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The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context
of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation.
The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of
periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered
model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup
is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse
widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the
stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far
below the bifurcation when themaximum and theminimum excited states becomemore distinct, and hence the alternans becomes
more pronounced.

1. Introduction

Cardiovascular diseases and sudden cardiac deaths are major
issues nowadays facing researchers in the fields of medical
sciences and mathematical physiology throughout the globe,
especially in the industrialized world. Nearly fifteen million
[1] individuals die every year in the universe because of car-
diovascular diseases. Per annum, these diseases, in theUnited
States alone, have nearly one million deaths, which is over
40% of all deaths [1]. A study [1] shows that more than 50%
of sudden cardiac deaths happen in humans without any pre-
vious symptoms. The most common and comparatively less
dangerous types of heart diseases are coronary heart disease,
heart failure, heart stroke, heart attack, atrial fibrillation, and
so forth. In this paper, we focus on cardiac arrhythmias such
as ventricular tachycardia (VT) and ventricular fibrillation
(VF). The most irregular, life threatening, and deadly case of
cardiac arrhythmia is known as ventricular fibrillation, which
occurs when the heart is not able to pump oxygen-rich blood
to the body and results in death of body cells and heart cells
[2].

During the last few decades, many research groups have
been performing research in this area in order to understand
the proper electrophysiological activity of cardiac tissues.
Hodgkin and Huxley [3] proposed the first quantitative
mathematical model, a four-variable (𝑉, 𝑚, 𝑛, and ℎ) model,
in order to describe action potential propagation through
very careful experimentation on squids (squid giant axon).
They open a door for researchers in the area of mathematical
physiology to model various nonlinear complex phenomena.
Modifying Hodgkin and Huxley model in 1962, Noble estab-
lished the first physiological model to identify the electrical
activity of cardiac cells [4]. Several ionic models [5–12] have
been developed to further understand the precisemechanism
of electrical activity of cardiac cells. Ionic models accurately
reproduce most of the underlying properties of cardiac cell
dynamics. However, ionic models are not largely suitable for
modeling many important properties of an excitable cardiac
cell such as cardiac arrhythmias. Although some simplified
ionic models [11–13] can help in the study of cardiac arrhyth-
mias, they are not capable of reproducing the accurate shape
of the action potentials.
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For excitable media, researchers often employ a two-
variable partial differential equation (PDE) model, which is
known as FitzHugh-Nagumo (FHN)model [14, 15].The FHN
model is a simplified variant of the Hodgkin and Huxley
model, which traces the fast-slow dynamics of excitable sys-
tem of a spiking neuron. However, it is not suitable to explain
the cardiac electrical activity. The simulation results of this
model fail to give some qualitative properties of cardiac
tissues such as the proper shape of action potentials of a
cardiac cell and the restitution properties of tissues. Karma
[16] showed that three essential properties of the Noble
model [4], the wavefront insensitivity, phase-wave back and
alternans, are absent in the FHN model. Aliev and Panfilov
[17] proposed a simplified PDEmodel of cardiac tissue, which
is capable of improving the shape of action potentials.

One of the characteristic features of excitable media is the
spontaneous formation of spiral wave.The spiral wave pattern
is the only pattern that survives in an excitable mediumwith-
out any external stimulus [18]. This pattern is observed at the
initial stage of a diseased heart. However, the most dangerous
type of pattern is the spiral wave breakup. The spiral breakup
behavior was first noticed in the calculation of a 𝜆-𝜔 system,
in which the system was entirely different from the models
of cardiac tissue [19]. After nearly a decade, this behavior
was rediscovered in the several ionic models of cardiac tissue
[20–23] and in cellular automata models of cardiac excitable
media [24, 25]. Later on, several mechanisms of spiral break-
upwere established by researchers using ionicmodels [26, 27]
and two-variable PDE models [16, 17, 28–35]. The concept
of wave-break [36] is important in the mechanism of spiral
breakup in a normal as well as diseased human heart tissue.

In two-dimensional reaction-diffusion PDE system, sev-
eral mechanisms of spiral breakup were discovered by
researchers. These include tissue size in a relatively homoge-
neous undamaged tissue [28], delayed-inhibitor production
[29], lateral instability [30], and superexcitability in the
threshold dynamics [31]. The alternans in action potential
duration (APD) of sufficiently large amplitude can also break
up an isolated rotating spiral wave [16]. It was also shown in
[32] that spiral breakup occurs when the relative refractory
period is shorter than the absolute refractory period. Panfilov
in [33] showed that spiral waves can break up into a com-
plicated spatiotemporal pattern simply due to the inherent
dynamics of an excitable medium without heterogeneities.
Panfilov and Zemlin showed that the breakup occurred if
the slope of the restitution curve is steeper than −1 [34, 35].
However, researchers are still not quite clear about the exact
mechanism of spiral breakup.

