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Abstract: The combination of Landsat-8, Landsat-9, Sentinel-2A and Sentinel-2B data provides a
new perspective in remote sensing application for terrestrial monitoring. Jointly, these four sensors
together offer global 10–30-m multi-spectral data coverage at a higher temporal revisit frequency.
In this study, combinations of four sensors were used to examine the revisit interval by modelled orbit
swath information. To investigate different factors that could influence data availability, an analysis
was carried out for one year based on daytime surface observations of Landsat-8 and Sentinel-2A -2B.
We found that (i) the global median average of revisit intervals for the combination of four sensors was
2.3 days; (ii) the global mean average number of surface observations was 141.4 for the combination of
Landsat-8 and Sentinel-2A -2B; (iii) the global mean average cloud-weighted number of observations
for the three sensors combined was 81.9. Three different locations were selected to compare with the
cloud-weighted number of observations, and the results show an appropriate accuracy. The utility of
combining four sensors together and the implication for terrestrial monitoring are discussed.
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1. Introduction

Satellite combinations of the polar-orbiting Landsat-8 (launched 2013) and Landsat-9 (proposed
for launch in middle 2021) by NASA [1] as well as Sentinel-2A (launched 2015) and Sentinel-2B
(launched 2017) [2] by European Space Agency (ESA) offer 10–30-m resolution multi-spectral global
land coverage. This will substantially increase moderate-resolution satellite observations available for
terrestrial monitoring [3]. The data availability of satellite observations is of great importance to the
surface land monitoring capabilities, as more data enable more reliable land cover classification and
change detection.

The data availability of satellite surface observations changes spatially and temporally and is
complicated due to the fact that different factors influence data availability. Combinations of sensors,
taking advantage of the different sensor acquisition patterns, could enable more observations to be
collated, thus reducing the temporal revisit interval between consecutive observations. Recently,
Li and Roy [4] proved that the combination between Landsat-8 and Sentinel-2A -2B could provide
more observations and derive a global median average revisit interval of 2.9 days. However, to date
the global revisit interval between the combination of Landsat-8 -9 and Sentinel-2A -2B four sensors
together has not been investigated.

Satellite orbit swath geometry, i.e., the spatial overlap of lateral orbit swaths increases with higher
latitudes [5], which enables more observations at higher latitude. Solar geometry, i.e., latitudinal and
temporal variations in the highest latitude toward the North or South Pole that satellites can observe,
is related to the temporal progression of the solar position over a year [6]. Acquisition strategy and
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operational constraints, i.e., data acquisition strategy, payload, station acquired ability, and instrument
issues [7,8] also influence data availability. It is important to note that Landsat-8 does not acquire
observations globally, i.e., Landsat-8 observations cover all sun-lit landmasses and near-shore coastal
regions having a solar elevation that is greater than 5◦. Different imaging priorities are set according to
latitude and location, i.e., Landsat-8 scenes in USA are set as a high priority, and no scenes are rejected
for growing season monitoring of the Northern Hemisphere [8]. Cloud obscuration, when clouds
preclude observations, is significant and complicated, as the global variability of clouds in space and
time is considerable during Landsat overpasses [9,10].

In this study, revisit intervals between the combinations of Landsat-8, Landsat-9, Sentinel-2A and
Sentinel-2B four sensors were investigated by modeled orbit swath information from the Committee on
Earth Observation Satellite (CEOS) Visualization Environment (COVE) tool [11] for 2016. A global land
grid, defined by an equal area sinusoidal projection, comprising 7201 × 3601 points, and equivalent
to that of [4], was used. The global total number of observations and the cloud-weighted number of
observations for the combination of Landsat-8 and Sentinel-2A -2B obtained from the United States
Geological Survey (USGS) metadata bulk down service [12] were quantified. Surface reflectance
observations for the three different locations were selected to evaluate the accuracy of the cloud-weighted
number of observations.

