- and miRNA expressions across tissue samples. In

Figure 8. Estimated effects of marginal miR-29c expressions and miR-30d Ago 2 RISC proxies. Distributions of miR-30d Ago 2 RISC proxy
effects across all genes measured in the Madison dataset suggest two classes of genes – those with no relationship to miR-30d, and those negatively
regulated by miR-30d. Analogous distributions of marginal miR-29c expression effects suggest no such dichotomy, and are negatively biased.
doi:10.1371/journal.pcbi.1000516.g008
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some respects this is a natural comparison to consider – many

early studies verifying predicted targeting relationships were based

on transfection experiments with small numbers of samples, for

which marginal m/miRNA comparisons might be the only

procedure available. However, it has been observed previously

(and was demonstrated here) that in practice these methods

typically yield relatively disappointing results.

We hypothesized that improvements in the performance of

statistical methods for detecting m/miRNA target pair relation-

ships might be achieved through development of a statistical

model and associated hypothesis testing procedure better tied to

the underlying system biology. In an investigation of this biology in

homo sapiens we identified a number of factors that we expected to

affect the ability of marginal m/miRNA expression level

comparisons to detect targeting relationships, many related to

the dependence of the gene silencing mechanism on the

construction and varied actions of RISCs. Based on this as well

as additional information pertaining to the data under analysis, we

developed regression methodology for testing hypotheses of no

targeting relationship between m- and miRNA. Our rationale for

choosing regression methods (as opposed to other possible

statistical or computational methods) was motivated by the

balance it offered between the competing goals of fidelity to the

system biology, having a methodology with understood theoretical

underpinnings and computational tractability for analyzing large

number of putative m/miRNA target pairs, while being

appropriate to the data quality and sample size.

In comparison to procedures based on marginal m/miRNA

expressions, our models and procedures were shown to provide

substantial improvements in overall model fit and detection

performance for sets of known m/miRNA target pairs, although

the degree of such improvement was somewhat dependent on the

study design. As would be hoped, we further demonstrated that

such improvements were carried over into the problem of

validating predicted m/miRNA target pairs. Our study suggests

that use of the regression models and associated hypothesis testing

procedures developed here (or equivalent techniques based on the

system biology) represent a reasonable alternative to methods

based on marginal m/miRNA comparisons for analyzing

expression data in m/miRNA targeting studies, and in conjunc-

tion with high throughput data can be used to either verify

computationally predicted relationships or generate de novo

information regarding m/miRNA target pairs. In fact, our model

demonstrates consistency with known target pairs on par with

many computational target prediction algorithms [30].

Because there have been few systematic studies of statistical

methods for detecting m/miRNA targeting, there is little context

that can be used to help evaluate our results. The most relevant

external work is that recently conducted by Huang et al [53–55],

however there are a number of differences between our studies.

Huang et al focus on Bayesian methods to update a set of prior

probabilities of targeting relationships between m- and miRNAs

using marginal expression comparisons. These prior probabilities

are, in their reported work, highly tied to the results of

computational target prediction algorithms (in particular, Tar-

getScan). The posterior probabilities obtained through their

technique are compared to a threshold based on those obtained

from a high-confidence set of m/miRNA target pair expression

values; m/miRNA pairs with posterior targeting probabilities

meeting the threshold are accepted as valid target pairs. In

contrast, our study is framed in terms of evaluating a single m/

miRNA pair for evidence of a targeting relationship, compensating

for the underlying system biology (which includes the effects of

other targeted and targeting m- and miRNAs on the m/miRNA

pair under consideration). Our use of a hypothesis testing

framework allows us to avoid the need to set a thresholding value

based on a separate set of m/miRNA expression data for

evaluating whether potential m/miRNA pairs evidence a targeting

relationship. We do not tie our work to any particular

computational target prediction algorithm, a position we view as

appropriate given the issues with their specificity, sensitivity and

inter-algorithm consistency.

