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Precise identification of cancer cells from allelic
imbalances in single cell transcriptomes
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A fundamental step of tumour single cell mRNA analysis is separating cancer and non-cancer
cells. We show that the common approach to separation, using shifts in average expression,
can lead to erroneous biological conclusions. By contrast, allelic imbalances representing
copy number changes directly detect the cancer genotype and accurately separate cancer
from non-cancer cells. Our findings provide a definitive approach to identifying cancer cells

from single cell mRNA sequencing data.

TWellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. 2 University College London Great Ormond Street Institute of Child
Health, London, UK. 3 Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. 4 Department of Paediatrics, University of Cambridge,
Cambridge, UK. ®email: sb31@sanger.ac.uk; my4@sanger.ac.uk

COMMUNICATIONS BIOLOGY | (2022)5:884 | https://doi.org/10.1038/s42003-022-03808-9 | www.nature.com/commsbio


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03808-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03808-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03808-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03808-9&domain=pdf
http://orcid.org/0000-0003-4185-0071
http://orcid.org/0000-0003-4185-0071
http://orcid.org/0000-0003-4185-0071
http://orcid.org/0000-0003-4185-0071
http://orcid.org/0000-0003-4185-0071
http://orcid.org/0000-0002-4404-8183
http://orcid.org/0000-0002-4404-8183
http://orcid.org/0000-0002-4404-8183
http://orcid.org/0000-0002-4404-8183
http://orcid.org/0000-0002-4404-8183
http://orcid.org/0000-0002-5314-2294
http://orcid.org/0000-0002-5314-2294
http://orcid.org/0000-0002-5314-2294
http://orcid.org/0000-0002-5314-2294
http://orcid.org/0000-0002-5314-2294
http://orcid.org/0000-0003-4523-6327
http://orcid.org/0000-0003-4523-6327
http://orcid.org/0000-0003-4523-6327
http://orcid.org/0000-0003-4523-6327
http://orcid.org/0000-0003-4523-6327
http://orcid.org/0000-0002-5891-6789
http://orcid.org/0000-0002-5891-6789
http://orcid.org/0000-0002-5891-6789
http://orcid.org/0000-0002-5891-6789
http://orcid.org/0000-0002-5891-6789
http://orcid.org/0000-0002-6600-7665
http://orcid.org/0000-0002-6600-7665
http://orcid.org/0000-0002-6600-7665
http://orcid.org/0000-0002-6600-7665
http://orcid.org/0000-0002-6600-7665
http://orcid.org/0000-0003-0937-5290
http://orcid.org/0000-0003-0937-5290
http://orcid.org/0000-0003-0937-5290
http://orcid.org/0000-0003-0937-5290
http://orcid.org/0000-0003-0937-5290
mailto:sb31@sanger.ac.uk
mailto:my4@sanger.ac.uk
www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03808-9

profiling of tumours and their environment with data being

generated across the entire spectrum of human cancer.
Studying the cancer transcriptomes depends on accurate identifi-
cation of cancer cells. Therefore, the foundational step of tumour
single cell analyses is separating cancer from non-cancer cells.

The simplest approach to identifying cancer cells is to use
expression of cancer specific marker genes. However, such genes
do not always exist and are generally insufficiently precise,
especially without corroborating readouts such as cellular mor-
phology. Another approach is to infer the presence of tumour-
defining somatic copy-number changes from shifts in average
expression2. The idea here is that gains or losses of genomic
regions will generally increase or decrease the expression level of
genes in these regions respectively. Challenges with this approach
include smoothing and denoising expression changes, establish-
ing a baseline against which to measure shifts in expression,
segmenting the genome, and identifying changes in expression
not due to copy-number changes. Despite these challenges, both
marker genes and shifts in average expression, which we collec-
tively refer to as “expression-based annotation”, may accurately
identify cancer cells in certain circumstances. However, if there is
any novelty or ambiguity in the identity of cancer cells, then these
two approaches are inherently fallible as they are both based on
expression and not direct evidence that a cell is cancerous, i.e. that
it carries the somatic cancer genome.