The objective of the present study is to analyze alternans
and spiral breakup numerically within a proper choice of
parameters and determine a dynamical mechanism of spiral
breakup. In this respect, we propose a FHN-type reaction-
diffusion system for excitable media. Firstly, we show the
transverse instability of the planar traveling wave solution.
Secondly, we observe spiral instability using the same set of
parameters. The instability manifests as a function of a para-
meter 𝑏 in the recovery equation. We characterize the insta-
bility numerically by considering the maximum and min-
imum lengths of the excited state. Finally, we show that

unstructured spiral breakup, which leads to complex spa-
tiotemporal patterns, is preceded by the front and the back
interaction of excited states or alternans instability.

The rest of the paper is structured as follows. In Sec-
tion 2, we present our two-variable PDE model for excitable
media and computational methodology. Section 3 presents
numerical results and discussions in one and two dimensions.
We investigate the stability of planar traveling wave and link
the results to the complex dynamics of spiral waves. We
show a close dynamical corresponding between spiral wave
solution in two dimensions and the periodic traveling wave
solution in one dimension. We conclude the paper in Sec-
tion 4.

2. Mathematical Model and
Methods of Computation

2.1. Mathematical Model. In this paper, we propose a reac-
tion-diffusion system for excitable media to mimic cardiac
electrical activities as reported in [37]. The model consists of
two equations describing fast and slow dynamics of the
system and it is given as follows:

𝜕𝑢

𝜕𝑡
= 𝑑
𝑢
Δ𝑢 + 𝑢 (1 − 𝑢) (𝑢 − 𝑎) − V,

𝜕V
𝜕𝑡

= 𝑑VΔV + 𝜖 (𝑑𝑢 (𝑏 − 𝑢) (𝑢 + 𝑐) − V) ,

(1)

where the reaction terms 𝑓(𝑢, V) = 𝑢(1 − 𝑢)(𝑢 − 𝑎) − V and
𝑔(𝑢, V) = 𝜖(𝑑𝑢(𝑏 − 𝑢)(𝑢 + 𝑐) − V) describe the local kinetics
of variables 𝑢 and V. The small parameter 𝜖, 0 < 𝜖 ≪ 1,
describes the ratio of time scales of variables 𝑢 and V. The
fast activator variable 𝑢 and the slow inhibitor variable V are
known as the excitable and recovery variable, respectively.
The variables 𝑢 and V are also referred to as the propagator
and controller variables, respectively. The variable 𝑢 stands
for the membrane potential and V stands for the conductance
of the inward current in the context of cardiac electrical
activities. The nullclines of (1) are plotted in Figure 1(a). The
𝑢-nullcline is𝑁-shaped, which is similar to that of the stand-
ard FHN model [14, 15]. The V-nullcline is not linear or
monotone like the FHN model. This type of V-nullcline for
the dynamics of recovery variable is more appropriate for the
cardiac electrical activities [17]. Both nullclines intersect each
other at a point, which is called the rest state of the excitable
media. The point corresponds to the (0, 0) state as shown in
Figure 1(a). Thus, there exists only one possible steady state
solution. The parameter 𝑎 is called the excitation threshold,
which lies between 0 and 1/2, that is, 0 < 𝑎 < 1/2. For a small
perturbation of 𝑢 less than the threshold value, that is, 𝑢 < 𝑎,
the system reverts to the rest state; otherwise (i.e., 𝑢 > 𝑎) the
system undergoes long excursions with fast-slow dynamics in
the (𝑢, V)-plane before reverting to the stationary (i.e., rest)
state. Therefore, the system can be categorized as excitable
according to [38]. Another parameter, 𝑏, plays a crucial role
in model (1), by controlling the period of excitation of the
medium. The two nullclines intersect each other again at the
right knee, when 𝑏 = 1.Thus, the parameter 𝑏 can be assigned
any value greater than 1.The excitation period becomes larger
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Figure 1: (a)The nullclines of model (1). Solid line is the 𝑢-nullcline and dashed lines are the V-nullcline for different values of the parameter
𝑏. (b)The action potential of (1) corresponding to the three different values of 𝑏 in (a), that is, 𝑏 = 1.2, 1.1, and 1.05.The parameter settings are
the same in Table 1.

and larger when 𝑏 approaches 1 but decreases when 𝑏 increase
(see Figure 1(b)).The parameter, 𝑏, is responsible for creating
gaps between two nullclines at the right knee of the 𝑢V-plane
(see Figure 1(a)). This is key to controlling the velocity of the
solution at the right slow manifold. Therefore, the nonlinear
kinetic of the slow variable V is responsible for the slow
movement of solutions at the right knee of the 𝑢-nullcline,
compared to the original FHN model. We have modified
the FHN equations without changing the slow manifold.
However, we changed the velocity on each branch of the slow
manifold. This improves the shape of the action potential to
mimic the shape of a real cardiac action potential (see Fig-
ure 1(b)). We also point out that the cardiac action potential
is very different to that seen in neuron action potential. It has
a prolonged plateau phase lasting around 300 milliseconds
(ms) compared with the 1ms seen in nerves [39]. Figure 1(b)
shows action potential of (1) for three different values of 𝑏.
The duration of the excited phase is referred to as the action
potential duration (APD) (see Figure 1(b)) and the recovery
period is referred to as the diastolic interval (DI), that is,
the duration between two consecutive excited phases in a
periodically stimulated cell. Figure 1(b) shows that theAPD is
increasing as 𝑏 decreases. Since we used FHN kinetic for the
fast variable, the recovery phase does not return to the rest
state immediately but does so after a large hyperpolarization.
Although this is sometimes seen in nerve cells, in cardiac
action potential, the recovery phase returns to rest state with-
out hyperpolarization. Apart from the excitation threshold
parameter, a, the parameters of our model do not have clear
physiological meanings like most of the other FHN-type
models [16, 17]. In our case, the parameters are adjusted to
reproduce some of the macroscopic characteristics of cardiac

