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The brain response to conceptual art was studied with mobile electroencephalography

(EEG) to examine the neural basis of aesthetic experiences. In contrast to most

studies of perceptual phenomena, participants were moving and thinking freely as

they viewed the exhibit The Boundary of Life is Quietly Crossed by Dario Robleto at

the Menil Collection-Houston. The brain activity of over 400 subjects was recorded

using dry-electrode and one reference gel-based EEG systems over a period of 3

months. Here, we report initial findings based on the reference system. EEG segments

corresponding to each art piece were grouped into one of three classes (complex,

moderate, and baseline) based on analysis of a digital image of each piece. Time,

frequency, and wavelet features extracted from EEG were used to classify patterns

associated with viewing art, and ranked based on their relevance for classification. The

maximum classification accuracy was 55% (chance = 33%) with delta and gamma

features the most relevant for classification. Functional analysis revealed a significant

increase in connection strength in localized brain networks while subjects viewed the

most aesthetically pleasing art compared to viewing a blank wall. The direction of

signal flow showed early recruitment of broad posterior areas followed by focal anterior

activation. Significant differences in the strength of connections were also observed

across age and gender. This work provides evidence that EEG, deployed on freely

behaving subjects, can detect selective signal flow in neural networks, identify significant

differences between subject groups, and report with greater-than-chance accuracy the

complexity of a subject’s visual percept of aesthetically pleasing art. Our approach, which

allows acquisition of neural activity “in action and context,” could lead to understanding

of how the brain integrates sensory input and its ongoing internal state to produce the

phenomenon which we term aesthetic experience.
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INTRODUCTION

Working from overlapping, but not necessarily congruent, sets
of motivations, scientists, and artists alike seek an understanding
of art appreciation and aesthetic judgment. From a neuroscience
perspective, we might think of an aesthetic judgment or
response as an integrative phenomenon consisting of processing
of sensory input, internal decision-making, and internally
generated emotional response. Early theories of aesthetic
preference were mainly rooted in the psychological sciences
(Martin, 1906; Bullough, 1957; Pratt, 1961); however, more
recently, researchers have developedmore physiologically-rooted
models of aesthetic processing in an attempt to explain the
biological underpinnings of aesthetic phenomena (Leder et al.,
2004; Bullot and Reber, 2013). The first step in these models is
the perceptual analysis of the object being viewed (Leder et al.,
2004; Bullot and Reber, 2013). The observer is said to take in
all physical features of the object (color, texture, shape, etc.)
and complete initial semantic processing of the symbolic and
narrative structures within the artwork (Bullot and Reber, 2013).
In one model by Bullot and Reber, it is said that the elicitation
of aesthetic emotion also occurs during this first step in the art
appreciation process (Bullot and Reber, 2013).

Modern wearable neurotechnology brings the opportunity
to advance the quantitative understanding of the aesthetic
experience by studying real-time effects of the particular subset
of sensory experiences that we designate as “art” on the brains
of viewers experiencing it in an unconstrained, “real-world”
environment. In the current study, we used non-invasive scalp
electroencephalography (EEG) to measure the brain activity of
museum-goers as they viewed an exhibit entitled “The Boundary
of Life is Quietly Crossed” by conceptual artist Dario Robleto
at the Menil Collection in Houston, TX (www.menil.org). In
addition to brain and location data for the subjects, we surveyed
them on the visual and emotional appeal of the different pieces
viewed. This combination of data modalities allowed the linking
of physiology to visual complexity and emotional content during
the first steps of the art appreciation process.

Prior studies have deployed EEG to probe the neural basis
of emotional and aesthetic stimuli and attempted to use brain
activity to accurately predict the emotional state of subjects
(Bradley et al., 2007; Murugappan et al., 2009; Wang et al.,
2011; Lee and Hsieh, 2014). However, nearly all of these
studies have been performed in a controlled experimental
environment, which limits the range of tasks that participants
can perform. Wired EEG systems can limit the study of dynamic
brain networks in real behavioral contexts, due to movement
restrictions whichmay be required to obtain relevant data. This is
a critical flaw, as the models for aesthetic appreciation previously
mentioned emphasize the effect that context can have on the
experience of the observer (Leder et al., 2014). These theories
state that an observer needs to have an “aesthetic attitude” in
order tomanifest aesthetic responses (Cupchik and László, 1992).
A recent study examining how context (laboratory vs. non-
laboratory environments) modulates the relation between art
experience and viewing time showed that participants viewing
art in a museum setting were more likely to enjoy the exhibit

and view each piece longer (Brieber et al., 2014). In light of these
insights, the collection of data from freely behaving subjects in
the museum environment as opposed to a laboratory setting is an
important feature of this study protocol.

With the real-world protocol employed here, we have
addressed two major questions. First, can we resolve
differences in brain activity when participants are viewing and
experiencing complex pieces of art in a relatively uncontrolled
setting? Studies of the brain response to images have shown
response features sensitive to complexity, with one study
in particular showing perceptual organization of an object
reflected earlier in the late positive potential after the initial
stimulus, with more positive and negative extremes occurring
with a more complex stimulus or image (Bradley et al.,
2007). Other studies have reported changes in oscillatory
brain patterns in the 4–35Hz range while participants
viewed complex images in a memory task (Palomäki et al.,
2012).

Second, can we map functional neural networks engaged
during aesthetic perception and judgment? Many regions of
the brain are associated with the processing of emotional and
visually complex stimuli. EEG studies have reported changes in
frontal and posterior brain areas (Bradley et al., 2007), while
neuroimaging studies have shown that the orbitofrontal cortex
(OFC) is activated during situations in which the subject is
required tomake appraisals of the quality of objects (e.g., artwork;
Kringelbach, 2005; Wallis, 2007; Brown et al., 2011). A better
understanding of the functional brain networks involved with
emotional and aesthetic processing could lead to advancements
in neurotechnologies intended to restore or enhance sensory
processing in neurologically-impaired persons (Molina et al.,
2009; Kashihara, 2014).