For example, there has been historical controversy about what
cell types are malignant in neuroblastoma, a childhood cancer that
arises from peripheral nervous sympathetic lineages. In addition to
unambiguous cancer cells, neuroblastomas often harbour stromal
cells, composed of Schwannian stroma or mesenchymal cells. It has
been suggested that these stromal cell types represent cancer
lineages, although a rich body of evidence, including cytogenetic
investigations, have not supported this proposition3. Recent single
cell mRNA studies of neuroblastoma have rekindled the debate on
the basis of expression-based cancer cell identification?. Although
neuroblastoma is an exemplar of the difficulties in annotating
single cell tumour transcriptomes, the same problems are common
to tumours with complex histology or unresolved origins. Even
among tumours with well-defined origins, the variability inherent
to all cancer can make annotation challenging.

The alternative to expression-based annotation is direct
detection of either cancer-defining (i.e. somatic) point mutations
or copy-number aberrations from the nucleic acid sequences of
each transcriptome, which we pursued here. Such approaches
utilise additional information from whole genome/exome
sequencing of tumour DNA to detect the altered genotype or the
allelic imbalance it creates. More specifically, sequencing of
tumour DNA is used to identify regions of copy-number change
shared by all cancer cells. Within these regions the B-allele fre-
quency or BAF, defined as the fraction of reads from the non-
reference allele, will differ from the value of 0.5 that characterises
normal cells (Fig. la). The altered BAF is then used to phase
together heterozygous bases across the altered region and the
nucleotide sequences underlying single transcriptomes can be
interrogated for these cancer-defining shifts. The principle of
using shifts in BAF to detect copy-number changes has been
previously used to detect de novo copy-number changes in single
cell data>0. Here we leverage the extra information provided by
tumour DNA sequencing to use shifts in BAF to precisely identify
single cancer cell transcriptomes.

S ingle cell mRNA sequencing has enabled transcriptomic

Results
Briefly, our method, which we call alleleIntegrator, works as
follows. Firstly, whole genome or exome sequencing is performed

on tumour DNA. From this, regions of copy-number change are
identified, using established methods such as ASCAT?, along with
germline heterozygous single nucleotide polymorphisms (SNPs)
within altered regions. The alleles with frequency significantly
greater than 0.5 (binomial test) are phased together and collec-
tively designated the “major allele”. The allele frequency of all
phased heterozygous SNPs within copy-number altered regions is
then measured in each single cell transcriptome. Finally, the
posterior probability of both the normal genotype (where all
alleles have BAF 0.5) and the cancer genotype (where the BAF of
each allele matches that implied by the copy-number status of the
cancer) are calculated. It is possible that allelic shifts may result
from allele-specific expression rather than copy-number change.
To control for this, we exclude genes known to be imprinted or
have allele-biased expression (e.g. HLA genes), model any residual
allele-specific expression using the data, and only consider large
regions spanning multiple genes. Those cells with a posterior
probability exceeding some threshold (set to 99% throughout this
paper) are designated as cancer or normal cells, with all other
cells designated as unassigned.

To test approaches used to identify cancer cells, we generated
or downloaded single cell droplet-based 3’ single cell tran-
scriptomes from 13 individuals and 5 tumour types: renal cell
carcinoma (RCC), neuroblastoma, Wilms tumour, Ewing’s sar-
coma, and atypical teratoid rhabdoid tumour (AT/RT)3-10
(Supplementary Table 1). We first tested if detection of cancer
specific point mutations would identify cancer transcriptomes.
Across all samples, the majority of cells had no reads covering a
point mutation (Fig. 1b), with on average 9.7 reads per ten
thousand point mutations per cell (range 0 to 556). This implies
that identifying cancer cells from point mutations is possible, but
depends on the mutation burden being high and the cost of false
negatives being low. By contrast, an average of 1522 reads per cell
covered heterozygous single nucleotide polymorphisms (SNPs),
implying 0.5 informative reads per megabase per transcriptome
(Fig. 1c). As copy-number changes may alter the allelic ratio,
these data can be used to detect the cancer genotype (Fig. 1d).
This implies that a loss of heterozygosity (LoH) of 19.7 megabases
or more should be detectable in single transcriptomes (assuming
a binomial distribution and 99% accuracy).