tissues such as the shape of the action potential, dispersion
relation, refractoriness, and the restitution of APD [40].

2.2. Methods of Computation. For the numerical computa-
tions in two dimensions, we used the alternating-direction
implicit (ADI) method with Neumann boundary conditions.
In this method, the iteration is explicit in one direction and
implicit in the other direction in the first half-timestep and in
the second half-timestep the order is reversed. We sought for
numerical solutions on the spatial grid (𝑥

𝑖
, 𝑦
𝑗
) with 𝑥

𝑖
= 𝑖Δ𝑥,

𝑖 = 0, . . . , 𝑁
𝑥
, and 𝑦

𝑗
= 𝑗Δ𝑦, 𝑗 = 0, . . . , 𝑁

𝑦
, where Δ𝑥 = Δ𝑦

for a uniform mesh grid and time 𝑡
𝑛
= 𝑛Δ𝑡, 𝑛 = 0, 1, 2, 3, . . .,

where Δ𝑡 is the time step. The space steps in the 𝑥-direction
and in the 𝑦-direction are therefore defined, respectively, by

Δ𝑥 =
𝐿
𝑥

𝑁
𝑥

, Δ𝑦 =

𝐿
𝑦

𝑁
𝑦

, 𝑁
𝑥
, 𝑁
𝑦
∈ Z, (2)

where the size of the domain in the (𝑥, 𝑦)-plane is 0 < 𝑥 < 𝐿
𝑥

and 0 < 𝑦 < 𝐿
𝑦
. For the numerical approximation of the

state variables, in (1), we denote the grid approximations by
𝑈
𝑛

𝑖,𝑗
≈ 𝑢(𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑛
) and 𝑉𝑛

𝑖,𝑗
≈ V(𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑛
), such that the full

discrete approximation of 𝑈𝑛
𝑖,𝑗
is given by

𝑈
𝑛+1/2

𝑖,𝑗
− 𝑈
𝑛

𝑖,𝑗

Δ𝑡/2
= 𝑑
𝑢

𝑈
𝑛+1/2

𝑖−1,𝑗
− 2𝑈
𝑛+1/2

𝑖,𝑗
+ 𝑈
𝑛+1/2

𝑖+1,𝑗

Δ𝑥2

+ 𝑑
𝑢

𝑈
𝑛

𝑖,𝑗−1
− 2𝑈
𝑛

𝑖,𝑗
+ 𝑈
𝑛

𝑖,𝑗+1

Δ𝑦2
+ 𝑓 (𝑈

𝑛

𝑖,𝑗
, 𝑉
𝑛

𝑖,𝑗
) ,

(3)
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Table 1: Typical set of parameter values in (1) used in the numerical simulation.

Parameters 𝑎 𝑏 𝑐 𝑑 𝑑
𝑢

𝑑V 𝜖

Values 7 × 10
−2

⋅ ⋅ ⋅ 3.0 2.1 × 10
−1

5 × 10
−2

5 × 10
−3

1.1 × 10
−2

(1) procedureWIDTH(𝑥, 𝑢, 𝑢∗, 𝑁) ⊳ 𝑢 is the cross-section of the 2D profile
(2) 𝑙

𝑟
← 𝑢
∗

⊳ 𝑢
∗ a small positive number close to zero

(3) for 𝑗 ← 1,𝑁 − 1 do ⊳ 𝑁 is the size of 𝑢
(4) if 𝑢

𝑗
< 𝑙
𝑟
and 𝑢

𝑗+1
> 𝑙
𝑟
then

(5) 𝑝
𝑗
← 𝑢
𝑗+1

(6) else if 𝑢
𝑗+1

< 𝑙
𝑟
and 𝑢

𝑗
> 𝑙
𝑟
then

(7) 𝑝
𝑗
← 𝑢
𝑗

(8) end if
(9) end for
(10) 𝐼

𝑝
← 𝑢(𝑝

𝑗
) ⊳ Find the index, 𝐼

𝑝
, of the positions of the values 𝑝

𝑗
in 𝑢

(11) 𝑥
𝑝
← 𝑥(𝐼

𝑝
) ⊳ 𝑥 is grid points along the 𝑥-axis

(12) for 𝑗 ← 1, ⌈𝑚/2⌉ do ⊳ Calculate the widths of pulses
(13) 𝑊

𝑗
← 𝑥
𝑝2𝑗

− 𝑥
𝑝2𝑗−1

⊳ 𝑚 is the size of 𝑥
𝑝

(14) end for
(15) 𝑊max := max

1≤𝑗≤⌈𝑚/2⌉

𝑊 ⊳ Calculate the maximum

(16) 𝑊min := min
1≤𝑗≤⌈𝑚/2⌉

𝑊 ⊳ and minimum widths

(17) end procedure

Algorithm 1: Calculate widths of different spiral pulses.