2. Data

2.1. Orbit Swath Information

Both Landsat-8 and Landsat-9 orbits were sun-synchronous at an altitude of 705 km and 98.22◦

inclination, with a 15◦ scanning angle and a 185-km swath width [13–15]. The two sensors phased 8 d
away from each other, yielding a 16-d repeat cycle, which was reduced to 8 d, when combined. The
orbits of Sentinel-2A and Sentinel-2B were at an altitude of 786 km and 98.62◦ inclination, with a 20.6◦

scanning angle and a 290-km swath width, providing a 10-d repeat cycle for each sensor or a combined
5-d repeat cycle [16].

The orbit swath coordinate and overpass times for Landsat-8, Landsat-9, Sentinel-2A and
Sentinel-2B were modeled using the Committee on Earth Observation Satellite (CEOS) Visualization
Environment (COVE) tool. Data acquired in 2016 from 1 January to 31 December were selected for
Landsat-8, Sentinel-2A and Sentinel-2B, as in [4]. Landsat-9 modelled orbit swath data were stimulated
by Landsat-7 using COVE tool for the reason that Landsat-9 will be placed into the current Landsat-7
orbit with an altitude, inclination and an equatorial crossing time the same as Landsat-8, but phased
8 days away [14,15,17]. The orbit swath was cut into 1-min granules and only daytime granules were
used in this study.

2.2. Daytime Surface Observation Metadata Records for Landsat-8 and Sentinel-2A -2B

Landsat-8 daytime surface observation metadata records were obtained from the USGS Landsat
archive metadata database [12]. The database is defined in the Landsat Collection 1 format, with path
and row defined in a 185 km × 180 km Worldwide Reference System (WRS-2), and corner coordinates
of each scene in the Universal Transverse Mercator (UTM) projection, referenced to the World
Geodetic System 1984 datum [18]. The metadata records briefly describe the Collection 1 products.
The cloud-cover fractions for Landsat-8 were defined using the CFMask algorithm [19], which gives
the total cloud-cover percentage for each scene. This percentage is stored to two decimal places for
Landsat-8 records.

Metadata records for Sentinel-2A -2B were downloaded from the USGS Earth explorer [20].
The Sentinel-2 tiles are first provided in Standard Archive Format for Europe (SAFE) files [7] cutting
along orbit swath data, and are defined by splitting each SAFE file into fixed 109 × 109 km projected in
the Universal Transverse Mercator (UTM) map projection [2,21]. Each metadata record for Sentinel-2 is
represented for each tile.
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For all three sensors, observations acquired in 2018 from 1 January to 31 December were selected
in this study. Only daytime-acquired imageries and global land acquisitions, which even included
Antarctica, were used for Landsat-8. Landsat-8 now has the capability for mapping and monitoring
snow/ice and water [22,23], with improved radiometric resolution and geolocation accuracy [24–26].
Sentinel-2 observations were filtered by descending orbit.

2.3. Surface Reflectance Observations for Landsat-8

Landsat 8 Collection 1 atmospherically corrected the surface reflectance image covering three
pixel locations: northwest of Algeria, Sahara desert (30.0◦ N, 0.0◦), northwest of Brazil, Amazon forest
(3.138◦ S, 62.180◦ W), and South of Sweden (56.842◦ N, 15.057◦ E) in the year 2018 were downloaded
from the USGS Earth Explorer [20]. These three locations were selected as they have the different land
cover types, different latitude/longitude and different cloud conditions. Landsat-8 Operational Land
Imager (OLI) Collection 1 Surface Reflectances are generated from the Top of Atmosphere Reflectance,
using the Land Surface Reflectance Code (LaSRC) [27], which produces the surface reflectance bands
and pixel quality assessment band.

3. Material and Methods

3.1. Global Average Revisit Intervals for Combination of Landsat-8/9 and Sentinel-2A/2B

The global average revisit interval map was derived on a global land point grid using a sinusoidal
equal area projection to provide spatially unbiased sampling [28]. The grid comprised 7201 × 3601
points with a spacing of 0.05◦. This map captured the overlap of along-track and across-track swath
data from Landsat, as well as orbital shifts of the sensor geometry [29,30].

