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SUMMARY

Missing values in covariates of regression models are a pervasive problem in empirical research. Popular
approaches for analyzing partially observed datasets include complete case analysis (CCA), multiple impu-
tation (MI), and inverse probability weighting (IPW). In the case of missing covariate values, these methods
(as typically implemented) are valid under different missingness assumptions. In particular, CCA is valid
under missing not at random (MNAR) mechanisms in which missingness in a covariate depends on the
value of that covariate, but is conditionally independent of outcome. In this paper, we argue that in some
settings such an assumption is more plausible than the missing at random assumption underpinning most
implementations of MI and IPW. When the former assumption holds, although CCA gives consistent esti-
mates, it does not make use of all observed information. We therefore propose an augmented CCA approach
which makes the same conditional independence assumption for missingness as CCA, but which improves
efficiency through specification of an additional model for the probability of missingness, given the fully
observed variables. The new method is evaluated using simulations and illustrated through application
to data on reported alcohol consumption and blood pressure from the US National Health and Nutrition
Examination Survey, in which data are likely MNAR independent of outcome.
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1. INTRODUCTION

Missing data in covariates of regression models are a common problem in epidemiological and clinical
studies. Three commonly applied approaches for analyzing datasets with missing covariates are complete
case analysis (CCA), multiple imputation (MI), and inverse probability weighting (IPW). As typically
implemented, each make different assumptions about various aspects of either the data or the mechanism
causing missingness.

CCA has the advantage of being simple to apply, and is usually the default method in statistical pack-
ages. It is well known that CCA gives valid inferences when data are missing completely at random. Perhaps
less widely appreciated is the fact that CCA gives valid inferences provided that the probability of being a
complete case is independent of the outcome in the model of interest, conditional on the model’s covariates
(Little and Rubin, 2002). In particular, CCA is valid under missing not at random (MNAR) mechanisms in
which missingness in a covariate is dependent on the value of that covariate, but is conditionally indepen-
dent of outcome (White and Carlin, 2010). However, even when this assumption holds, it does not make
full use of the observed information, since observed data from the incomplete cases are discarded.

MI involves creating multiple imputed values for each missing value, creating a number of imputed
datasets. Each imputed dataset is analyzed separately, and their estimates combined using rules developed
by Rubin (1987). If data are missing at random (MAR) and the imputation model is correctly specified,
MI gives valid inferences, and is generally more efficient than CCA since it uses the observed data from
incomplete cases and potentially also from auxiliary variables which are not involved in the model of
interest. This had led to MI being widely advocated and used in applications (Sterne and others, 2009).

IPW is also typically implemented assuming MAR. IPW avoids the necessity to model the distribu-
tion of the partially observed variables, and instead relies on a model for the missingness mechanism
(Seaman and White, 2011). However, IPW is difficult to implement with non-monotone missingness, and
is usually less efficient than MI. In recent years, doubly robust MAR estimators have been proposed which
attempt to improve upon the efficiency of IPW, and which also give additional robustness to model mis-
specification (Carpenter and others, 2006; Tsiatis, 2006).

In this article, we argue that in some settings an MNAR missingness mechanism under which CCA is
valid is more plausible than an MAR mechanism which is required for validity of a conventional MI or
IPW analysis. In such settings, it may therefore be preferable from the perspective of bias to use CCA.
However, as previously noted, CCA is inefficient because it fails to draw on the information available
in those subjects with some data missing. To address this, we develop an augmented CCA estimation
method which can improve upon the efficiency of CCA, through specification of an additional model for
the probability of missingness given the fully observed variables.

In Section 2, we argue why the CCA assumption may in some settings be more plausible than MAR,
and propose an estimation method which makes this assumption but which draws on the information
available from incomplete cases. We explore the performance of the proposed method in simulations
in Section 3. In Section 4, we illustrate the method using alcohol and blood pressure data from the US
National Health and Nutrition Examination Survey (NHANES), and give some concluding comments in
Section 5.