Next, we compared the performance of cancer transcriptome
identification using expression- and nucleotide-based copy-
number detection. For each patient we ran three copy-number
detection methods, CopyKAT? inferCNV!, and a statistical
model based on allelic ratios®, which we named alleleIntegrator.
We evaluated how well each method recovered the true copy-
number profile and cancer cell transcriptomes. As inferCNV does
not call cancer cell transcriptomes, we evaluated this method on
its copy-number profile only.

We first considered RCC, an adult kidney cancer where the
cancer cell transcriptome can be definitively identified based on
the tumour marker CA9, caused by the near universal disruption
of the VHL gene underpinning RCC!! (Fig. 2a). For each indi-
vidual, we used single cell transcriptomes from both tumour
biopsies expressing CA9 and from macroscopically and histolo-
gically normal tissue biopsies from uninvolved regions of the
kidney that did not express CA9. This guaranteed that the
assumptions of inferCNV and CopyKAT, that a mixture of cancer
and normal transcriptomes be present, were satisfied. Despite
this, CopyKAT’s expression-based identification classed 98%
(2953) proximal tubular cells derived from normal tissue as
cancerous, compared to 0.2% (4 cells) identified as cancer-derived
by allelic ratio (Fig. 2b, Supplementary Fig. 1). As proximal
tubular cells are the probable cell of origin for RCC, it is likely
that expression-based copy-number inference incorrectly identi-
fied proximal tubular cells as cancer-derived due to their
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Fig. 1 Overview of different approaches to identifying cancer-derived cells. a Genomic changes present in cancer genomes. b Number of cells (y-axis)

with N reads covering point mutations (x-axis), separated by low (NB neurobla

stoma) and high (RCC renal cell carcinoma) mutation burden. ¢ Number of

cells (y-axis) with N reads covering heterozygous single nucleotide polymorphisms (SNP) (x-axis). d Overview of using allelic shifts representing copy-

number changes to detect cancer cells.

transcriptional similarity to RCC cells. Amongst the 1718 verified
cancer cells, expression-based identification called 1096 as
tumour and 35 as normal, while alleleIntegrator identified 712 as
tumour and 41 as normal (with the remaining cells unassigned).

We next assessed how well the inferred copy-number profiles
matched the ground truth—i.e. somatic copy-number profiles
obtained from whole genome sequences—at the chromosome
level. There is a good visual agreement between the ground truth
profile and allelic ratios, while both CopyKAT and inferCNV
exhibit deviations from the expected values (Fig. 2c, Supple-
mentary Fig. 2). To quantify this comparison, we designate
regions as changed or neutral based on an expression cut-off,

which we compared to the ground truth. Varying this cut-off
produced a receiver operating characteristic (ROC) curve for each
method, with average area 0.97 for alleleIntegrator, 0.87 for
CopyKAT, and 0.74 for inferCNV (Supplementary Fig. 3). In
aggregate, these analyses demonstrate the potential for
expression-based methods to misidentify normal cells as can-
cerous, illustrating their shortcomings in identifying novel cancer
cell types.

As a contrast to RCC, we tested cancer transcriptome identi-
fication on single cell transcriptomes from neuroblastomas, which
have no definitive single marker equivalent to CA9 in RCC
(Fig. 2d). As before, both expression- and allelic ratio-based
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Fig. 2 Comparison of cancer cell annotation and copy-number profile using allelic-ratio and expression-based approaches. a UMAP of RCC single cell
transcriptomes showing patient (shading), cell type (contours and labels), and patient composition (barplots). Inset shows expression of RCC marker CA9.