To derive the average revisit interval for each land grid point, each acquisition from the four sensors
was independently tested to determine whether it encompassed the land grid point. This was fulfilled
by comparing the corner coordinates of an acquisition with those of the land grid point [31]. Considering
the large data volume of the sensors, a pre-sorting algorithm was implemented to filter acquisitions
with the central coordinates away from the land grid point by a threshold. After establishing whether
the acquisition overpassed the land grid point for all four sensors, they were sorted and merged into a
single acquisition queue by order of acquisition time, given they were derived from different sensors.
The revisit interval dataset was determined by calculating the time difference between every two
consecutive observations. The average value of the revisit interval dataset was assigned to the land
grid point. A fill value was given, if there were no acquisitions. After looping through all the land grid
points, a global average revisit interval map was established. Because the operation on each land grid
point was independent, a multi-thread technology was used to speed up the processing of assessing
the grid points. All programs were written in C language.

3.2. Global Number of Observation Maps for the Daytime Surface Observations of Landsat-8 and
Sentinel-2A -2B

The global land grid points defined in sinusoidal projection were used to derive the daytime
surface observations of Landsat-8 and Sentinel-2A -2B. The first step was to establish the acquisition
dataset for the three sensors that overpassed each land grid point. The total number of observations
were added by counting these datasets. The spacing of land grid points was set to be small enough
to capture overlap between satellite observations along-track and across-track. In the along-track
direction, the southern part of the overlapping area was discarded, while the northern part was retained.
In the across-track direction, the overlapping areas were counted twice, as they represent different
observations sensed on different dates. The average cloud cover percentage at each land grid point
was derived by averaging the cloud cover percentage of each acquisition in the sensed dataset list for
each land grid point. A unique fill value was given if no observations were made at a given grid point.
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The cloud-obscured images clearly decrease the number of available images. In an image scene,
it was assumed that all the image pixels had the same probability of being cloudy, with a value equal
to the percent cloud cover in the image scene. This ensured that the number of cloud-contaminated
pixels, i.e., the number of datasets lost, was proportional to the cloud cover percentage. Likewise,
all useful pixel observations, i.e., those representing the clear part of the image, were proportional
to the fraction of cloud cover subtracted from one. Consequently, the cloud-weighted number of
observations accumulated within a given period was obtained by the probability of observations that
overpassed the land grid point being clear.

Three pixel locations were selected to evaluate the accuracy of the cloud-weighted number of
observations. This was fulfilled by counting the number of clear views for each of the locations through
the year 2018. Pixel observations were considered as a clear view only if they were not labelled as
median confidence or high confidence cloud in the pixel quality assessment band [32]. The accuracy
of the cloud-weighted number of observations was compared with the cloud-weighted number of
observations with the number of clear views.