2. IMPROVING UPON THE EFFICIENCY OF CCA

Consider a study where an outcome Y and covariates X and Z are intended to be collected for a random
sample of independent subjects. Either of X and Z (or both) may be vector valued. We assume throughout
that the following conditional mean model holds:

E(Y |X, Z) = g(X, Z;β), (2.1)
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where the function g(X, Z;β) is a known smooth function of β, a finite-dimensional parameter to be
estimated, with true value β∗. Conditional mean models include familiar models such as linear and logistic
regression.

2.1 Missingness assumptions

We assume that Y and Z are fully observed, while the covariate X is partially observed. In the case where
X is vector valued, we assume that for a given subject either all elements of X are observed or all elements
are missing (see Section 5 for discussion on extensions to more complex missingness patterns). We let R
denote whether X is observed (R = 1) or missing (R = 0). Within this setup, the MAR assumption, upon
which most MI and IPW methods rely, is that R ⊥⊥ X |Y, Z . In contrast, CCA provides consistent parameter
estimates and valid inferences if missingness is independent of outcome conditional on covariates, i.e.
R ⊥⊥ Y |X, Z . This condition encompasses both certain MAR mechanisms, whereby R depends on the
fully observed covariates Z , but given this is independent of X and Y , and certain MNAR mechanisms,
whereby R depends on X (and possibly Z ), but given this, is independent of Y . Unfortunately, as discussed
by White and Carlin (2010), it is usually impossible to distinguish on the basis of the observed data which,
if either, missingness assumption is appropriate. In Appendix A of supplementary material available at
Biostatistics online, we show that there exist exceptions whereby the assumption that R ⊥⊥ Y |X, Z may be
testable on the basis of the observed data. However, generally our contextual knowledge must guide us as
to which, if either, is plausible.

For some questions (and variables), it may be deemed likely from contextual knowledge and experience
that propensity to respond to the question is at least partly determined by the value of that variable, such
that missingness is not at random. Examples include surveys in which participants are asked about their
income, with those with low or high income generally considered less likely to respond (Little and Zhang,
2011). In Section 4, we consider data on alcohol consumption and blood pressure from NHANES, in
which we argue missingness in alcohol consumption is likely to depend largely on alcohol consumption
itself, and given consumption (and other covariates), be independent of blood pressure level. As we
describe in further detail in Appendix B of supplementary material available at Biostatistics online, in
other settings the assumption that R ⊥⊥ Y |X, Z may be plausible if the covariate X is measured much
earlier in time than the outcome Y . Thus, sometimes the assumption that R ⊥⊥ Y |X, Z may be plausible,
while the MAR assumption that R ⊥⊥ X |Y, Z will not be.

2.2 Estimation with full data

Before considering estimation with partially observed X , we first consider estimation in the absence
of missing data. Let (Xi , Zi , Yi , Ri ), i = 1, . . . , n denote an i.i.d. sample of n subjects. All regular and
asymptotically linear estimators of the parameter β indexing the conditional mean model of interest
(equation (2.1)) can be expressed (up to asymptotic equivalence) as the solution β̂ to an estimating equation
of the form

n∑
i=1

d(Xi , Zi )εi (β̂) = 0, (2.2)

where d(X, Z) is a vector-valued function of (X, Z) with dimension that of β, and ε(β) = Y − g(X, Z;β)

(Rotnitzky and Robins, 1997). That estimating β by solving such an estimating equation results in a con-
sistent estimator follows from the fact that the expectation of the estimating function d(X, Z)ε(β) is zero
when evaluated at the true value β∗. The efficiency of the estimator depends on the choice of the function
d(X, Z), with the optimal choice being given by d(X, Z) = (∂g(X, Z;β∗)/∂β)Var(Y |X, Z)−1.
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2.3 Estimation with partially observed X

Now suppose that X is partially observed, with R ⊥⊥ Y |X, Z . As described previously, under this assump-
tion CCA gives valid inferences, but fails to draw on the observed information in the incomplete cases.
In Appendix C of supplementary material available at Biostatistics online, we show that if a fully para-
metric model f (Y |X, Z , β) is assumed (rather than the conditional mean model of (2.1)), without making
further assumptions all regular and asymptotically linear estimators of β only use information from the
complete cases. It follows that we must make additional assumptions in order to extract information from
the incomplete cases.