𝑈
𝑛+1

𝑖,𝑗
− 𝑈
𝑛+1/2

𝑖,𝑗

Δ𝑡/2
= 𝑑
𝑢

𝑈
𝑛+1/2

𝑖−1,𝑗
− 2𝑈
𝑛+1/2

𝑖,𝑗
+ 𝑈
𝑛+1/2

𝑖+1,𝑗

Δ𝑥2

+ 𝑑
𝑢

𝑈
𝑛+1

𝑖,𝑗−1
− 2𝑈
𝑛+1

𝑖,𝑗
+ 𝑈
𝑛+1

𝑖,𝑗+1

Δ𝑦2

+ 𝑓 (𝑈
𝑛+1/2

𝑖,𝑗
, 𝑉
𝑛+1/2

𝑖,𝑗
) .

(4)

Equation (3) represents the first half-timestep and (4)
represents the second half-timestep. The formula 𝛿

𝑥
𝑈
𝑘

𝑖,𝑗
=

𝑈
𝑘

𝑖+1/2,𝑗
− 𝑈
𝑘

𝑖−1/2,𝑗
is the central difference operator, and a

similar formula holds true for 𝛿
𝑦
. An equivalent discrete

system of equations can also be written for 𝑉𝑛
𝑖,𝑗
. For the full

details of the method we refer to [41, 42]. The advantage of
this method is that it is unconditionally stable and second
order in time and space [43]. Nevertheless, there is still a
stability condition for the convergence of the solutions [41].
For the numerical computation in spiral wave formation, in
order to initiate the first spiral, we used a one-dimensional
band of traveling wave as an initial guess. This corresponds
to a two-dimensional broken wave front.The break is located
at the middle of the medium. For the computations in one
dimension, we used an implicit scheme with periodic bound-
ary conditions on [0, 𝐿

𝑥
]. In this study, we considered the

parameter, 𝑏, as a free parameterwhile other parameter values
are fixed according to Table 1, unless otherwise stated.

For the calculation of different spiral pulse widths (see
Figure 6) we used Algorithm 1.

3. Numerical Results and Discussion

3.1. Planar Wave Instability. Planar wave propagation in one
direction is a simpler case of wave propagation compared to
spiral wave propagation in a two-dimensional system. Wave
propagation failure in excitable media very often leads to the
beginning of spatiotemporal disorder. In the context of elec-
trophysiological activities, it may lead to ventricular fibrilla-
tion [44]. In this subsection, we study the stability of periodic
planar traveling wave solutions numerically. We used the
ADImethod, described in Section 2, with periodic boundary
conditions on (0, 𝐿

𝑥
) × (0, 𝐿

𝑦
). The parameter settings are

the same as those in Table 1. We observed that the failure
of pulse propagation (wave breakup) of planar wave occurs
when a small random perturbation is applied to the stable
planar wave solution near the bifurcation point. We define
the system size 𝐿

𝑥
:= 𝑛 × 𝑙, where 𝑛 is the number of wave

pulse and 𝑙 is the spatial period. First, we consider a periodic
stable planar wave train of two pulses for a system size of 𝐿

𝑥
=

30, propagating in the negative 𝑥-direction with constant
velocity (see Figure 2(a)). Here, we are concerned with the
stability of the periodic planar travelingwave of spatial period
𝑙 = 15, so as to compare the results with the spiral wave
instability with the same spatial period. The spatial period
𝑙 = 15 is also the minimum stable spatial period near the
onset of the instability of spiral waves. In the stable planar
wave case (see Figure 2(a)), the value of 𝑏 is 1.035. Figure 2
displays the breakup of planar pulse by transverse instability.
We introduced a suitable small random perturbation in the
initial data and consider a range of values of 𝑏. In Figure 2,
it can be seen that the initial stable planar wave becomes
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(a) (b)

(c) (d)

Figure 2: Breakup of planar pulses in model (1) by transverse instability. The snapshots are at time (a) 𝑡 = 0, (b) 𝑡 = 187.62, (c) 𝑡 = 199.32,
and (d) 𝑡 = 220.12. Numerical integration with space step 𝑑𝑥 = 𝑑𝑦 = 0.2 and time step 𝑑𝑡 = 0.01 on the grid of 150 × 150 elements. The red
area represents excited state and the blue area represents the resting state of the tissue.

unstable as time develops. The behavior of the system at
time 𝑡 = 187.62 is clearly different from the observation in
Figure 2(a), in which a dent is formed (see Figure 2(b)). With
the development of time, the dent grows and its curvature
becomes more pronounced (see Figure 2(c)). As a result, a
movement of the wave in the transverse direction is induced
into the systemwith the formation of spiral tips that protrude
towards the center of the curvature (see Figure 2(d)). This
behavior is usually followed by a domain breakup in the two-
dimensional system. We refer this instability of planar wave
as transverse instability [44]. The transverse wave instability
was also found experimentally in an excitable Belousov-
Zhabotinsky (BZ) reaction [45].