To address these two questions, we have collected and
analyzed brain activity from a diverse group of individuals as
they experienced an exhibit at the Menil Collection in Houston,
Texas. Here we report initial findings from (1) quantitative
differences in EEG signals across subjects of different age and
gender, (2) patterns of brain activity associated with emotionally
stimulating and aesthetically pleasing pieces, and (3) putative
networks engaged in the perception and judgments of art stimuli.

MATERIALS AND METHODS

Subjects
Four hundred and thirty one subjects participated voluntarily
in this study. Anonymous Informed Consent was approved
by the University of Houston Institutional Review Board to
minimize the disruption of the museum environment and
protect the privacy of the participants. Potential participants were
approached as they walked through the museum halls and asked
if they wanted to participate in a study in collaboration with the
University of Houston and the conceptual artist, Dario Robleto.
Potential participants were given a brief overview of the study,
how EEG works, and the expected goals and methods of data
analysis. If participants agreed to participate, they were fitted
with an EEG headset. Here, we report findings from 20 subjects
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who donned the reference gel-based EEG system. Findings from
remaining subjects that wore dry-electrode EEG systems will be
reported elsewhere.

EEG Headset
Twenty subjects using the 32 channel Brain Products actiCAP
(BP gel) along with the Brain Amp DC amplifer were used in
the analyses. BP gel is an active gel-based EEG system (actiCap
system, Brain Products GmbH, Germany). The electrodes were
labeled in accordance with the extended 10–20 international
system. EEG data were online referenced to channel FCz on
the superior region of the scalp. In addition, two channels from
the posterior peripheral channels (PO7 and PO8) were used to
collect electrooculography (EOG) from below and on the temple
of the right eye. All data were collected wirelessly in the DC
mode at a sampling rate of 1000Hz. The BrainVision software
was used for all data collection, including manual tracking
annotations.

Experimental Protocol
Description of Task

Participants in the study were fitted with the wireless EEG head-
set. Once the quality of the signal was checked, the participants
were asked to sit in a relaxed, comfortable position with their eyes
open and facing a white wall for 1min to acquire baseline data
devoid of aesthetic content. Participants were asked to proceed to
Dario Robleto’s exhibit room (see Supplementary Figure 1). No
restrictions on the participant’s movements, behavior, duration
of the visit, or thoughts were dictated. Annotations within the
EEG file were manually entered as the subject arrived at a specific
piece. Once the participant finished viewing the exhibit, they
were asked to complete a brief questionnaire (see Supplementary
Material) to ascertain the preferred pieces according to aesthetic
appeal and emotional stimulation, as well as to collect basic
demographic information.

Description of the Exhibit

The entire exhibit was contained in a small room (20 × 25 ft)
with various cases and windows containing all pieces throughout
the room. A brief description of the intent and purpose of
the exhibit “The Boundary of Life is Quietly Crossed” from
the artist Dario Robleto, a conceptual artist based in Houston
(www.dariorobleto.com), is given below:

From the first time one human placed her or his ear to
another’s chest, the mysteries of the movements and sounds
of the heartbeat and pulse have shaped much of the human
imagination around art, religion, and science. But for almost all
of recorded history, this relationship to the heart as movement
and sound has been an ephemeral, fleeting event. There was
simply no way to objectively record the ceaseless activity of the
heart. Most physicians through history have had to rely on the
inherent subjectivity and fragility of human hearing and memory
to diagnose and recall the heart. Without a means to permanently
record the heart, it would remain mostly elusive. However, in
the mid Nineteenth century, ambitious and ingenious attempts
by scientists to first record and visually register these movements
initiated a sequence of events that are part of a widely unknown

history of the human heartbeat. Through a series of sculptures,
installations, sound compositions and a book, the project
entitled The Boundary of Life is Quietly Crossed will creatively
reconstruct this forgotten history by identifying key moments in
its narrative.

Because of ancient cultural understandings of the heart, any
history of the heartbeat is also by necessity a history of emotions.
The installation also seeks to explore how art, religion, and
science have historically addressed this relationship. The project
is anchored around three key narratives of the heartbeat: the
first attempt to visually and audibly record the human pulse
in real time, the EKG and EEG recordings of a 27-year-old
woman who had just fallen in love and which were placed
aboard two space probes now heading into interstellar space,
and recent developments within artificial heart technology that
suggest the only way to advance is by letting go of the pulsatile,
or “beating,” actions of the heart. In each of these narratives
there are profound implications riding on the meaning we
place in the recording of the heart. They each challenge and
question fundamental associations we tie to the human heart:
life, death, personal identity, continuity of memory, the physical
site of emotion, authenticity, creativity, and spirituality, to name
a few.

The pieces in the exhibit were grouped together to form
eight main pieces on which the proceeding analyses were based.
Table 1 gives a brief description of each piece, as well as a
photograph of the piece in the exhibit space. Permission from the
artist was obtained to publish images of his work in this journal
article. For those works that were not brought in by the artist,
permissions to publish were obtained from the Artists Rights
Society (ARS) and the Menil Collection.

Data Pre-processing
All data analysis, clustering, and functional evaluation of brain
signals were performed offline using custom software developed
in Matlab 2014a (Mathworks, Natick, MA). Figure 1 shows a
flowchart of the data preprocessing and analysis.

The raw EEG was high-pass filtered using a zero-phase lag
8th order Butterworth filter at 0.1Hz to remove DC shifts
(Garipelli et al., 2013). Next, bad channels were identified
using a correlation method (Mullen et al., 2013), as follows.
Briefly, the entire time series for each subject was divided
into 2-s time windows. The correlation of a given channel, X,
with every other channel in that time window was calculated.
If the correlation value of 80% of the channels was less
than the user-defined correlation threshold, channel X would
be marked “bad” for that 2 s time window. If 50% of the
time windows for a given channel were marked “bad,” the
channel was rejected and removed before further analysis. Given
evidence that shows facial muscle activity mostly contribute
EMG artifacts to peripheral sensors, the peripheral channels
most susceptible to motion and myoelectric scalp artifacts
were removed from the BP gel system (FP1, FP2, F7, F8,
T7, T8, TP9, TP10, P7, P8, PO9, PO10; Goncharova et al.,
2003).