PTC proximal tubular cells derived from normal biopsies. b Cancerous (red

) and non-cancerous (grey) cell fraction excluding ambiguous cells by cell type

(x-axis) and sample/region (y-axis) called by CopyKAT (left) or alleleIntegrator (right). € Copy-number profile for PD37228 tumour (left) and proximal
tubular (right) clusters from normalised averaged expression (top panels, solid black line) and allelic ratio (bottom panel, one dot per bin with ~500 reads),
with true copy-number changes from DNA (red shading). d-f As per (a-c) but for neuroblastoma.

identification identified tumour cells accurately (Fig. 2e, Supple-
mentary Fig. 1). As neuroblastoma lacks a definitive marker gene,
it cannot be known if cancer cell transcriptomes have been cap-
tured before expression-based copy-number inference is run. To
consider what would happen if an experiment did not capture
cancer cells, we ran all methods on sample PD42184, which is
derived from a normal adrenal gland and therefore contains no
tumour cells. Expression-based copy-number inference predicted
1926 cancer-derived cells, including mesenchymal cells (Fig. 2e).
By contrast, these cells are identified as normal based on their

allelic ratio (Fig. 2e). The expression-based copy-number profiles
are also consistent with the mesenchymal cells being cancer
derived, with shifts in average expression on chromosomes 1,2,3
and 12 (Fig. 2f, Supplementary Fig. 4). As with RCC, this was part
of a larger pattern where expression-based profiles only weakly
matched the ground truth, while allelic ratios captured the truth
with high accuracy despite the complex copy-number profiles,
yielding average ROC areas of 0.89 for alleleIntegrator, 0.28 for
CopyKAT, and 0.28 for inferCNV (Supplementary Fig. 3).
Overall, this demonstrates the risk of drawing erroneous
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biological conclusions, in this case that mesenchymal cells are
cancer-derived, when relying on expression-based copy-number
inference of cancer transcriptomes.

As an extended test, we next considered three additional
tumour types: Wilms tumour, ATRT, and Ewing’s sarcoma.
Unlike RCC and neuroblastoma, CopyKAT and alleleIntegrator
were both able to correctly identify leucocytes and endothelial
cells as not cancer derived (Fig. 3a, Supplementary Fig. 5).
However, CopyKAT incorrectly identifies the majority of Wilms
tumour cells as normal (Fig. 3a). This is likely driven by the
heterogeneous nature of Wilms tumour, which produces multiple
populations of transcriptionally and histologically distinct cancer
cells. Next, we compared each method’s copy-number profile to
the ground truth, calculating the sensitivity and specificity with
which each method identified neutral/altered genomic regions
(Fig. 3b, Supplementary Fig. 3). We found similar levels of per-
formance for both expression-based methods, both of which
performed poorly compared to allelic ratios (Fig. 3b). We next
asked how clearly regions of gain and loss could be separated
from one another by each of the three methods. Looking across
all samples, we found that distribution of expression values for
regions with no change, copy-number gain, and copy-number
loss strongly overlapped (Fig. 3c, Supplementary Fig. 3). By
contrast, each of these three types of region produced clearly
separated peaks in the distribution of allelic ratios (Fig. 3c).
Across our tests, we found both expression-based copy-number
callers to perform similarly and to have highly correlated outputs
(Supplementary Fig. 6). Therefore, the properties of expression-
based copy-number callers are likely general, not specific to
inferCNV and CopyKAT.

Beyond distinguishing cancer and normal cells, the high pre-
cision of copy-number genotyping by allelic ratios may lend itself
to the identification of minor cancer cell populations (subclones)
defined by copy-number aberrations. We investigated cancer
subclone identification in a neuroblastoma (PD46693) that har-
boured a minor clone, comprising ~30% of cells, defined by copy-
number neutral loss of heterozygosity of chromosome 4. Alle-
leIntegrator identified 389/1282 sub-clonal cells with a posterior
probability of more than 99% (Fig. 3d). These cells are tran-
scriptionally extremely similar, with only 95 genes and 7 tran-
scription factors significantly differentially expressed between the
major and minor clones (Supplementary Fig. 7, Supplementary
Tables 2, 3). Amongst these genes were neuroblastoma-associated
genes NTRKI, BCL11A, TH and CHGB, as well as HMXI, a
transcription factor on chromosome 4 that is a master regulator
of neural crest development. Although we would not claim that
these genes collectively or individually are the definitive target of
the sub-clonal copy-number change, this analysis illustrates the
power of our approach in deriving functional hypotheses about
copy-number changes. This is particularly pertinent in neuro-
blastoma, where clinical risk is defined by segmental copy-
number changes that remain functionally cryptic!?.