3.2. Spiral Breakup Phenomena. In this section, we investi-
gate the dynamics of spiral wave solutions in two dimensions
as a function of the parameter 𝑏 for two different initial pro-
files. The parameter 𝑏 controls the emergence of stable spiral
wave patterns and spiral breakup in the two-dimensional
simulation. As we mentioned earlier, the value of 𝑏 is

responsible for the creation of gaps between the two null-
clines at the right knee of the 𝑢V-plane; that is, the prop-
agation velocity of the solution is slower at the right slow
manifold for a smaller value of 𝑏. As a result, the excited state
becomes much larger (smaller) for smaller (larger) values of
𝑏.The first initial condition (see Figure 3(a)) we used here is a
band of traveling wave. It was generated from the simulation
result of a one-dimensional traveling wave data. The 2D
broken wave front is located at the middle of the excitable
tissue. Using this initial guess, we observed a beautiful spiral
wave pattern (see Figure 5(a)) by using 𝑏 = 1.05. The precise
mechanism of spiral breakup, that is, ventricular fibrillation,
is still not quite clear to researchers in the context of cardiac
arrhythmias. In this paper, we showed that the spiral breakup
occurs mainly because of the oscillation of spiral pulses
and the interaction between the front and the back of the
oscillatorywave pulses far away from the bifurcation. Inmany
cases, the initial conditions are also important to determine
the spiral wave breakup [26].Thus, in order to understand the
initiation and evolution of wave propagation more precisely
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Figure 3: Time sequence illustrating the dynamical mechanism of spiral breakup in (1). The parameter settings are same as in Table 1 with
𝑏 = 1.015. The pictures are at time (a) 𝑡 = 0, (b) 𝑡 = 546, (c) 𝑡 = 2270, and (d) 𝑡 = 4909. Numerical integration with space step 𝑑𝑥 = 𝑑𝑦 = 0.25
and time step 𝑑𝑡 = 0.05 on the grid of 960 × 960 elements. The red area represents excited state and the blue area represents the resting state
of the tissue.

in model (1), we considered two types of initial data. The
first initial condition is given in Figure 3(a), as mentioned
earlier.We used theADImethod, described in Section 2, with
Neumann boundary conditions.The problemwas considered
numerically with 𝑑𝑡 = 0.05; 𝑑𝑥 = 𝑑𝑦 = 0.25 on a grid of
960 × 960 elements. The spatial domain length is 𝐿

𝑥
= 𝐿
𝑦
=

240. The parameter values used in the numerical simulation
are given in Table 1. Figure 3 shows the evolution of spatial
patterns at 𝑏 = 1.015. In this case, after several revolutions of
the spiral wave (see Figure 3(b)), the initial breakup occurred
in the vicinity of the core of the spiral (see Figure 3(c)).

Gradually, the excited state covered most regions of the
medium.Moreover, we also observe that when the rest region
is limited, part of the excited region breaks and disappears,
making the medium spatially disorganized. As a result, new
spiral waves are produced to occupy the space created due to
the vanishing spiral waves.That is, a newwave break produces
two other new spirals. This process continues repeatedly
throughout the medium and, at 𝑡 = 4909, a chaotic phenom-
enon of waves appears in the form of a complicated spatial
distribution of the propagator variable (see Figure 3(d)).
Similar results were obtained with smaller space and time
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Figure 4:The spiral breakup in (1), when 𝑏 = 1.015. The pictures are at time (a) 𝑡 = 0, (b) 𝑡 = 1266, (c) 𝑡 = 2356, and (d) 𝑡 = 3657. Numerical
integration with space step 𝑑𝑥 = 𝑑𝑦 = 0.25 and time step 𝑑𝑡 = 0.05 on the grid of 960 × 960 elements. The red area represents excited state
and the blue area represents the resting state of the tissue.

steps. This chaotic pattern in the heart is called ventricular
fibrillation.

Another initial data was obtained for 𝑏 = 1.025 (see
Figure 4(a)) by the continuation from a stable spiral wave
using different values of 𝑏, that is, considering the solution of
one step as an initial guess for the next step, in such a way that
the value of 𝑏 is decreased in each subsequent step. Note that,
it is difficult to prepare initial conditionwith stable spiral near
the breakup.The parameter settings are similar as in Figure 3.
We observed the first initial breakup at the core of the spiral
wave at time 𝑡 = 1266 (see Figure 4(b)). However, after the
initiation of the spiral breakup, the medium spanned by the

excited state enlarges (see Figure 4(c)) and further breakup
is initiated in the medium away from the core. Eventually,
this gives rise to the complicated phenomenon in Figure 4(d),
at time 𝑡 = 3657. Note that, in both cases, the process of
breakup starts in the vicinity of the center of the initial spiral
and spreads throughout themedium.However, the firstmajor
breakup is not similar in both cases (see Figures 3(c) and
4(b)). Thus, initial data are important for the process of a
spiral breakup with a proper choice of parameters.