Further, the emphasis of our presentation of algorithm

development and results is substantially different from Huang et

al. We choose to focus development of a statistical method on

known m/miRNA pairs and then use the resulting procedure to

validate a set of computational target predictions. Huang et al are

primarily concerned with using their algorithm to validate

computational predictions, with verification of their method on

known target pairs taking place only on those that are represented

in their set of computational target predictions [53]. It is unclear

whether these differences in presentation have a substantial

difference in performance. The methods proposed here and by

Huang et al verify approximately the same proportion of

computational target predictions evaluated, and Huang et al [53]

demonstrate that of 19 known target pairs contained in the set of

computationally predicted targets that they attempt to evaluate, 9

are identified as such. Overall, comparing the two methods and

constructing new statistical procedures that incorporate elements

of each may be one direction for achieving further improvements

in the ability to detect m/miRNA target relationships from high-

throughput expression data.

A similar issue that this study only indirectly addresses is the

topic of how to best combine results across multiple sequence-

based computational or expression-based methods, in order to

obtain an aggregate estimate of the full set of m/miRNA target

pairs occurring in humans. Such techniques can be classified into

two categories: Those that would use sequence-based and

expression-based methods sequentially (e.g. using expression-based

methods to validate sequence-based predictions or using sequence-

based methods to rationalize de novo expression-based predictions

with a target site), and those that would use them simultaneously

(i.e. without using one type of method conditional on the results of

the other). Here, after establishing the utility of our data on known

target pairs, we demonstrate how it might be used in a sequential

study conditional on the results of sequence-based methods. To

perform either a sequential study in which sequence-based

methods are used conditional on de novo expression-based

predictions or a simultaneous study using both sequence-based

and expression-based predictions, the development of statistical

methods which can distinguish between a bona fide m/miRNA

target pair and m/miRNA pairs related through an intermediate,

targeted, translationally activating mRNA must be developed. We

are currently working on the development of such a technique.

Additional complications that ought to be addressed in such

studies is how best to handle the multiple comparisons problems

that occur due to the large number of m/miRNA pairs that might

be evaluated (which are orders of magnitude larger than those

encountered in typical differential expression studies, for example),

and how to best align results from multiple algorithms and

datasets. We feel that, much as this study utilized known m/

miRNA target pairs to validate our regression model, it is

reasonable for future proposed methods for handling these

technical problems to use them as a basis for evaluation and

validation.

Aside from our current work towards the development of a

statistical technique capable of de novo m/miRNA target pair

prediction, we are extending our work in large-scale screening of
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putative m/miRNA target pairs (such as described in Figure 8).

Our work consists of both investigating and improving our

statistical procedures for inferring such relationships as well as

aligning predictions from sequence- and expression-based meth-

ods, and by further supplementing the data used in this study with

new samples as they become available. In a study of a recent

dataset originally analyzed by Ambs et al [56], many of the results

obtained here are reiterated. Figure 3 provides an example.

Consistent with our result using the Madison data, miR-17-5p

shows no substantial relationship with E2F1 in a marginal analysis

(bottom left panel), but after controlling for the biological and

idiosyncratic covariates the true negative relationship between

them can be observed (bottom right). Based on this study, those of

Huang et al, and the continued release of high-throughput data

studies comparing m- and miRNA expression, we look forward to

the further development of statistical methods for detecting m- and

miRNA targeting relationships from expression data.
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Found at: doi:10.1371/journal.pcbi.1000516.s001 (0.05 MB

DOC)

Table S1 Known m/miRNA target pairs. Table S1 contains the

set of all previously observed target pairs used in this study.

Alternative nomenclature for miRNAs/genes is provided. Target-

ed genes are labeled (C) or (TR) depending on whether the target

pair’s annotation in TarBase indicates previously observed

evidence of mRNA cleavage or translational repression respec-

tively. The citation provided by TarBase justifying the targeting

relationship is also provided.

Found at: doi:10.1371/journal.pcbi.1000516.s002 (0.06 MB

DOC)

Table S2 Predicted m/miRNA target pairs. Table S2 contains

the set of all predicted target pairs analyzed in this study. For each

miRNA Table S2 provides the numbers of individual and

simultaneous predictions made by miRBase and TargetScan for

which the Madison dataset measured above noise expressions,

along with a list of the genes analyzed. Predictions verified by use

of model (2.3) are highlighted.

Found at: doi:10.1371/journal.pcbi.1000516.s003 (0.04 MB

DOC)

Dataset S1 Data and statistical codes. Expression data and

supporting R codes for Stanhope et al (2009) ‘‘Statistical use of

Argonaute expression and RISC assembly in microRNA target

identification.’’

Found at: doi:10.1371/journal.pcbi.1000516.s004 (6.80 MB GZ)
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