Discussion

We have shown that allelic imbalances that represent cancer-
defining somatic copy-number changes can precisely identify
single cancer cell transcriptomes. A prerequisite of this approach,
that limits its application, is the presence (and knowledge) of
somatic copy-number changes. We consider the main utility of
our approach to lie in corroborating or refuting claims of novel
cancer cell types and for investigating the functional con-
sequences of sub-clonal copy-number changes. We found
expression-based copy-number detection tools to produce highly
correlated results, suggesting that the limitations are general to
the approach, not specific to the implementation. Where direct

nucleotide interrogation is not feasible, the expression of marker
genes and detection of average shifts in expression with tools such
as CopyKAT, may still provide a reasonable basis for indirectly
inferring which single cell transcriptomes possess the somatic
cancer genotype. However, our observations caution against
identifying novel cancer cell types through such approaches
alone, without direct interrogation of underlying nucleotide
sequence. Accordingly, our findings suggest that it may be war-
ranted to reappraise recent claims of novel cell types in a variety
of cancers, such as neuroblastoma, that were solely based on
expression-based cancer cell identification.

Methods

Identifying cancer cells using allelic ratio. To identify cancer cell transcriptomes,
we used a bayesian statistical framework®?, implemented in an R package, alle-
leIntegrator. The calling of cancer cell transcriptomes has four steps (Fig. 1a):

1. Call copy-number changes and heterozygous SNPs.

2. Phase heterozygous SNPs within regions with altered copy-number using
tumour DNA.

3. Count reads supporting the major/minor allele in each copy-number
segment/transcriptome.

4. Calculate posterior probability of the cancer and normal genotype.

The precise step-by-step implementation is contained in the provided code and
a detailed description of each step is provided below.

Calling heterozygous SNPs and copy-number changes. We identified copy-number
(CN) states using Battenberg!® applied to whole genome sequencing of tumour
DNA. SNPs were called using bcftools mpileup/call to find sites with reads sup-
porting two alleles and a BAF between 0.2 and 0.8. Sites inconsistent with het-
erozygosity were excluded using a binomial test with 5% FDR!4. Alternatively, CN
states and heterozygous SNP locations can be provided using alternate methods.

Phasing heterozygous SNPs in copy-number region(s). Using alleleCount (https://
github.com/cancerit/alleleCount), we counted reads supporting each allele in
tumour DNA in regions of uneven CN (i.e. where the number of maternal/paternal
copies differ). The reference (or alternate) allele was assigned to the minor allele
when the BAF was greater than (or less than) 0.5. Sites not significantly different
from 0.5 (binomial test, 5% FDR!4) were excluded.

Counting reads by allele in each transcriptome. At each phased SNP, we calculated
the counts supporting the major and minor allele for each transcriptome using
alleleCount in 10X mode (—x flag). These were summed by segment/tran-
scriptome, producing a table of major and minor allele counts for each tran-
scriptome and copy-number segment.

Calculating posterior probability of cancer genotype. We aimed to compare two
possibilities: that the cell contains the cancer genotype or the normal genotype. To
this end, we constructed a model that accounts for the major known error pro-
cesses and properties of transcription: errors can alter the observed allele, tran-
scription occurs in bursts, and transcription can exhibit allelic bias. We used a
negative binomial likelihood, where the overdispersion captures extra variability
due to transcriptional bursts.

We first filter out SNPs that: are imprinted (i.e. only ever express one allele), are
not intronic or exonic, or have zero coverage. This filtering is most accurate when
cells with the normal genotype can be specified (e.g. leucocytes in a solid tissue
tumour). We also exclude genes known to display complex allele-specific
expression (ASE), specifically, HLA and HB genes.

We specify a site-specific error rate of 0.01 for exonic reads and 0.05 for intronic
reads, calibrated by counting non-reference reads at sites homozygous for the
reference.

After filtering, we calculate the posterior probability of allele-specific expression
in normal cells for each gene, using a beta distribution prior with mean 0.5 and
spread set manually or to the best fit value of highly expressed genes (default
genes >400 counts). Where normal cells are not given, both alleles are considered
equally likely.