4. Results

4.1. Global Average Revisit Intervals for Combination of Landsat-8/9 and Sentinel-2A/2B

Figure 1 shows the average revisit intervals derived for each global land grid point for Landsat-8
and Landsat-9 and four sensors combined. The average revisit intervals for Sentinel-2A and Sentinel-2B,
reported by [4], are shown for comparison. Given the wider swath width of Sentinel-2, but its longer
repeat cycle compared with Landsat, the combinations of Sentinel-2A/2B had a shorter average revisit
interval than Landsats-8/9 (Figure 1a,b). As shown in Figure 2, the global revisit interval histograms
are not normally distributed because of the variable overlap of the orbits of different sensors and
convergence of their orbits at high latitudes. The values beyond 9.0 days were not shown in Figure 2
for the low appearance (account for 0.028%, 0.007% and 0.000% of total grid points, respectively).
Table 1 summarises the global mean, median, first mode and the second mode revisit interval data for
the various sensor combinations explored in this study.
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Figure 1. Global average revisit interval (days) maps for the combinations of (a) Landsat-8 and
Landsat-9, (b) Sentinel-2A and Sentinel-2B, and (c) Landsat-8, Landsat-9, Sentinel-2A and Sentinel-2B
from 1 January to 31 December 2016. The results were examined on a global grid, defined by an equal
area sinusoidal projection, composed of 7201 × 3601 grid points, with a spacing of 0.05◦. Country
boundaries using a sinusoidal projection were overlapped on the maps.
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Figure 2. Global average revisit interval histograms divided into 20-min bins for combinations of
(a) Landsat-8 and Landsat-9, (b) Sentinel-2A and Sentinel-2B, and (c) Landsat-8, Landsat-9, Sentinel-2A
and Sentinel-2B from 1 January to 31 December 2016. The percentages denote the percent of each bin
compared with the total number of revisits. All data are from Figure 1.

Table 1. Global statistics including mean, median and various modes for combinations of (a) Landsat-8
and Landsat-9, (b) Sentinel-2A and Sentinel-2B, and (c) Landsat-8, Landsat-9, Sentinel-2A and
Sentinel-2B from 1 January to 31 December 2016. Results are given to three decimal places. Percentages
for each mode are tabulated. All data are from Figure 1.

Landsat-8
Landsat-9

Sentinel-2A
Sentinel-2B

Landsat-8
Landsat-9

Sentinel-2A
Sentinel-2B

Mean Total 6.042 3.795 2.277

Median Total 7.999 3.667 2.342

Most Frequent Total Value 8.000
(31.7%)

5.000
(29.0%)

3.076
(7.3%)

2nd Most Frequent 3.967 3.333 2.342
Total Value (13.3%) (13.6%) (4.2%)

3rd Most Frequent 3.999 2.486 1.525
Total Value (2.8%) (0.2%) (1.8%)

The combination of more sensors and the utility of their orbit swaths facilitated more observations
at given land grid point and decreased the revisit interval between consecutive observations, as seen
in Figure 1a–c. The global median average revisit intervals were: 8 d for Landsat-8/9, and 3.7 d for
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Sentinel-2A/2B. When four sensors were combined, the utility of their different swaths decreased the
median average revisit interval to about 2.3 d.

4.2. Global Number of Observations for Landsat-8 and Sentinel-2A -2B

Figure 3 shows the number of surface land observations for each of the land grid points for
Landsat-8, Sentinel-2A, Sentinel-2B and three sensors combined in 2018. Where there were no
observations, the land grid point was colored grey. To make the global map spatially explicit, country
boundaries as well as latitude and longitude grids were overlapped, using a sinusoidal projection
interval every 30◦.
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Figure 3. Average number of satellite observations over each land grid point from 1 January to
31 December 2018 by (a) Landsat-8, (b) Sentinel-2A, (c) Sentinel-2B, and (d) three sensors combined.
The results were examined on a global grid, defined by an equal area sinusoidal projection, composed
of 7201 × 3601 grid points, with a spacing of 0.05◦.

The total number of surface observations of Landsat-8 derived for 2018 show a complex pattern
(Figure 3a). Clearly, different data reception strategies and orbit geometry influenced the data availability.
Most of the Landsat-8 observations were located on land, but there were several observations over
oceans. This is because Landsat-8 carried out limited night imaging to monitor active volcanoes and
islands worldwide, as both these targets were set to have high imaging priority [8]. Landsat-8 acquired
more images at high latitudes, especially above a latitude of 60◦, because its swaths overlap more
at high latitudes. Combining more sensors enables more data observations, which can be seen from
Figure 3a–d. In terms of the number of observations per land grid point during 2018 for Landsat-8,
Sentinel-2A, Sentinel-2B and three sensors combined, the global mean averages were 35.67, 57.97, 62.66
and 141.40, respectively.