3.3. Spiral Wave Phenomena as a Function of the Parameter
𝑏. Figure 5 illustrates the spiral wave behavior as a function
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Figure 5: The spiral dynamics of the tissue as a function of parameter 𝑏 in (1). The panels are at (a) 𝑏 = 1.05, (b) 𝑏 = 1.02, (c) 𝑏 = 1.018, (d)
𝑏 = 1.015. Numerical integration with space step 𝑑𝑥 = 𝑑𝑦 = 0.25 and time step 𝑑𝑡 = 0.05 on the grid of 960 × 960 elements.

of the parameter 𝑏. In this model, decreasing the value of 𝑏
increases the widths of the spiral pulses, that is, the length of
the excited state. The parameter values are given in Table 1.
The first panel of Figure 5 shows a stable spiral wave pattern
for 𝑏 = 1.05. The stable spiral wave becomes progressively
destabilized by increasing oscillation in wavelength (distance
between two consecutive fronts or back) along the spiral
wave arm [46] (i.e., a decrease at 𝑏 = 1.02) and breakup
occurs without affecting the two inner spiral rotations (see
Figure 5(b)). Panel (c) of Figure 5 shows the breakup closer
to the core, with only a single spiral remaining unbroken, as
𝑏 is further increased (𝑏 = 1.018). Finally, with an additional
increase in 𝑏, (𝑏 = 1.015), no further complete rotation of
the spiral exists and the breakup spreads across the entire

medium (see Figure 5(d)). The breakup repeats itself until
the chaotic pattern is fully developed.The same behavior was
observed in the two-variable Karma model [28]. Therefore,
in the model (1), we considered 𝑏 as a bifurcation parameter,
which is capable of showing the wave pattern from tachycar-
dia to fibrillation.

3.4. Dynamical Behavior of SpiralWave Solutions and the Cor-
responding Periodic Traveling Wave Solutions in 1D

3.4.1. Calculation of Widths of Spiral Pulses. We developed
an algorithm (see Algorithm 1) that calculates the widths of
different spiral pulses numerically. The widths are calculated
by a transverse interpolation of the 2D spiral wave along a line
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Figure 6: (a)The two-dimensional plot 𝑢(𝑥) for 𝑏 = 1.05 of (1). (b)The line AB in (a) gives a one-dimensional plot of 𝑢(𝑥) by two-dimensional
interpolation. (c) A one-dimensional cross-sectional plot of 𝑢(𝑥), when 𝑏 = 1.025. (d) The maximum and minimum widths of spiral pulses
as a function of the parameter 𝑏 of (1). The values of 𝑏 on the 𝑥-axis are 1.06, 1.05, 1.045, 1.04, 1.038, 1.037, 1.035, 1.032, 1.03, and 1.025 (from left
to right).

AB (see Figure 6(a)). The interpolation was done in such a
way that the tip (or core) of the spiral wave is excluded. This
considerationmakes sense since the spiral wave is symmetric
on either side of the core. For each pulse of the 1D interpolated
data of 𝑢, we determined two points (see, e.g., Figure 6(b));
one is at the front and the other is at the back of the pulse.
The location of the points lies near the zero (positive side)
of the function 𝑢. The strategy employed here is simply
based on the behavior of the cross-section of the spiral wave,
which alternates between a negative value and a positive value
within each pulse. The distance between the two points as
measured on the 𝑥-axis gives the pulse width for that pulse,
that is, the pulse width is defined as 𝑊 = |𝑥

1
− 𝑥
2
| (see

Figure 6(b)). For example, in Figure 6(b), the width of the

first pulse is |𝑥
1
− 𝑥
2
| = 12.2628. This process is repeated

for all the pulses along AB. We are concerned in determining
the maximum and minimum widths as a function of 𝑏, in
order to find an oscillatory pattern of solutions. Figure 6(c)
shows the oscillation of pulse widths when 𝑏 = 1.025. At this
stage Algorithm 1 gives𝑊max = 30.0355 and𝑊min = 9.0125.
Figure 6(d) shows the maximum and the minimum widths
of spiral pulses as a function of the parameter 𝑏. We started
the calculation for a stable spiral pattern (i.e., equal widths
of spiral pulses) at 𝑏 = 1.06, while other parameters are
kept fixed according to Table 1. In Figure 6(d), the following
consecutive values of parameter 𝑏 are considered: 𝑏 = 1.06,
1.05, 1.045, 1.04, 1.038, 1.037, 1.035, 1.032, 1.03, and 1.025 in
each calculation (from left to right). This means that, in each
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Figure 7: Time sequence illustrating the dynamics of spiral waves in two dimensions. The plots in (a) and (b) are cross-sectional plots in
one-dimensional form. (a) A stable spiral traveling wave for 𝑏 = 1.05 and (b) an oscillatory spiral wave pattern for 𝑏 = 1.025. (c)The alternans
or oscillation of different spiral pulses for 𝑏 = 1.032 as the development of time. The parameter values used in the simulation are taken from
Table 1.