One route to gaining efficiency over CCA is to take a fully parametric approach, which involves spec-
ifying parametric models for P(R|X, Z), for f (Y |X, Z), and for f (X |Z), or a semi-parametric approach
as in Rotnitzky and Robins (1997), based only (in additional to the conditional mean model of interest)
on a parametric model for P(R|X, Z). These are somewhat unappealing because the validity of result-
ing inferences will depend on the correct specification of these models. In particular, since a model for
P(R|X, Z) cannot be directly estimated using the observed data (whenever R = 0, X is missing), ensuring
that this model is correctly specified would be difficult.

Instead, we consider estimation of β given specification of a model P(R|Y, Z;α), indexed by parameter
α, for P(R|Y, Z). Note that, under our assumptions, this is not a model for the underlying missingness
mechanism P(R|X, Z). However, since the model P(R|Y, Z;α) only involves fully observed variables
(unlike a model for the underlying missingness mechanism), estimation of α is standard, e.g. by maximum
likelihood (ML). Specifically, we assume that the following logistic model holds:

P(R = 1|Y, Z;α) = π(Y, Z;α) = expit(h(Y, Z;α)), (2.3)

where h(Y, Z;α) is a known function, linear in α, and α is a finite-dimensional parameter with true
value α∗.

Suppose for the moment that the true value of α, α∗ is known. Letting Oi = (Yi , Zi , Ri , Ri Xi )
T denote

the data observed from subject i , it is then easily verified that the (infeasible) estimator β̂INF which solves
the estimating equation

n∑
i=1

m(Oi , α
∗, β̂INF) = 0, (2.4)

where

m(O, α, β) = Rd(X, Z)ε(β) + {R − π(Y, Z;α)}φ(Y, Z , β), (2.5)

and where d(X, Z) and φ(Y, Z , β) are arbitrary functions with dimension the same as β, is consistent and
asymptotically normal. The first part is identical to the CCA estimating function, which has mean zero
(at β∗) when R ⊥⊥ Y |X, Z . The second part, to which both subjects with X observed and those with X
missing contribute, has mean zero provided that the model for P(R|Y, Z) is correctly specified, since then
E(R − π(Y, Z;α∗)|Y, Z) = 0.

In practice, α must be estimated. We assume that α is estimated by its MLE, which is the value α̂ solving
the likelihood score equations

n∑
i=1

{Ri − π(Yi , Zi ; α̂)}hα(Yi , Zi ) = 0,
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with hα(Y, Z) = (∂/∂α)h(Y, Z;α). The parameter β of interest can then be estimated by solving the
estimating equation (2.4), replacing the unknown α∗ by its MLE α̂, i.e. by solving

n∑
i=1

m(Oi , α̂, β̂ACC) = 0. (2.6)

In Appendix D.1 of supplementary material available at Biostatistics online, we show that under suitable
regularity conditions, this augmented complete case (ACC) estimator β̂ACC is consistent and asymptotically
normal, with influence function

− G−1
β [Rd(X, Z)ε(β∗) + {R − π(Y, Z;α∗)}φ̃(Y, Z , α∗, β∗)], (2.7)

where

Gβ = E

{
∂

∂βT
Rd(X, Z)ε(β∗)

}
(2.8)

and

φ̃(y, z, α, β) = φ(y, z, β) − E[π(Y, Z;α){1 − π(Y, Z;α)}φ(Y, Z , β)hT
α (Y, Z)]

× {E[π(Y, Z;α){1 − π(Y, Z;α)}hα(Y, Z)hT
α (Y, Z)]}−1hα(y, z). (2.9)

The asymptotic variance of β̂ACC is equal to n−1 times the variance of the influence function (as given
by (2.7)), and this can be estimated using (2.8) and (2.9), replacing expectations and variances by their
empirical counterparts, and α∗ and β∗ by their corresponding sample estimates.