Figure 4 shows the average number of Landsat-8 satellite observations over each land grid
point for June (upper panel) and December (lower panel) of 2018. These two months were selected
because, during the summer solstice (21 June) and winter solstice (22 December), the North Pole has its
maximum and minimum tilt towards the Sun, respectively. Considering the repeat cycle of Landsat-8
is 16 d, there should be no more than two observations in any 1-mo period, but the observed number
of observations may be greater than two because of the overlap of lateral swaths and the convergence
of its orbit at a higher latitude. In fact, the average global number of acquisitions for Landsat-8 was
3.17 in June and 3.05 in December, respectively.
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Figure 4. Total number of Landsat-8 observations sensed over each land grid in June 2018 (upper panel)
and December 2018 (lower panel). The results were examined on a global grid, defined by an equal
area sinusoidal projection, composed of 7201 × 3601 grid points, with a spacing of 0.05◦.

Given the annual progression of the solar position, the geographic coverage of the polar area
varies, as the satellite track moves into darkness [30]. The maximum geographic coverage of Landsat-8
towards the south is 55.08◦ S in June, while there are no observations above a latitude of 66.71◦ N by
Landsat-8 in December.

Satellite orbit sensor geometry clearly influences global data availability, because the lateral swath
convergence at higher latitudes produces more observations at a given grid point. Figure 5 shows the
mean average total number of observations by averaging all values along a given latitude (Figure 3),
except for fill values for Landsat-8 (red), Sentinel-2A (green), and Sentienl-2B (blue). This map shows
the change in the number of observations from the South Pole to the North Pole for three sensors
in 2018.
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Figure 5. Latitudal mean average number of observations from -90◦ S to 90◦ N, for Landsat-8 (red),
Sentinel-2A (green), Sentinel-2B (blue) in 2018. Each point was derived by averaging all values from the
map of the global total number of observations (Figure 3) along a given latitude, discarding fill values.

Generally, the latitudinal mean average number of observations for Sentinel-2 is higher than
Landsat-8 between the 60◦ N and 60◦ S due to Sentinel-2′s wider orbit swath and shorter revisit interval.
Landsat-8 acquires more satellite observations on the two pole area for the image acquiring strategy [8].
The latitudinal mean average number of observations had lowest values at 0◦ latitude in the equatorial
region (25.44 for Landsat-8, 50.32 for Sentinel-2A, 51.54 for Sentinel-2B), but increased to maximum
values at a latitude of 81.2◦ N (295.67) for Landsat-8, 75.6◦ N (116.97) for Sentinel-2A and 67.6◦ N
(109.20) for Sentinel-2B in the Northern Hemisphere and 81.2◦ S (116.55) for Landsat-8, 50.8◦ S (60.12)
for Sentinel-2A and 50.8◦ S (69.07) for Sentinel-2B in the Southern Hemisphere. A trough in observation
number occurred around 60◦ S for all three sensors, because at this latitude most of the earth is occupied
by ocean, with few land observations (Figure 3). Beyond 81.2◦ N in the Northern Hemisphere and 81.2◦

S in the Southern Hemisphere, the mean average latitudinal value deceased sharply for Landsat-8,
yielding low values at latitudes of 84.0◦ N (4.00) and 84.4◦ S (3.68), where Landsat-8 reached the limit
of its geographic coverage and few daytime observations were acquired. Above 84.0◦ N and 84.4◦

S, towards both the North Pole and South Pole, there were no daytime acquisitions for Landsat-8.
The mean average latitudinal values start to decrease above the 75.6◦ N in the North Pole and 80.0◦ S
in the South Pole for both Sentinel-2A and -2B and reach 13.34 (Sentinel-2A) and 9.82 (Sentinel-2B) at
82.8◦ N and 5.95 (Sentinel-2A) and 13.10 (Sentinel-2B) at 83.6◦ S. There were no daytime acquisitions
for Sentinel-2A -2B above 82.8◦ N and 83.6◦ S, towards both the North Pole and South Pole.