computation, the value of 𝑏 is gradually decreased until the
onset of oscillation of the pulse width (i.e., alternans) occurs.
The oscillation is initiated at a value of 𝑏 = 1.038. This shows
that, in our numerical results, the stable spiral wave pattern
bifurcates to an oscillatory wave pattern at about 𝑏 = 1.038.
Subsequently, the oscillations increase for decreasing the
values of 𝑏. These oscillations becomemore intense when the
value of 𝑏 is far below the onset of the instability. Note that
the width of the spiral pulses increases, allowing the number
of pulses formed to decrease.

3.4.2. Alternans in Spiral Pulse Solution. In this subsection,
we also attempt to find a stable and oscillatory 1D parallel
pulse train solution, which is analogous to the 2D spiral
wave. Spiral waves are obviously two-dimensional, even so,
they become one-dimensional as one moves away from the
core so that the curvature decreases. We have described the
dynamical behavior of spiral wave in the previous subsection.
In this subsection, we show the dynamical behavior as time
evolves. Figure 7(a) represents the stable periodic spiral trav-
eling wave solutions for 𝑏 = 1.05 as a function of time, that
is, before the bifurcation. Specifically, it shows the dynamical
behavior of the spiral pulse propagation from the core to

the boundary of the medium. The interpolation determines
the values excluding one pulse near the spiral tip to avoid the
complications dealing with trajectories in the vicinity of the
spiral wave core. The width of every spiral pulse is equal in
this case (i.e., 12.2628 for all pulses). The spiral pulses are not
oscillating for 𝑏 = 1.05. Figure 7(b) illustrates the oscillatory
pattern of wave propagation after the bifurcation, that is, for
𝑏 = 1.025 and using the same computational settings. Fig-
ure 7(c) shows the alternans or oscillation of spiral pulses
as time develops. We avoided two pulses near the core and
one pulse near the boundary during, since the spiral wave is
symmetric on either side of the core, as wementioned earlier.

3.4.3. Corresponding Periodic Traveling Wave Solutions in 1D.
In this subsection, we attempt tomake a comparison between
one- and two-dimensional numerical results as a function of
the parameter 𝑏. The computational settings are same as in
Figure 7. For the numerical computation in one dimension,
we used an implicit scheme with periodic boundary condi-
tions on [0, 𝐿]. The system size of the medium is 𝐿 = 75 with
five pulses; that is, the spatial period is 𝑙 = 15. Figure 8(a)
shows periodic traveling wave (PTW) solutions for 𝑏 = 1.05,
that is, before the bifurcation. We observed a stable wave
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Figure 8: Space-time plots of integrations of (1) in one dimension. Time sequence illustrating the dynamics of (a) a stable periodic traveling
wave solution for 𝑏 = 1.05 and (b) an oscillatory pattern of solution for 𝑏 = 1.025 in one dimension.The parameter settings are same as those
in Table 1.

pattern for the parameter 𝑏 = 1.05. Figure 8(a) corresponds
to Figure 7(a). One can easily understand from these two
Figures that the wave propagation speed and the pulse widths
are equal in both cases. Figure 8(b) illustrates the oscillatory
pattern of wave propagation after the bifurcation, that is, for
𝑏 = 1.025, in one dimension. Figure 8(b) corresponds to
Figure 7(b). The oscillatory patterns of wave and wave speed
are also close in both cases.These results prove the dynamical
correspondence or resemblance between the one-dimen-
sional periodic traveling wave solutions (PTWs) and the
spiral wave solutions. Therefore, the numerical result in two
dimensions is a consequence of the result in one dimension.

3.5. Numerical Results for Vanishing Diffusion of the Recovery
Variable. In the previous sections, we chose a small diffusion
coefficient for the second component, since it is more advan-
tageous to assume diffusion coefficient vanishingly small
instead of zero for analytical treatment of the problem. In
this case, the structure of the first order traveling wave ODE
system is more regular. However, in the case of neuron
or cardiac cell dynamics the recovery component does not
diffuse. In this case, the model (1) usually has the following
form:

𝜕𝑢

𝜕𝑡
= 𝑑
𝑢
Δ𝑢 + 𝑢 (1 − 𝑢) (𝑢 − 𝑎) − V,

𝜕V
𝜕𝑡

= 𝜖 (𝑑𝑢 (𝑏 − 𝑢) (𝑢 + 𝑐) − V) .