Artifact subspace reconstruction (ASR) was used to remove
artifactual components (i.e., eye movements, subject motion,
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TABLE 1 | Description of pieces included in the exhibit titled “The

Boundary of Life is Quietly Crossed” by conceptual artist Dario Robleto.

Piece Description Image

1 Things Placed In the Sea,

Become the Sea, 2013–2014.

Sea urchin shells and spines

cast and coated with

hand-ground and melted vinyl

records salvaged from the

deep sea, stretched audiotape

recordings of various probe

and heartbeat signals.

2 Fossilhood Is Not Our Forever,

2013–2014. Fossilized

prehistoric whale ear bones

salvaged from the sea (1–10

million years), stretched

audiotape of three centuries of

human heartbeat recordings

(1865, 1977, 2014 ).

3 Several individual pieces were

contained in this window. The

content of this window display

focused on the earliest human

heart beat recordings, as well

as the oldest-born heart from

which a heartbeat was

recorded.

4* Andy Warhol, Sunset, 1972.

Silkscreen with various colors.

The Menil Collection, Houston,

Gift of the artist.

5* Several individual pieces by

various artists were contained

on this wall. Photographs and

paintings with themes of outer

space and space exploration

were included.

6 Max Ernst, Undulating

Earthquake (Tremblement de

terre ondulatoire), 1928. Oil on

canvas mounted on masonite.

The Menil Collection, Houston.

7* Max Ernst–Undulating

Earthquake

(Continued)

TABLE 1 | Continued

Piece Description Image

8 Several individual pieces were

contained in this window. The

content of this window display

focused on prints of cerebral

pulses, observation and

depiction of emotions, and

several images of devices used

to measure changes of blood

flow in different regions of the

body.

Descriptions were provided by the artist and the Menil Collection. Pieces 4, 5 and 7 (*)

are part of the Menil’s permanent collection, and were selected by Dario Robleto to be

showcased in his exhibit.

Installation photos by Paul Hester.

cable pulling, electrode popping, etc.) from the high-pass filtered
EEG data (Mullen et al., 2013). ASR is an automated artifact
rejection method available as a plug-in through EEGLAB
(Delorme and Makeig, 2004) that uses a sliding window
technique to identify segments of EEG data corrupted with
artifacts. The algorithm first identifies regions of clean EEG
data and computes an un-mixing matrix from those data
based on the geometric median. Within each sliding window,
principal subspaces which exceed a defined threshold (in terms
of standard deviations) compared to the calibration EEG data
are reconstructed using the un-mixing matrix. For this study,
a window length of 0.5 s and a threshold of three standard
deviations were used. Given the potential for eye movement-
induced increases in power of relevant EEG frequency bands, the
ability of ASR to remove eyemovement artifacts was compared to
Independent Component Analysis (ICA). Results indicated that
ASR performed similarly to ICA when identifying and correcting
eye movements. The data were then re-referenced using the
common average reference (CAR) (Delorme and Makeig, 2004;
Garipelli et al., 2013) and segmented according to the piece the
subject was viewing.

Image Analysis
Features pertaining to luminance, texture, gradient, and
composite features (Gunsel et al., 2005; Lombardi, 2005) were
computed and used in a hierarchal clustering algorithm to
identify pieces with similar visual aspects. A brief description of
each image feature is given below:

a. Luminance: Luminance is roughly analogous to the
“brightness” of an image. The luminance component of
a color image defined in RGB space is computed by

Y = 0.299R+ 0.587G+ 0.114B (1)

After transforming the image to grayscale using Equation (1),
the mean, standard deviation, kurtosis, and skewness of the
luminance values were computed. The percentage of dark
pixels, defined as pixels with an intensity value of<64 (Gunsel
et al., 2005), was also computed by applying the following
equation:
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FIGURE 1 | Data processing flow chart.

% of dark pixels =
Number of dark pixels in the image

Total number of pixels
(2)

b. Texture: This feature has been shown to be one of the most
effective types of features in classification of artistic style, as it
more closely approximates brushwork than any other type of
feature (Lombardi, 2005).

A Gabor filter provides one option for describing the
texture of artwork. Gabor filters transform grayscale images
into coefficients which correlate with a perception of texture
over multiple scales and orientations. The mean and variance
of the coefficients were extracted from four scales and four
orientations.

c. Gradient: To extract edge information, gradient maps that
measure the rate of change in intensities across an image were
employed.

d. Composite features: Each image was segmented into n
identically sized blocks. After the partition of the image into

identical blocks, the deviation of average gray level acquired
within each block from the average gray level acquired
within the entire image was computed. This feature provides
invariance to changing lighting conditions and variability in
the image.

Feature Extraction
Features were extracted from the EEG data using the first
5 s after the subject’s annotated arrival at a given piece in
the exhibit. Since the subjects were unconstrained in their
thoughts and movements, it is difficult to determine the exact
time at which the subject fixated on the piece. Therefore,
the first 5 s of data were further divided into 1-s segments.
Using each of these 1-s segments, several features were
calculated in the frequency, wavelet, and time domains to
characterize the properties, information content or distribution
of the EEG signal as we are interested in understanding
what the aesthetic experience implies in neural terms. In the
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context of the current work, “frequency domain” refers to
the calculation of features based on spectral content of the
signal extracted using the power spectral density multi-taper
method, “wavelet domain” refers to the calculation of features
based on spectral content of the signal extracted using the
wavelet transform, and “time domain” refers to the calculation
of features from the voltage amplitude data. Five frequency
bands of interest were used in the feature calculation: delta (1–
4Hz), theta (4–7.5Hz), alpha (8–12Hz), beta (15–25Hz), and
gamma (30–50Hz). For each channel and each frequency band,
power, standard deviation, and Shannon entropy (Murugappan
et al., 2009) were calculated in the frequency domain for

a total of 15 features per channel (i.e., 5 frequency bands
channel

×

3 features
frequency band

=
15 features
channel

). A Morlet wavelet was used to

calculate the same features for each channel and frequency
band in the wavelet domain for a total of 15 features per
channel. In the time domain, the kurtosis, standard deviation,
and maximum value of the signal amplitude, as well as Shannon
entropy were calculated after the signal was filtered in each
of the five frequency bands stated above. These values were
also calculated on the 1-s time series without any additional
filtering for a total of 24 features per channel in the time
domain.