The choices of the functions d(X, Z) and φ(Y, Z , β) affect the efficiency of β̂ACC. For simplicity, we
consider how to choose φ(Y, Z , β) in order to minimize the variance of β̂ACC for a given choice of d(X, Z)

(e.g. the choice we would use with full data). In Appendix D.2 of supplementary material available at
Biostatistics online, we show that the optimal function φopt(Y, Z , β) is given by

φopt(Y, Z , β) = −E[d(X, Z)ε(β)|Y, Z , R = 1], (2.10)

which in particular improves upon the efficiency of CCA, which is obtained by choosing φ(Y, Z , β) = 0.
We let β̂ACC-TRUE denote the estimator which uses φ(Y, Z , β) = φopt(Y, Z , β).

2.4 Implementation

The optimal choice φopt(Y, Z , β) depends on aspects of the data generating mechanism about which we
have not made assumptions. We consider two approaches for estimating φopt(Y, Z , β).

The first is to posit a parametric working model f (X |R = 1, Y, Z; η) and calculate the expectations
required in φopt(Y, Z , β). We denote the resulting estimator by β̂ACC-WM. Note that while mis-specification
of this working model will affect the efficiency of the estimator, it will not affect its consistency. This also
means that, by Newey and McFadden (1994, Theorem 6.2), estimation of η can be ignored when cal-
culating variance estimates, and that the estimator in which η is estimated will have the same asymptotic
efficiency as the estimator which uses the probability limit value η∗. If the working model is correctly spec-
ified, β̂ACC-WM will thus have the same efficiency as β̂ACC-TRUE. In our simulations and illustrative exam-
ple, we estimate η by ML in the complete cases and calculate the expectations involved in φopt(Y, Z , β)

by Monte-Carlo integration. This involves generating m improper imputations from the implied distribu-
tion f (X |R = 1, Y, Z; η̂) for each subject, and approximating the required expectations by their empirical
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means based on these imputations. Inferences may be anti-conservative if a small value of m is used,
although we did not find this to be the case in simulations (see Section 3).

If the posited working model f (X |R = 1, Y, Z; η) is mis-specified, there is no guarantee that β̂ACC-WM

will improve upon the efficiency of CCA. In Appendix D.3 of supplementary material available at Bio-
statistics online, we give details of a modified estimator β̂ACC2 which, for a given choice of φ(Y, Z , β) (or
working model used to estimate φopt(Y, Z , β)), ensures that estimates are at least as efficient as CCA. We
denote the corresponding estimator which uses a parametric working model to estimate φopt(Y, Z , β) by
β̂ACC2-WM.

The second approach we consider is non-parametric estimation of φopt(Y, Z , β) using kernel regression.
Following similar approaches used in the MAR context (Qi and others, 2005), we estimate φopt(Y, Z , β)

using the Nadaraya–Watson estimator. Letting K denote a kernel function, this is given by

φ̂opt(Y, Z , β) =
∑n

i=1 Ri Kh((Y, Z) − (Yi , Zi )){−d(Xi , Zi )εi (β)}∑n
i=1 Ri Kh((Y, Z) − (Yi , Zi ))

,

where Kh(·) = K (·/h) and h denotes a vector of bandwidths. To avoid having to calculate φ̂opt(Y, Z , β)

repeatedly when solving the estimating equations, one can instead use φ̂opt(Y, Z , β̂CCA), where β̂CCA

denotes the CCA estimator. In Appendix E of supplementary material available at Biostatistics online,
we show that under suitable regularity conditions, the resulting estimator, denoted by β̂ACC-NP, has the
same asymptotic distribution as β̂ACC-TRUE. This means in particular that, as in the case of a parametric
working model, kernel estimation of φopt(Y, Z , β) can be ignored for the purposes of variance estimation.
Letting r denote the number of continuous components in (Y, Z), the bandwidth conditions of Appendix
E of supplementary material available at Biostatistics online can be satisfied by choosing h to be of order
n−1/p, for some integer p with p > r + 4 and p > 2r .

In the special case of a linear conditional mean model, φopt(Y, Z , β) depends only on E(X |Y, Z , R = 1)

and E(X2|Y, Z , R = 1), and so in the simulation study and illustrative analysis we also implement
an estimator β̂ACC-NP2 in which φopt(Y, Z , β) is estimated using the Nadaraya–Watson estimates of
E(X |Y, Z , R = 1) and E(X2|Y, Z , R = 1).