4.3. Global Cloud-Weighted Number of Observations for Landsat-8 and Sentinel-2A -2B

Figure 6 shows the global average percent cloud cover examined over land grid points that
had at least one Landsat-8 daytime observation in 2018. Typically, high cloud cover occurred over
tropical rainforest areas near the equator, while desert and dryland areas typically had low cloud cover.
The global mean average percent cloud cover derived from all Landsat-8 daytime observations for
2018 defined on the global equal area sinusoidal projection was 0.41.

Figure 7 shows histograms of the global average percent cloud cover data (Figure 6). The data for
Landsat-8 average percent cloud cover were asymmetrically distributed, with a lower limit of 0 cutting
the curve. Across the global map of average percent cloud cover data, the most common values were
0.4 to 0.5 for Landsat-8, occurring at 20.75% of the global grid points.
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Figure 7. Histogram of global average percent cloud cover for Landsat-8 observations. The bin widths
of histogram are defined at 10% intervals, and the percentages of each bin denote the number of
observations compared with the total number. The data are from Figure 6.

Figure 8 shows the cloud-weighted number of observations for each global grid point for
(a) Landsat-8, (b) Sentinel-2A, (c) Sentinel-2B, and (d) three sensors combined in 2018. The geographical
distribution pattern of cloud-weighted observations is complex and irregular. Generally, data
availability was influenced by the sensor combination, data reception strategy and the system mission
constraints (Figure 3). Meanwhile, more observations were carried out at high latitudes, related to
greater lateral orbit swath overlap in those areas. In addition to these factors, the cloud-weighted
number of observations determined the cloud contamination level of all data. Thus, areas with frequent
high cloud cover, e.g., tropical rainforests, were more severely contaminated by clouds, while low
cloud cover over deserts and drylands ensured a higher probability of clear view observations. Overall,
the global mean average cloud-weighted number of observations for (a) Landsat-8, (b) Sentinel-2A,
(c) Sentinel-2B, (d) and three sensors in 2018 was 20.37, 33.67, 36.43, and 81.86, respectively.
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Figure 8. Cloud-weighted total number of satellite observations over each land grid point from
1 January to 31 December 2018 by (a) Landsat-8, (b) Sentinel-2A, (c) Sentinel-2B, and (d) three sensors
combined. The results were examined on a global grid, defined by an equal area sinusoidal projection,
composed of 7201 × 3601 grid points, with a spacing of 0.05◦.

4.4. Comparison of Cloud-Weighted Number of Observations over Three Selected Locations for the Year 2018

Table 2 summarises the number of observations, cloud-weighted observations, and clear views, as
well as accuracy levels, for the three selected locations for the year 2018. The accuracy is 98.7%, 91.0%
and 81.7% for Algeria, (30.0◦ N, 0.0◦), Brazil (3.138◦ S, 62.180◦ W) and Sweden (56.842◦ N, 15.057◦ E),
respectively, evaluated by comparing the number of cloud-weighted observations (42.45, 9.81, 18.93)
with the number of clear views (43, 9, 16). Table 3 shows the acquisition date, path, row and cloud
condition of Landsat-8 acquisition imageries covering the selected location in the northwest of Algeria
(30.0◦ N, 0.0◦) in the year 2018. The total number of observations covering Algeria (30.0◦ N, 0.0◦) in the
year 2018 is 46, which is consistent with the value dumping from Figure 2. All through the year 2018,
the observation condition was excellent for Landsat-8 image acquisition in the northwest of Algeria,
Sahara desert (30.0◦ N, 0.0◦), with 43 clear views, except the observations acquired on 8 January 2018,
2 February 2018 and 7 October 2018, which were contaminated by high confidence cloud.

Table 2. Number of observations, number of cloud-weighted observations, number of clear views and
the accuracy of Landsat-8 acquisition imageries covering the three selected locations in the year 2018.