Feature Selection and Unsupervised
Clustering
For the clustering analysis, we analyzed those pieces deemed
visually pleasing by participants, and those pieces deemed
visually complex by the image analysis. Depending on the feature
domain, there could be as many as 480 features per piece per
subject (e.g., time domain features: 24 features/channel ∗ 20
channels = 480 features). Minimum Redundancy Maximum
Relevancy (mRMR) is a feature selection algorithm that
uses mutual information to identify features important for
distinguishing between different EEG patterns, in this case
associated with piece viewing (Peng et al., 2005). For our study,
the 50 most important features for distinguishing between pieces
were selected and used as input to an unsupervised Extreme
Learning Machine (USELM) (Belkin and Niyogi, 2002; Gao
et al., 2014). The USELM is used to map original features
to a new space. Input data were normalized and weights
additionally made orthonormal. A sigmoid function was used
for the calculation of the output matrix of hidden neurons
(H), generated according to ELM method (Gao et al., 2014). A
Gaussian Mixture Model (GMM) and k-means method using
three classes were used to cluster the output matrix from the
USELM algorithm using 100 iterations to find the optimal
parameters for the number of eigenvectors (nλ), number of
nearest neighbors (k), and the output weight matrix between
the hidden neurons and the output nodes (w). The RandIndex
method, evaluating pair agreements and disagreements within
proposed clusters and actual class indices, was used for accuracy
reporting. A diagram of the clustering method is shown in
Figure 2. The time, frequency, and wavelet domain features
were used in the USELM algorithm and clustering accuracy was
reported.

Functional Connectivity Analysis
In order to investigate the neural networks engaged during
aesthetically pleasing experiences, we performed a functional
connectivity analysis implementing a frequency-domain
estimator of causal interactions using the MATLAB toolbox
eConnectome (He et al., 2011). The resting state network, during
the baseline condition, of each subject was also analyzed.

An adaptive Directed Transfer Function (ADTF)
implementing a multivariate adaptive autoregressive (MVAAR)
model was used to estimate the time-varying connectivity
coefficients over the frequency range of 1–50Hz. For each time
series, the MVAAR model was constructed according to the
following equation (Wilke et al., 2008):

X(t) =

p
∑

i=1

3(i, t)X (t − i) + E (t) (3)

Here, X(t) is the data vector over time, 3(i,t) are the matrices of
time-varying model coefficients, E(t) is multivariate independent
white noise, and p is the model order. The time-varying
coefficient matrices were established by the Kalman filter
algorithm. Equation 3 can be transformed into the frequency
domain, establishing the definition of the DTF function, H(f).

3
(

f
)

X
(

f
)

= E
(

f
)

where 3
(

f
)

=

p
∑

k= 0

3ke
−j2πf△tk (4)

X
(

f
)

= 3−1 (

f
)

E
(

f
)

= H
(

f
)

E
(

f
)

(5)

Since the time-varying model coefficients 3(i,t) were
characterized, the function H(f,t) can be obtained from the
time-varying transfer matrix (Wilke et al., 2008). The elements
of this matrix, Hij, represent the connection between the jth
and ith elements of the system for each time point, t. The
directional causal interaction from the jth to ith element can be
described by the following equation (Wilke et al., 2008; He et al.,
2011):

γ2
(

f , t
)

=

∣

∣Hij

(

f , t
)∣

∣

2

∑n
m= 1

∣

∣Him

(

f , t
)∣

∣

2 (6)

The first 5 s of piece viewing for each subject were used
as input to the ADTF algorithm. Connectivity coefficients
greater than 0.3 for a specified frequency band (delta from
1 to 4Hz, theta from 4 to 7.5Hz, alpha from 8 to 12Hz,
beta from 15 to 25Hz, or gamma from 30 to 50Hz) were
concatenated into a single vector for each of several defined
patterns (Figure 3) for each subject during their piece viewing
and baseline conditions (Fingelkurts et al., 2007). The threshold
value of 0.3 was selected as a balance between selectivity for
strong connections, favoring inclusion of fewer data points,
and statistical power of the results, favoring inclusion of more
data points. Statistical significance was assessed using the
Wilcoxon t-test (Weiss and Rappelsberger, 2000; Fingelkurts
et al., 2007).
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FIGURE 2 | Flow chart of clustering method for visually pleasing pieces in the exhibit.

FIGURE 3 | Patterns of interest in functional connectivity analysis. (A) All possible connections from electrodes in the anterior region to electrodes in the

posterior region were grouped together for each subject during Piece 1 viewing and baseline. (B) Posterior to anterior connections. (C) Left to right connections. (D)

Right to left connections. (E) Left to left connections. (F) Right to right connections.

RESULTS

Subject Aesthetic Preferences
A total of 207 subjects provided responses to the questions:
Which piece did you find the most aesthetically pleasing? Which
piece did you find the most emotionally stimulating? An analysis
of these responses shows that most subjects selected Piece 1
as the most aesthetically pleasing piece and Piece 6 as the
most emotionally stimulating piece (Figure 4). A χ2-squared
test of independence was performed to examine the relationship

between piece preference and gender. The results were not
significant, indicating that for our population, gender had no
bearing on the selection of the most aesthetically pleasing piece
(χ2 = 9.93, N = 207, p = 0.192) or the most emotionally
stimulating piece (χ2 = 2.72, N = 207, p = 0.843).