3. SIMULATIONS

In this section, we present simulation results to examine the performance of the proposed estimator for a
linear conditional mean model, and compare it to CCA, MI (assuming MAR), and an IPW CCA (assum-
ing MAR) estimator. The simulation setup is described in detail in Appendix F of supplementary material
available at Biostatistics online. In brief, for 1000 datasets of size n = 1000, the observation indicator
R was simulated with P(R = 1) = 0.5 and covariates (Y, X, Z) were then generated from a trivariate nor-
mal distribution conditional on R, such that R ⊥⊥ Y |X, Z . The setup meant that R|Y, X, Z was a logistic
regression with X and Z as covariates and that R|Y, Z was a logistic regression with Y and Z as linear
covariates. The conditional mean model of interest was

Y |X, Z ∼ N (β0 + βX X + βZ Z , σ 2
ε ),

with β0 = 0, βX = βZ = 0.2, and the coefficient of determination ≈ 0.1. We present results for the follow-
ing estimators:

1. CCA;
2. MI, assuming MAR: estimates based on 10 (proper) MIs of X , assuming a normal linear regression

imputation model for X |Y, Z;
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Table 1. Mean (SD) of estimates over 1000 simulations

Estimator β0 = 0 βX = 1 βZ = 1

CCA −0.003 (0.062) 0.200 (0.044) 0.199 (0.044)
MI −0.099 (0.052) 0.202 (0.044) 0.200 (0.034)
IPW −0.100 (0.054) 0.202 (0.045) 0.198 (0.044)
β̂ACC-TRUE −0.003 (0.061) 0.200 (0.043) 0.200 (0.034)
β̂ACC-WM1 −0.003 (0.062) 0.201 (0.045) 0.200 (0.034)
β̂ACC2-WM1 −0.001 (0.062) 0.200 (0.044) 0.200 (0.034)
β̂ACC-WM2 −0.001 (0.064) 0.198 (0.047) 0.201 (0.034)
β̂ACC2-WM2 −0.001 (0.062) 0.199 (0.044) 0.200 (0.034)
β̂ACC-NP −0.006 (0.064) 0.202 (0.047) 0.195 (0.058)
β̂ACC-NP2 −0.001 (0.061) 0.199 (0.043) 0.201 (0.034)

Estimates from CCA, MI assuming MAR, IPW CCA assuming MAR, and ACC analysis for various choices
of φ(Y, Z , β) (see text for details).

3. IPW MAR: the standard IPW CCA estimator assuming MAR, using weights found from a logistic
regression model with Y and Z included as linear covariates;

4. ACC estimator, assuming a logistic regression model for R|Y, Z :

(a) β̂ACC-TRUE using the true φopt(Y, Z , β);
(b) β̂ACC-WM1 with φopt(Y, Z , β) estimated using Monte-Carlo integration (10 imputations) based

on a parametric working model (normal linear regression for X |Y, Z , R = 1, with Y and Z as
covariates);

(c) β̂ACC2-WM1, using the working model of β̂ACC-WM1;
(d) β̂ACC-WM2 with φopt(Y, Z , β) estimated using Monte-Carlo integration but with a mis-

specified working model (normal linear regression with Y 2 and Z2 as covariates);
(e) β̂ACC2-WM2 using the working model of β̂ACC-WM2;
(f) β̂ACC-NP and β̂ACC-NP2, using a normal kernel, assuming independence, and with h j = σ̂ j n

−1/7
CC

where σ̂ j denotes the sample standard deviation of the j th conditioning variable in the subset
where R = 1 and nCC denotes the number of complete cases.

Table 1 shows the simulation results, based on 1000 simulations for each scenario. CCA was unbiased
for all scenarios, as expected. Both MI and IPW assuming MAR were biased for β0, but had little bias for βX

and βZ . These findings are consistent with the analytical results of Appendix G of supplementary material
available at Biostatistics online, where we derive analytical expressions for the bias of MI assuming MAR
for a simpler parametric linear regression model setting without Z .