Location Number of
Observations

Number of Cloud-
Weighted Observations

Number of
Clear Views Accuracy

Algeria
(30.0◦ N, 0.0◦) 46 42.45 43 98.7%

Brazil
(3.138◦ S, 62.180◦ W) 23 9.81 9 91.0%

Sweden
(56.842◦ N, 15.057◦ E) 44 18.93 16 81.7%
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Table 3. Acquisition date, path, row, cloud condition of Landsat-8 acquisition imageries covering the
selected location in the northwest of Algeria (30.0◦ N, 0.0◦) in the year 2018.

Acquisition
Date Path Row Cloud

Condition
Acquisition

Date Path Row Cloud
Condition

2018-01-01 196 39 Clear 2018-07-03 197 39 Clear

2018-01-08 197 39 High confidence 2018-07-12 196 39 Clear

2018-01-17 196 39 Clear 2018-07-19 197 39 Clear

2018-01-24 197 39 Clear 2018-07-28 196 39 Clear

2018-02-02 196 39 High confidence 2018-08-04 197 39 Clear

2018-02-09 197 39 Clear 2018-08-13 196 39 Clear

2018-02-18 196 39 Clear 2018-08-20 197 39 Clear

2018-02-25 197 39 Clear 2018-08-29 196 39 Clear

2018-03-06 196 39 Clear 2018-09-05 197 39 Clear

2018-03-13 197 39 Clear 2018-09-14 196 39 Clear

2018-03-22 196 39 Clear 2018-09-21 197 39 Clear

2018-03-29 197 39 Clear 2018-09-30 196 39 Clear

2018-04-07 196 39 Clear 2018-10-07 197 39 High confidence

2018-04-14 197 39 Clear 2018-10-16 196 39 Clear

2018-04-23 196 39 Clear 2018-10-23 197 39 Clear

2018-04-30 197 39 Clear 2018-11-01 196 39 Clear

2018-05-09 196 39 Clear 2018-11-08 197 39 Clear

2018-05-16 197 39 Clear 2018-11-17 196 39 Clear

2018-05-25 196 39 Clear 2018-11-24 197 39 Clear

2018-06-01 197 39 Clear 2018-12-03 196 39 Clear

2018-06-10 196 39 Clear 2018-12-10 197 39 Clear

2018-06-17 197 39 Clear 2018-12-19 196 39 Clear

2018-06-26 196 39 Clear 2018-12-26 197 39 Clear

5. Discussion

The data availability of satellite observations influences surface land monitoring capabilities.
Having more observations in a given time enables more reliable time series fitting [33,34], higher
precision land cover classification [35], improved stable land change detection [36] and more cloud-free
composited products [37,38]. The global spatial coverage of satellite observations enables the large area
monitoring, i.e., on a regional or global scale, of land cover change [39] and the mapping of burned
areas [40]. The polar-orbiting Landsat-8 satellite has even acquired high latitude area observations that
enable ice flow mapping [23].

The combination of the Landsat-8 -9 and Sentinel-2A -2B four sensors together was enabled to
develop a dense time series, improving the ability to detect abrupt land cover changes, and monitor
phenology variations at a specific time period [41,42]. Combining the four sensors could offer a higher
temporal resolution, addressing the gap of the observation sample data for model training, caused by
the cloud obscuration and data missing issue by system [43].

More sensors are combined to facilitate more observations, shorter revisit interval between
consecutive observations will be got. With similar multi-spectral bands, Sentinel-2A -2B and Landsat-8 -9
combined together provide 10–30-m resolution global land coverage. Compared to the 2.9 days from
the combinations of Landsat-8 and Sentinel-2A -2B, the global median average revisit interval for
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the four sensors combined are 2.3 days. This increase in revisit interval was not striking, as only
one Landsat was added in and also because Sentinel-2 has a wider swath coverage than Landsat.
The combination of the four moderate-resolution sensors could still advance the solution for near
daily temporal coverage that can benefit for many applications, etc., drought monitoring [44] and
evapotranspiration estimations [45].