A subset of participants that donned the reference 32-channel
active EEG system was selected for further analysis of brain
responses to aesthetic experiences (results from the dry EEG
headsets, including signal stability and artifactual components,
will be reported elsewhere). This cohort was comprised of 20
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FIGURE 4 | Results of the questionnaire data (n = 207). Participants were

asked to select the most emotionally stimulating and aesthetically pleasing

pieces. The age and gender distributions of all participants, volunteering

questionnaire data for this study, are also shown.

adult subjects (16 male, 4 female), and subsequent analyses of
these responses shows that most subjects also selected Piece 1
as the most aesthetically pleasing piece (22% of studied subjects)
and Piece 6 as the most emotionally stimulating piece (50% of
studied subjects) The remaining piece preference responses were
fairly well distributed between the other art pieces. The mean
ages of all males and females using the BP gel headset were
26.13± 7.65 and 30.25± 12.91 years, respectively. No significant
differences were found between the ages of the male and female
participants (paired sample t-test, p > 0.1).

Hierarchal Clustering of Features
Hierarchal clustering of the standardized time domain features
(kurtosis, standard deviation, Shannon entropy, and maximum
amplitude) and participants viewing Piece 1 and Piece 6 was
performed. The results for participants who viewed Piece
6 (deemed by the participants to be the most emotionally
stimulating) are shown in Figure 5. As a preliminary analysis
of gender and age differences in the feature space, the first two
groups that emerged as a result of the clustering are highlighted
in red and blue on the dendrogram. The first 5 s of bandpass
filtered EEG data between 0.1 and 50Hz for two participants
in each of the defined groups is shown in each plot as well.
The clustering resulted in two major groups of participants
depicted as red traces and blue traces. Their corresponding rows
in the clustergram are indicated by the four open circles at the
dendrogram tips.

The clustering results show a separation of females and males
while viewing Piece 6 (Figure 5). Three out of the four females
that viewed this piece were clustered together in the first group

(highlighted in red). The mean age also differs by ∼ 7 years, but
this result is not significant (paired sample t-test, p = 0.132).

Image Analysis
Figure 6A shows the results of the hierarchal clustering of
artwork images using the cosine as the distance metric. An
image of a white wall was also included in the image analysis
to represent the visual input during baseline data collection.
Three major groupings emerged as a result of this image analysis:
Class 1 (Pieces 1, 4); Class 2 (Pieces 8, 2, 6, and 5); and
Class 3 (baseline). These groupings were also reflected in the
questionnaire data rating the subjects’ preference for the most
aesthetically pleasing piece (see Figure 4). Subjects who visited
the pieces listed above were included in the analysis to correlate
the human brain responses evoked during the aesthetically
pleasing viewing experience with the different pieces. Clustering
analysis was performed with three classes, as delineated above,
with the exception that piece 6 was eliminated, since it was
determined to be the most emotionally stimulating piece, and
also had several artifacts from the audio content associated with
the piece. All other pieces from the exhibit had purely visual
content.

Feature Selection and Clustering
The results of the three-class clustering analysis using GMM
and k-means are shown in Figure 6B. For each feature domain
and clustering method, 100 iterations were performed to obtain
a distribution of clustering accuracies, reflected as box plots
in Figure 6B. Average accuracy of 55% was obtained with the
time domain features and a GMM clustering method. This was
significantly greater than chance-level at 33% (paired sample
t-test, p < 0.01).

The most important 50 features for clustering the data were
computed for each feature domain using the mRMR feature
selection algorithm (Peng et al., 2005). The representation of
each channel in the top 50 features is shown in Figure 7, with
the color bar reflecting the percentage of the 50 features that a
given channel represented. For example, 25% of the features used
for clustering in the time domain came from channels O1, Oz,
and O2. For each feature domain, those channels in the posterior
and anterior regions were more often selected as containing the
important features.

For each feature domain, various parameters were calculated
in five different frequency bands: delta (1–4Hz), theta (4–7.5Hz),
alpha (8–12Hz), beta (15–25Hz), and gamma (30–50Hz). An
analysis was also done to ascertain the most important frequency
band in differentiating between complex artistic stimuli and
baseline data. The percentage of the top 50 features selected for
clustering from each of the five frequency bands was calculated
for the time, frequency, and wavelet feature domains for all
subjects. Results indicate that the delta and gamma bands were
more often selected as top important features across all feature
domains (Figure 8).

Functional Connectivity
Functional connectivity analysis was performed to determine
the broad active neural networks during piece viewing and to
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FIGURE 5 | Clustergrams (left) of standardized EEG signals and representative EEG records (right) from subjects viewing Piece 6 (n = 16). EEG traces at

right are from channel FC6 for the indicated subjects. Average ± SD ages for two clusters (depicted as red and blue) of participants were 24.3 ± 2.4 and 31.1 ± 12.6

years, respectively. Open circles at the end of the dendrogram tips indicate the rows matching EEG traces at the right. Vertical ordering of EEG traces matches the

vertical order of their corresponding clustergram rows.

FIGURE 6 | Image analysis and clustering accuracy results. (A) Hierarchal clustering of image-based features to determine those pieces in the exhibit that

shared certain visual aspects. Piece 3 was not included in the analysis since a complete image of the piece was not available. (B) Clustering accuracy results using

the groupings identified in (A) for three different feature domains and two clustering methods.

determine any statistical differences in the connection strengths
for predefined patterns (Figure 3) between piece viewing and
resting baseline conditions. The connectivity coefficients from
all subjects viewing Piece 1 (n = 16) over the entire
5 s time period for a specified frequency band were tested
against those same subjects’ baseline connectivity coefficients
over a 5 s time period for the same frequency band using
the Wilcoxon test. The specified frequency bands used were
as follows: delta (1–4Hz), theta (4–7.5Hz), alpha (8–12Hz),
beta (15–25Hz), and gamma (30–50Hz). For all patterns, the
connectivity coefficients from subjects viewing Piece 1 were
statistically greater than the connectivity coefficients from the
subjects’ baseline (Wilcoxon test, p < 0.05). Figure 9 shows the
distributions of the connectivity coefficients for all subjects over
two frequency bands (delta and gamma bands) that were often
selected as top important features across all feature domains.