The ACC estimator was unbiased for all choices of φ(Y, Z , β), as expected from the asymptotic theory.
Using the true optimal φopt(Y, Z , β) (β̂ACC-TRUE) resulted in efficiency gain for βZ compared to CCA,
but estimates of β0 and βX had similar efficiency to CCA. Using a correctly specified working model
(β̂ACC-WM1) resulted in identical efficiency to β̂ACC-TRUE, in agreement with the asymptotic theory, which
states that in our setting there is no cost (asymptotically) to estimating the working model parameters.
Since the working model was correct here, as expected the estimator β̂ACC2-WM1 had identical efficiency
to β̂ACC-WM1.

Using a mis-specified working model (β̂ACC-WM2) led to estimates of β0 and βX which were less effi-
cient than CCA, although as predicted from theory estimates remained unbiased. With this mis-specified
working model, as predicted, use of β̂ACC2 ensured that efficiency was at least as good as CCA (in fact
β̂ACC2-WM2 had the same efficiency as the optimal estimator).
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Table 2. Coverage of 95% confidence intervals for ACC
analyses, from 1000 simulations

Estimator β0 βX βZ

β̂ACC-TRUE 94.2 94.8 94.9
β̂ACC-WM1 94.2 93.5 94.8
β̂ACC2-WM1 93.9 94.1 93.8
β̂ACC-WM2 93.4 95.7 95.1
β̂ACC2-WM2 94.0 94.5 94.8
β̂ACC-NP 95.3 95.4 95.2
β̂ACC-NP2 93.5 93.0 94.6

The non-parametric estimator β̂ACC-NP was less efficient, with estimates in fact more variable than
CCA. However, the estimator β̂ACC-NP2, which estimated φopt(Y, Z , β) using non-parametric estimates of
E(X |Y, Z , R = 1) and E(X2|Y, Z , R = 1), attained the same efficiency as β̂ACC-TRUE.

Table 2 shows the empirical coverage of the nominal 95% confidence intervals for the various ACC
estimators, found using the sandwich estimator described in Section 2.3. Coverage was close to the nominal
95% level for all choices of φ(Y, Z , β).

4. APPLICATION TO NHANES

To illustrate the proposed method, we consider data on alcohol consumption and systolic blood pressure
(SBP) from the 2003–2004 NHANES. We focus on the dependence of SBP on the reported average num-
ber of alcoholic drinks consumed per day on days where the participant drank alcohol (obtained via a
questionnaire) (“no. drinks”), with adjustment for age and body mass index (BMI). Data are available for
n = 2418 men, for whom 278 are missing SBP and 181 are missing BMI. As argued by Little and Zhang
(2011), it is plausible that missingness in SBP and BMI is completely at random due to missed visits, and
therefore excluding these participants ought not to introduce bias. Amongst the remaining 2111 partici-
pants, 720 (34.1%) have the alcohol variable missing. It is a priori plausible that missingness in the alcohol
variable is primarily dependent on the value of the alcohol variable (i.e. MNAR), and given this, and age
and BMI, is independent of SBP. Consequently, CCA is expected to give valid inferences, while the MAR
assumption likely does not hold.

A logistic regression model was fitted relating whether the alcohol variable was observed, with age,
BMI, and SBP (linear and quadratic terms) as covariates (Table 3). There was strong evidence that age was
associated with missingness, with increasing age associated with reduced odds of responding. Increas-
ing BMI was independently associated with reduced odds of responding to the alcohol question. Lastly,
there was evidence (joint test p = 0.028) that SBP was independently associated with the probability of
missingness, with reduced odds of responding to the question for those with low or high SBP, relative to
those with average SBP. Assuming that increasing levels of reported alcohol assumption is independently
associated with increased SBP (see CCA results below), this finding is consistent with the probability that
the alcohol variable is missing being elevated for those with either low or high alcohol consumption.