Next, we calculate the maximum likelihood value of the beta-binomial
overdispersion from normal cells using the error rate and ASE values derived
above. We optionally marginalise this estimate over the ASE posterior distribution,
although we find this step makes no difference to the final estimate. Where normal
calls are not given, the overdispersion is set manually or the best fit is calculated
across all cells. Including non-normal cells increases the overdispersion, making
downstream calls of which cells are cancer-derived more conservative.

The expected allelic ratio at a SNP s is then given by

Jes ))(1 “26) 4 g, W

() = (fps + 1 = H - p
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Fig. 3 alleleintegrator accurately recovers copy-number profile and clonal structure for a wide range of tumour types. a Fraction of cells called
cancerous (red) and non-cancerous (grey), excluding ambiguous cells, by cell type (x-axis) and tumour type (y-axis), called by alleleIntegrator (left) or
CopyKAT (right). b Receiver operating characteristic (ROC) curve for all individuals measuring the sensitivity and specificity with which different methods
(line type) recover the true copy-number profile. The table on the right shows the total area under the curve for each method. ¢ Distribution across all
individuals and regions of allelic ratios (left) or averaged expression values (middle and right) in 5 megabase regions that contain copy-number gains (dark
shading), loss (intermediate shading), or are copy-number neutral (white). d Allelic ratios (y-axis) across the genome (x-axis) from bulk tumour DNA (top
panel), cells assigned to the major clone (middle panel) and minor clone (bottom panel).
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where fis the number of major copies of the segment as a fraction of the total (i.e.
0.5 for diploid, 2/3 for a gain of one copy, 1 for the loss of one copy), p is the ASE
ratio (i.e. 0.5 for no ASE) and ¢ is the site-specific error rate.

Using this ratio, the likelihood of a region R, having a major allele fraction f is
given by,

m, + n Blm, + rO(50)om + (1= n0) (5))
: BN (%), (1 = n(N)(5*))

PR(data[f) = I, p

@

where m and n; are the number of counts at SNP s from the major and minor
allele respectively, ¢ is the previously estimated overdispersion, and B is the
standard beta function. Note that the above is just a beta-binomial likelihood,
which has been re-parameterise in terms of the mean probability of the beta
distribution (r) and the variance of the beta distribution (¢). The sum is taken
across all SNPs that lie within the region R.

To get the total likelihood that each cell is cancer derived, we then take the
product across all regions with copy-number change, setting f equal to the implied
copy-number fraction in each region, a,. That is,

P(data|cancer) = IIzPy(datalf = ap) 3)

where ap = 1 in regions of loss of heterozygosity, a; = 2/3 in regions where 1

copy is gained, etc. By contrast, the likelihood for the cell being normal is given by
setting f = 0.5VR, that is

P(data|normal) = IIpPyp(datalf = 0.5) (4)

Finally, the posterior probability of a cell being cancer is calculated assuming a

flat prior as,

P(data|cancer)
P(data|cancer) + P(data|normal)

P(cancer|data) = (5)
Each cell is then assigned as cancer where P(cancer|data) exceeds 0.99, normal
where it is <0.01, and unassigned otherwise.

Statistics and reproducibility. Statistical analysis was performed as described
elsewhere in the methods. The selection of samples for benchmarking purposes was
chose to represent a coverage of a broad range of different cancer types, with
biological replicates (different cancers of the same type) and technical replicates
(multiple single cell transcriptomics reactions from the same individual) were
generated wherever possible.

Ethics approval. Human tumour tissues were collected through studies approved
by UK NHS research ethics committees. Patients or guardians provided informed
written consent for participation in this study as stipulated by the study protocols.
This study has the reference NHS National Research Ethics Service reference 16/
EE/0394 (paediatric tissues).

10X single cell sequencing of fresh tissue and bulk sequencing of DNA. Fresh
tissues were processed to generate single suspensions for processing on the
Chromium 10X controller (V2/3 3/ chemistry), as previously described®. Libraries
were produced according to the manufacturer’s instructions and sequenced on an
Ilumina HiSeq4000 device. Sequencing of bulk DNA was performed as previously
described?.