Distribution results for the theta, alpha, and beta frequency
bands followed a similar trend (See Supplemental Videos 1, 2 for
functional connectivity changes over time in the alpha band for
one subject during baseline and piece viewing).

Pattern D (right → left hemisphere) showed the most
pronounced difference between baseline and piece viewing for
both delta and gamma frequency bands. For Pattern B (posterior
→ anterior), the difference between baseline and piece viewing in
the gamma band was more pronounced than for the delta band.
These differences usually occurred at higher connectivity weights.

To determine the connections most prominent within each
of the defined patterns in Figure 3, the number of connections
with a connectivity coefficient greater than 0.3 over the entire 5 s
viewing period were counted for every possible combination of
channels in a defined pattern, and averaged over subjects. The
results are shown in Figure 10. In the delta and gamma frequency
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FIGURE 7 | Important channels for distinguishing between different

aesthetically evoking visual art pieces according to the feature

selection algorithm, mRMR. Each column represents the different feature

domains used to cluster the data. The different colors represent the

percentage of use of that particular channel in the selected most important 50

features for clustering. The rightmost column shows the labels of the channels.

FIGURE 8 | Percentage of top 50 features in the time, wavelet, and

frequency feature domains from each frequency band for the all

studied subjects (n = 20).

bands, there was more activity from the visual cortex to the
frontal lobe, followed by additional neural activity in the frontal
lobe for subjects viewing art compared to baseline data. The right
visual cortex served as the starting point for communication to
the right frontal region for the delta band, and to the left fronto-
parietal region covered by posterior and anterior electrodes for
the gamma band.

The data in Figure 9 used all connections for a given pattern
throughout the 5 s time period to provide a general and global
statistical measure of the difference between piece viewing and
baseline data. In order to get a better understanding of how the
connectivity of the defined patterns for each subject changed as
a function of time, the 5 s data was also divided into shorter 1-s
segments for each subject.

Figure 11 shows the average connectivity coefficient strength
for five, 1-s time intervals for two subjects (49 y/o female and
27 y/o/ male) in the delta band. Each arrow on the scalp map
represents a specific pattern, with the represented pattern next to
each arrow on the top left scalp map. From Figure 11A, it can
be seen that this particular subject had very high connectivity
in Pattern B (posterior → anterior), Pattern D (right → left

hemisphere), and Pattern F (right → right hemisphere) within
the first 3 s of piece viewing compared to the baseline data.
In Figure 11B, the stronger connection strengths for Pattern
D (right → left hemisphere) and Pattern F (right → right
hemisphere) occurred over the second and third seconds of piece
viewing. The baseline connectivity strengths for all patterns are
similar for both subjects.

A comparison between all the males and females that viewed
Piece 1 was also done to determine if any differences in
functional connectivity during perception of complex objects
occurs. The results shown in Figure 12 indicate that for our
sample population, males had significantly higher connectivity
strengths for all defined patterns, except for Pattern B (posterior
→ anterior), in the delta frequency band (Wilcoxon t-test, p <

0.01). In the gamma band, the males had significantly higher
connectivity strengths than females in all defined patterns.

A comparison of the connectivity strengths for the two
youngest subjects (22 y/o male and 20 y/o female) and the two
oldest subjects (50 y/o male and 49 y/o female) while viewing
Piece 1 was also done to determine if age yields any significant
differences in the visual perception of complex objects. The
average connectivity strength for each of the defined patterns was
calculated and plotted for the five different frequency bands. The
results in Figure 13 indicate that for our small sample size, we can
see differences in the strength of the connections as a function
of age.

For every frequency band, the youngest subjects had higher
average connectivity coefficients for the anterior → posterior
pattern, while the oldest subjects had higher average connectivity
coefficients for the posterior → anterior pattern. For the pattern
of connectivity from left→ right, the connectivity coefficients for
the oldest subjects is lower than those for the youngest subjects
in the delta band. In the higher frequency bands, however, the
connectivity strengths of the oldest subjects are significantly
higher than the youngest subjects for the connectivity pattern
from left→ right (Wilcoxon t-test, p < 0.01).

DISCUSSION

In the present study, neuroimaging, aesthetic and emotional
preference data from over 400 subjects were collected over
3 months from people of various ages, genders, educational
levels, careers, health statuses, and neurological backgrounds
using various types of dry and gel-based EEG systems. The
underlying goal of this study was to determine the feasibility
of acquiring useful data from freely moving participants in a
real, complex setting such as a museum, and findings from the
present work indicate that our proposed approach is indeed
feasible. Using the artwork from conceptual artist Dario Robleto
as the common stimulus for participants, we were able to
quantify the aesthetic experience through the analysis of brain
differences that arise between participants during an aesthetic
judgment, and through functional network connectivity. Here,
we report analysis of brain activity from a small cohort of
participants who used a gel-based reference active EEG system
with typically higher signal-to-noise ratio and less susceptible to
motion artifacts than dry EEG systems. The main conclusions
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FIGURE 9 | Distribution of connectivity coefficients for predefined patterns (cf. Figure 3) using EEG data from viewing Piece 1 (blue line) and the

baseline data (red line). Distributions are shown for the delta band (A–F) and gamma band (G–L). Distributions are normalized to the number of counts in each

connectivity strength bin. All comparisons between piece viewing and baseline data for each pattern are statistically significant (Wilcoxon test, p < 0.05).

FIGURE 10 | Scalp maps showing the number of connections between functionally-related pairs of electrodes. The channel that yielded the most

connections (averaged over subjects) within each defined pattern was plotted on the scalp map. Results are shown for the delta and gamma bands.
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FIGURE 11 | Average connectivity coefficients for the defined patterns over 1-s time intervals in the delta band for two participants. The top row of

scalp maps represents the baseline data. The bottom row of scalp maps represents the Piece 1 viewing data. The patterns that each line arrow represents are shown

in the top left scalp maps. (A) The subject is a 49 y/o female. (B) The subject is 27 y/o/ male.

that can be drawn from this work revolve around differences
between various subgroups within the subject population,
and the areas of the brain implicated in the perception of
aesthetically pleasing artwork. The following sections discuss
these conclusions further.