The global mean average number of observations was 162.6 for the combination of Landsat-8 and
Sentinel-2A -2B in 2018, derived from the orbit swath model [4]. In this study, the global mean average
number of observations derived from daytime surface observations of three sensors combined was
141.40, reduced by 13.0%. The global mean average number of observations derived from the orbit
swath model (162.6) considers orbit swath geometry and assumes that at each location an observation
is acquired with equal opportunity, without considering data acquisition strategy, system reception
ability or instrument issues. Thus, the 13.0% reduction gives a global overall estimation of the influence
of date acquisition strategy and instrument issues on data availability. Effects of cloud cover on satellite
images used for surface monitoring are important. The cloud-weighted number of observations,
compared with surface land number of observations, taking into account cloud obscuration, reduced
the global average number of observations of three sensors combined from 141.4 to 81.9, i.e., by 42.1%.

Three different locations: Algeria, (30.0◦N, 0.0◦), Brazil (3.138◦ S, 62.180◦W) and Sweden (56.842◦N,
15.057◦ E) were used to evaluation the accuracy of the cloud-weighted number of observations by
comparing with the clear views from the Landsat-8 surface reflectance observations. The accuracy
achieved 98.7%, 91.0% and 81.7% for three locations, respectively. The results show an appropriate
accuracy for using the cloud-weighted number of observations to estimate the useful clear view
observations considering cloud contamination.

Orbit swath geometry, with increased lateral orbit swath overlap at higher latitudes, has a
significant effect on data availability. Latitudinal average number of observations increases from the
equator at 0◦ (25.4) towards north to 81.2◦ N (295.7) for Landsat-8, from 0◦ (50.3) to 75.6◦ N (117.0)
for Sentinel-2A and from 0◦ (51.5) to 67.6◦ N (109.2) for Sentinel-2B, respectively. As all of the three
sensors acquire observations with different probabilities at different latitudes according to their data
reception strategy [8], this is not a single factor analysis. Solar geometry, i.e., the annual progression of
the solar position, denotes the geographical latitudinal coverage of observations that can be acquired
during the daytime. The maximum latitudinal coverage towards the south for Landsat-8 is 55.08◦ S in
the month of June (summer solstice), and towards the north is 66.71◦ N in the month of December
(winter solstice).

In this study, the surface observation availability was examined on a tile level. The cloud-weighted
number of observations assumed that each pixel showing cloud in the image was the same and equal
to the percentage of the image being cloudy. Consequently, the shape and exact location of clouds
over the area was not clear. However, the reported results give an overall evaluation of cloud-free
observation areas in each image frame. The complicated pattern of data availability related to cloud
was apparent in the global-scale map.

6. Conclusions

This study demonstrates that sensor combination, system reception, orbit geometry, solar geometry,
and cloud contamination could all influence data availability. The main findings of the research were
as follows: (i) Sensor combination enabled more observations and shorter revisit intervals between
consecutive observations. The global median average revisit intervals for various combinations were:
8.0 d for Landsat-8 and Landsat-9, 3.7 d for Sentinel-2A and Sentinel-2B, and only 2.3 d when all
four sensors were combined; (ii) The global mean average number of surface observations for the
combination of Landsat-8 and Sentinel-2A -2B is 141.4; (iii) The global mean average cloud-weighted
number of observations is 81.9 for the three sensors combined; (iv) Landsat-8 surface reflectance
covering three different locations was used to compare the cloud-weighted number of observations.
The results show an overall accuracy of more than 80%.
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Given its similar spectral and spatial characteristics as Landsat-8/9, Sentinel-2A/2B data could be
combined with Landsat data to provide better moderate-resolution imaging. The modeled orbit swath
data obtained from COVE was used to analyse the revisit interval between consecutive observations
from combined sensors. Future work could include Sentinel-2 surface land observations combined
with Landsat ones to derive the surface land observation analysis at global scales for the combination
of Landsat-8/9 and Sentinel-2A/2B.
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