Data QC, clustering, and visualisation. We used R (v4.0.4) and Seurat (v.4.0.3)
for these analyses. Cells with <200 genes, <600 UMIs, mitochondrial fraction
exceeding 20% (30% for renal cell carcinoma (RCC) normal tissue), or Scrublet!®
doublet score >0.5 were excluded. High resolution clusters (resolution = 10) with
>50% cells failing QC were also excluded.

Data were log normalised and scaled, and principal components were calculated
using highly variable genes using the standard Seurat workflow. Louvain clustering
was performed with resolution 1 and a uniform manifold approximation and
projection (UMAP) calculated, with the number of principal components used for
each dataset as follows: 25 for RCC, 30 for Ewing’s sarcoma, 40 for Wilms tumour,
50 for atypical teratoid rhabdoid tumour (AT/RT), and 55 for neuroblastoma (NB).
Finally, cells from RCC and NB datasets were labelled using the published
annotation; and leucocytes, endothelium, mesenchyme (in NB only), proximal
tubular cells (in RCC only), and tumour cells were retained. Annotation of Wilms
tumour, Ewing’s sarcoma and AT/RT datasets was performed based on expression
of known genetic markers, curated from literature, for different cell types, including
tumour populations.

Coverage of point mutations and heterozygous SNPs. For all samples, het-
erozygous SNPs were identified (as described above) and point mutations were
called against the GRCh37d5 reference as previously described®?. Coordinates were
lifted over to GRCh38 and counts covering point mutations and SNPs were cal-
culated for each transcriptome using allele counter.

Calling copy-number aberrations. Clonal and sub-clonal copy-number profiles

were determined using Battenberg!? (v2.2.5). Segments shorter than 1 Mb or 10%
of the chromosome were removed as likely artifacts. Chromosomes were set to the
same state where >90% had a particular change and gaps filled where consecutive
segments had the same copy-number state and were <1 Mb apart. Sub-clonal copy-
number segments were defined as those with a second copy-number state detected
in a smaller fraction of tumour cells (=10% but <50%) and are longer than 20 Mb.

Evaluating accuracy of transcriptome classification. inferCNV! (1.6.0) and
CopyKAT? (v1.0.4) were run with default parameters per-sample using cellranger
filtered counts and 100% of leucocytes specified as normal. Both methods generate
expression profiles on a log scale for informative cells within each sample. In
addition, CopyKAT also classified these cells as being diploid, aneuploid, or
uncalled. For each sample, expression ratio per 5 Mb window was averaged by cell
type. A range of thresholds were used to quantify copy-number call accuracy and
construct a receiver operating characteristic (ROC) curve. To assess the correlation
between average expression ratios calculated by CopyKAT and inferCNV, a
Pearson correlation coefficient was calculated using R.

To visualise the allelic ratio in each sample, allele-specific counts were
aggregated by cell type into bins chosen such that each bin contained at least 500
counts.

Analysis of PD46693 subclones. Cells with posterior probability >0.99 of loss of
heterozygosity of chromosome 4 in PD46693 were assigned to the subclone, those
with posterior probability <0.01 were assigned to the major clone, and all others
were called ambiguous.

Differential gene expression was performed using negative binomial regression
in DESeq2!®, treating cells in the major/minor clone as replicates and removing
genes with <10 reads. We separately tested all genes and just transcription factors
for significance, using a multiple hypothesis corrected* p value cut-off of 0.01.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

‘WGS-derived clonal and sub-clonal copy-number profile for individual samples,
identified by Battenberg!?, can be found in Supplementary Data 1. Previously published
data was obtained for renal cell carcinoma®, neuroblastoma®, and Wilms tumour!0.
Newly generated data for atypical teratoid rhabdoid tumour (AT/RT) and Ewing’s
sarcoma has been deposited in the EGA under accession code EGAD00001009005.

Numerical source data underlying figures can be found in Supplementary Data 2.

Code availability

The R package, alleleIntegrator, is available at https://github.com/constantAmateur/
alleleIntegrator. All code used to reproduce the analysis and figures described in this
paper is available at https://github.com/mitrinh1/scGenotyping. The exact versions of
both the R package and analysis code used for this paper are also available from
zenodo!718,
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