Regional Brain Connectivity: Initial
Evaluation of Age and Gender Differences
Mobile EEG shows promise for non-invasive decoding of user
intent (Kilicarslan et al., 2013; Bulea et al., 2014; Hernandez et al.,
2014; López-Larraz et al., 2014; Loza et al., 2014; Agashe et al.,
2015) and emotional state (Petrantonakis and Hadjileontiadis,
2011; Hadjidimitriou andHadjileontiadis, 2012; Kim et al., 2013).
In addition, quantitative EEG metrics may play increasingly
important diagnostic roles (Mormann et al., 2000; Adeli et al.,
2007; Ahmadlou and Adeli, 2010). For all these reasons, it is
critical to understand the variability in the quantitative EEG

signal across different populations of individuals in real complex
settings (Cantillo-Negrete et al., 2013; McIntosh et al., 2014;
Tello et al., 2014). This initial analysis highlights consistent data
from three promising directions in the study of the neural basis
of aesthetic experiences from brain signals of freely behaving
participants acquired in an unconstrained environment.

First, the clustergram analysis sorted subjects into two major
groups according to the most important features as determined
by mRMR. These groups did not differ in mean age; however,
the only two participants not in their 20s (one 49yo male and one
50yo female) clustered to the same group. The other three females
clustered to the other group. This suggests a probable age effect
to investigate in future studies.

Analysis of the regional brain activity in all relevant frequency
bands while participants viewed a widely-considered highly
aesthetically pleasing conceptual art piece (Piece 1, voted the
most aesthetically pleasing by approximately 22% of the 20
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FIGURE 12 | Distribution of connectivity coefficients for predefined patterns using data from all female (red line) and male (blue line) subjects viewing

Piece 1. Distributions are shown for the delta band. Distributions are normalized to the number of counts in each connectivity strength bin. All comparisons between

male and female for each pattern are statistically significant (Wilcoxon test, p < 0.05). In plots (A, C–F), males have significantly higher connectivity coefficients. In plot

(B), females have significantly higher connectivity coefficients.

FIGURE 13 | Comparison of the average connectivity coefficients for

the two youngest subjects and the two oldest subjects viewing Piece

1. The average coefficients were calculated for each frequency band.

study participants) showed that male connectivity strengths were
significantly higher in all of the defined regional patterns except
for the pattern linking posterior and anterior brain regions in the
1–4Hz range. For this pattern, shown in Figure 12B, the four
female participants in this study generated significantly higher
connectivity strengths compared to the 12 male participants,

which is associated with visual processing and high-order
decision-making and planning computations.

Several studies have examined active brain networks during
certain tasks and during baseline conditions for the developing
brain (children < 20 y/o; Micheloyannis et al., 2009; Boersma
et al., 2011), but comparatively fewer investigations have focused
on functional connectivity in the aging brain (Tomasi and
Volkow, 2012). One study reported a decrease in the relative
power contribution in the left temporal-occipital and the right
inferior frontal brain regions in the alpha band for subjects
between the ages of 50 and 89 years when compared to subjects
between the ages of 20 and 29 years (Shinosaki et al., 2003).
Results in the current study indicate that different patterns
produce stronger connection coefficients depending on the age
of the subject. On average, the older participants had stronger
connections between the posterior and anterior regions of the
brain, as well as from the right to left hemisphere in the studied
frequency bands (Figure 13). Results obtained in the current
study show a decrease in the average recurrent connectivity
strength in the left→ left hemisphere pattern, which is consistent
with reports in the literature (Shinosaki et al., 2003). Future
work could include the evaluation of functional connectivity of
smaller regions as well as frequency-specific source analysis to
get a better understanding of the local networks active during
aesthetic judgments and experiences (Micheloyannis et al., 2009).

Given the limited number of participants analyzed in this
initial work (only 20 subjects donned the active gel-based system,
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which required time-consuming setup and left participants with
gel residues), definitive conclusions about how people of different
age and gender perceive artwork cannot be made. Future studies
would require the collection of data from more subjects to
increase the statistical power so that any differences between
these groups can emerge.

Role of Visual and Frontal Regions in
Aesthetic Judgments
After initial segmentation of data, the subjects were grouped into
three categories of piece viewing based on the image analysis:
complex, moderate, and baseline. The feature selection based
on minimum redundancy maximum relevance (mRMR) selected
the channels spanning the visual (O1, OZ, O2, PZ) and frontal
(FC5, F3, and F4) scalp areas as being the most important
for clustering (Figure 7). Since the artistic stimulus was visual,
it is not surprising to find important features in these brain
regions. The visual cortex is responsible for processing visual
input, while emotional expression and judgments are mainly
localized to frontal areas (Moll et al., 2002). More or less
activity in the frontal region could indicate a propensity to
approach or engage a stimulus, or withdraw from it (Demaree
et al., 2005; Babiloni et al., 2013). Further analysis of the
important features in time, frequency and wavelet domains for
clustering the EEG data revealed the significance of the delta
and gamma bands, which are related to long-range and short-
range cortico-cortical communication, respectively (Munk and
Neuenschwander, 2000).

These findings from the mRMR analysis were corroborated
with the functional connectivity results showing strong links
between occipital and frontal brain regions during piece viewing
in the delta and gamma frequency bands. More specifically,
electrodes F3 and FC5 showed an increase in the number of
connections with electrodes O1, OZ, and PZ in the delta band.
Numerous connections between posterior (parietal) and anterior
(frontal) regions during the first 5 s of piece viewing in the delta
band were also seen in comparison to the baseline connectivity.
Delta band activity has been shown to reflect sustained attention
(Kirmizi-Alsan et al., 2006) as well as a linkage between parietal
and frontal cortical circuits during decision making (Nácher
et al., 2013). The important brain regions identified through the
mRMR analysis are consistent with studies reporting activation
of anterior occipital and anterior parietal regions during both
visually pleasing and not visually pleasing stimuli (Cela-Conde
et al., 2013).