(5)

Figure 9 shows the dynamics of the spiral wave as a
function of the parameter 𝑏 of (5). Similarly, as before, we
used the ADI method with Neumann boundary conditions.
We continued the simulation for a long time for every value
of 𝑏 in order to arrive at a steady state of the solution. Figures
9(a) and 9(b) show a stable spiral pattern with an increased
excited area as 𝑏 decreases. The thickness of the spiral

arm indicates the amount of depolarized tissue between the
action potential upstroke and the depolarization phase. The
initiation of oscillatory wave motion is presented in Fig-
ure 9(c), for 𝑏 = 1.05. The oscillatory pattern progressively
increases when 𝑏 is further decreased as shown in Figures
9(d) and 9(e). On the spiral wave arm, the pulses are thinner
in some areas and thicker in others. It is observed that increas-
ing oscillations in wavelength or excited state on the spiral
wave arm eventually leads to spiral breakup and formation of
daughter spiral core [46].This type of spiral breakup is known
as far-field breakup [47]. Finally, as time evolves, breakup
spreads across the entire medium (see Figure 9(f)).

Figure 10 shows a stable and an oscillatory pattern of
PTWs in one dimension as a consequence of Figure 9. The
parameter settings are the same as in Figure 9. Figure 10(a)
displays a stable wave pattern of the PTWs (or wave trains)
for 𝑏 = 1.055. In Figure 9, we observed that the onset of
oscillation is close to 𝑏 = 1.05 in two dimensions. As we grad-
ually decrease the parameter 𝑏, it is noticed that the stable
PTW solution bifurcates to an oscillatory wave pattern (see
Figure 10(b)). However, the onset of oscillation is about 𝑏 =
1.042. Figure 10(b) (at 𝑏 = 1.03) corresponds to Figure 9(e).
The oscillatory pattern of the wave and the wave speed
are also consistent in both cases. These numerical observa-
tions indicate the dynamical resemblance between the one-
dimensional PTWs and the spiral wave dynamics.

In Figure 11, we computed the APD restitution curves for
two different values of the parameter 𝑏. Usually, the restitu-
tion curve is defined as APD = 𝑓(DI), where APD indicates
the duration of the action potential created by the second
stimulus after a specific DI. As mentioned earlier, DI is the
time interval between the end of the first action potential and
the start of the second stimulus. Here, we simply desire to
find a steeper restitution curve of (5) when the value of the
parameter 𝑏 decreases. The slope of the restitution curve can
be related to the instability of the PTWs or spiral instability
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Figure 9:The spiral wave dynamics of the tissue as a function of the parameter 𝑏 in (5). The other parameter values are in Table 1. The panels
are at (a) 𝑏 = 1.2, (b) 𝑏 = 1.1, (c) 𝑏 = 1.05, (d) 𝑏 = 1.04, (e) 𝑏 = 1.03, and (f) 𝑏 = 1.02. Numerical integration with space step 𝑑𝑥 = 𝑑𝑦 = 0.25
and time step 𝑑𝑡 = 0.05 on the grid of 960 × 960 elements.
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Figure 10: Space-time plots of integrations of (5) in one dimension. Time sequence illustrating the dynamics of (a) a stable PTW solution for
𝑏 = 1.055 and (b) an oscillatory pattern of solution for 𝑏 = 1.03. The parameter settings are same as in Figure 9.

[40, 46]. Our results indicate that the smaller the 𝑏, the steeper
the restitution curve (slope> 1) (see Figure 11).The slope of the
restitution curve for small DI is defined as the ratio between
the velocities on the left and the right branches at the level

of the local peak of the cubic function. Since we also found
spiral instability in the simulation results, at smaller values of
𝑏, the steepness of the APD restitution curve has a significant
role in the process of spiral wave instability [34, 35].
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4. Conclusions

We have studied the different phenomenon of spiral wave
solutions in an excitable FHN-type of reaction-diffusion
system. We observed in our numerical results that the
process of spiral breakup is a consequence of the transverse
instability of the planar traveling wave solutions. It was
clearly demonstrated through numerical simulations that
the parameter, 𝑏, is responsible for creating most of the
characteristic properties of the cardiac excitable tissue. It
plays a significant role in the demonstration of the dynamics
of the spiral waves. As we mentioned earlier, the param-
eter, 𝑏, controls the gaps between the two nullclines on
the right side of the 𝑢V-plane (see Figure 1(a)). Previous
efforts (e.g., [16, 22, 28, 33]) did not consider the gaps
between the two nullclines as a control parameter in order
to study spiral wave dynamics. Our results showed that,
by controlling the gaps, stable and unstable spiral patterns
are generated in the medium. The spiral breakup occurs
when the two nullclines are sufficiently near to each other.
We also observed that a small decrease in 𝑏 increases the
pulse width or excited state. Our numerical results show that
the stable spiral pattern bifurcates to an oscillatory pattern
when 𝑏 decreases from a stable wave pattern. However, in
a specific parameter regime far below the stable pattern,
the spiral wave becomes unstable and finally breaks up. We
found that the spiral breakup is preceded by the alternans
instability of spiral pulses far below the bifurcation. These
results also suggest that spiral breakup can be controlled
by reducing the excited state of the medium. Our model
predicts that it is possible to arrive at a normal heart wave
from the arrhythmias like alternans by a small reduction of

excited area of the tissue. Thus, our model and simulation
results can serve as a paradigm for further investigation of
the cardiac arrhythmias in a rigorous mathematical treat-
ment.
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