Functional connectivity in the gamma band increased
substantially during piece viewing compared to baseline, and
also compared to connectivity in the delta band. The number
of functional connections during piece viewing in the gamma
band ranged between 2300 and 3000, whereas the number
of delta band connections during piece viewing ranged from
700 to 1000. This finding is consistent with previous reports
concluding that gamma band oscillations increase after attention
to visual stimulation (Fries et al., 2001; Bauer et al., 2014).
Additional studies have also shown that synchrony in gamma
band oscillations increases during perception of visual art
(Bhattacharya and Petsche, 2002). It has been noted that

gamma-oscillatory responses can synchronize with millisecond
precision over long distances and are mediated by the reciprocal
corticocortical connectivity (Munk and Neuenschwander, 2000).
Moreover, it is likely that during high states of functional
cortical activation, the functionally-relevant frequencies of the
EEG may shift from lower frequencies in the delta range to
higher frequencies in the gamma-range, and they may indicate
different degrees of temporal precision with which large neuronal
populations interact during piece viewing in this study.

Interestingly, relative to baseline, the overlap between
prominently connected regions in the delta and gamma bands
was more evident during piece viewing. For both frequency
bands, the normalized histograms of connectivity strengths
in Figure 9 showed that the patterns linking the posterior
→ anterior regions, right → left hemispheres, and within
the right hemisphere exhibited significantly higher connection
strengths during piece viewing. This supports the notion of
interdependency of these two frequency bands in the emotional
and visual processing of complex artwork as noted above. It
has been shown that slow wave oscillations originate from
deeper, subcortical structures while faster oscillations stem from
cortical structures (Michel et al., 1992; Robinson, 1999; Luo
et al., 2013), and that these various frequencies synchronize in
spatially distinct patterns (Buzsáki and Silva, 2012; Civillico and
Contreras, 2012). Previous studies have shown cross-frequency
coupling between the gamma and theta oscillations in the
hippocampus during a memory task (Belluscio et al., 2012).
Preliminary evidence for such a coupling in an aesthetic viewing
context is presented here, but further investigation is needed
to definitely demonstrate a functional relationship between
frequency bands.

Finally, the combined activity of delta and gamma band
oscillations over occipital and frontal brain regions resulted
in features in the time, wavelet, and frequency domains that
could be used with a Gaussian Mixture Model (GMM) to
cluster subjects viewing artwork with varying complexities. The
best model was able to predict the visual complexity of the
viewed artwork with 55% accuracy, which was significantly
greater than the chance level of 33% for our three complexity
classes. While this result shows the feasibility of isolating useful
information from freely behaving subjects, more research needs
to be done to increase the classification accuracy of the extracted
information. Future studies could explore the use of shorter
epochs to increase the specificity of the feature results within and
across subjects. However, more detailed, independent measures
of location and behavior during piece viewing would need to
be incorporated into the experimental set-up to determine time-
resolved correlations of behavior with brain activity.

Limitations and Future Work
While experimental protocols like the one employed here allow
subjects to move about freely and explore the exhibit at their
leisure, they do present complications for data analysis when
correlating specific events (i.e., piece viewing) with brain data
(Gramann et al., 2014). In our case, it is difficult to know
exactly when/where a participant was fixated on a piece without
eye tracking tools. This problem could be somewhat mitigated
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by using the data from the functional connectivity analysis to
determine a time period over which the connectivity reflects
the activity that should be present during a task (i.e., visual
perception) compared to baseline data. For example, connectivity
is expected to increase between electrodes covering the visual
cortex and the frontal cortex during a visual task (Bradley et al.,
2007; Cocchi et al., 2011). Looking at Figure 11A, the first 2 s
of data have high connectivity strengths between those two
regions of interest during piece viewing for this participant, and
could be isolated from the entire 5 s period for use in clustering
analyses.

Building on the data already collected, the functional
connectivity can also be assessed in participants viewing other
pieces of art to determine how image complexity and specific
image features alter the engaged networks. Studies have shown
that the contrast of a visual stimulus can alter both the
strength and proximity of network connections (Nauhaus et al.,
2009). This creates the possibility of investigating functional
connectivity as a function of image features, such as those
employed here.

The preliminary functional connectivity results reported here
assumed very broad regions of interest. In future analyses,
those regions of interest could be reduced to obtain a better
understanding of the exact regions of activation. The analysis
reported in Figure 10 indicates a start in this direction, as it
evaluates of the maximum number of connections within each
defined pattern (A→ P, R→ L, etc.). To achieve amore thorough
connectivity analysis, the distance of a connection could also be
taken into account (Fingelkurts et al., 2007). For example, high
connectivity coefficients between signals might reflect different
underlying processes depending on the spatial distance between
the electrodes that recorded them. Source analysis of frequency-
relevant bands (e.g., delta and gamma) could provide detailed

spatial and temporal sources of such activations from neural
networks in “action and context.”

ACKNOWLEDGMENTS

The authors would like to graciously thank Jesus Tamez-Duque
and Fernando Martínez-García from Tecnológico de Monterrey
for providing the US-ELM code used to perform clustering
analysis and for their contributions to the explanation of the
algorithm, as well as all the members from the Laboratory
for Non-Invasive Brain Machine Interfaces at the University of
Houston for their assistance in acquiring data at the museum.
This work was partially supported by a cross-cutting seed grant
from the Cullen College of Engineering at the University of
Houston and National Science Foundation Awards 1219321 and
1302339. This work has also been supported in part by NSF
NCS-FO Award 1533691.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnhum.
2015.00626

Video 1 | Functional connectivity during baseline data collection.

Connections were assessed every 1ms, and data shown here span five seconds

of baseline collection.

Video 2 | Functional connectivity during piece viewing. Connections were

assessed every 1ms, and data shown here span five seconds of active piece

viewing.

The questionnaire given to study participants after viewing Dario
Robleto’s exhbit “The Boundary of Life is Quietly Crossed” is
given. An image of a study participant viewing the exhibit with
the Brain Products actiCAP EEG system is also shown.
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