We fitted a linear regression model (using ordinary least squares and sandwich standard errors to allow
for non-constant variance) for SBP with age (linear and quadratic effects), BMI, and log(no. drinks + 1)

as covariates. The number of alcoholic drinks variable was entered using a (natural) log transformation so
that the few participants with very large values did not have undue influence on parameter estimates and
because preliminary analyses suggested a multiplicative effect of number of drinks fitted the data better.
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Table 3. Estimated adjusted odds ratios (95% CIs) relating response to the
alcohol question to age, BMI and SBP in NHANES

Variable Odds ratio (95% CI) p-value

Age (decades above 50) 0.763 (0.723, 0.805) <0.001
BMI (kg/m2) 0.978 (0.961, 0.996) 0.019
SBP (per 10 mmHg above 125) 1.08 (1.01, 1.16) 0.020
SBP2 (per 10 mmHg above 125)2 0.979 (0.963, 0.996) 0.015

Table 4. Estimates of conditional mean model parameters relating SBP (mmHg) (centered
at 125 mmHg) to age, BMI, and reported average number of alcoholic drinks consumed per day

in NHANES

Variable

Age (decades Age2 (decades
Estimator Constant No. of drinks† BMI (kg/m2) above 50) above 50)2

CCA −1.93 (0.80) 1.27 (0.58) 0.41 (0.080) 3.94 (0.26) 0.26 (0.14)
MI −2.36 (0.81) 1.51 (0.65) 0.32 (0.070) 3.88 (0.21) 0.30 (0.12)
IPW −2.07 (0.85) 1.50 (0.67) 0.36 (0.092) 3.95 (0.24) 0.21 (0.16)
β̂ACC-WM −2.21 (0.76) 1.40 (0.59) 0.39 (0.066) 3.90 (0.24) 0.32 (0.11)
β̂ACC2-WM −2.02 (0.75) 1.21 (0.58) 0.39 (0.065) 3.88 (0.24) 0.31 (0.11)
β̂ACC-NP −1.90 (0.94) 1.37 (0.67) 0.43 (0.107) 3.97 (0.31) 0.22 (0.21)
β̂ACC-NP2 −2.03 (0.72) 1.20 (0.53) 0.39 (0.066) 3.87 (0.23) 0.32 (0.11)

Estimates from CCA, MI assuming MAR, IPW CCA assuming MAR, and ACC analysis using four different choices for
φ(Y, Z , β) (see text for details).
†loge(average no. drinks per day + 1).

Table 4 shows the CCA estimates, which assuming missingness in the alcohol variable is independent of
SBP, conditional on age, BMI, and reported average number of alcoholic drinks per day, are unbiased. There
was strong evidence that, as expected, increasing age is associated with increased SBP, with some sugges-
tion of a non-linear effect. Increasing BMI was associated with increasing SBP, and there was evidence
that increasing reported alcohol consumption is associated with increasing SBP.

Next we estimated the conditional mean model parameters assuming missingness in the alcohol variable
was MAR, first using MI. The alcohol variable on its original scale was imputed 200 times using a negative
binomial regression model with covariates age (linear and quadratic), BMI (linear and quadratic), and
SBP (linear and quadratic). Standard errors were obtained using Rubin’s rules, but using the sandwich
estimator of variance when estimating within-imputation variances. Consistency of MI here relies on the
MAR assumption holding and the imputation model being correctly specified. The resulting estimates
were fairly similar to CCA, although the coefficient of BMI was somewhat lower, the coefficient of the
alcohol variable was somewhat higher, and the estimated constant was lower than that from CCA. Standard
errors were smaller than those from CCA for the effects of BMI and age.

Since consistency of MI relies on the imputation model being correctly specified, we also used complete
case IPW, with weights calculated using the previously described logistic regression model. Sandwich
standard errors were found by stacking the estimating equation used to estimate the parameters of this
logistic regression with the IPW complete case estimating equations. The estimated linear age effect was
similar to that from CCA, but the estimated quadratic effect was smaller. The estimated coefficient of BMI
was slightly smaller than from CCA, and the estimated constant was closer to that from CCA than the MI
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estimate. The estimated coefficient of the alcohol variable was almost identical to the MI estimate. As is
typical, the (sandwich) standard errors for IPW CCA were larger than those for CCA (except for the linear
age coefficient).

Lastly, we used the proposed ACC estimator, using the logistic model shown in Table 3 for P(R =
1|Y, Z). We first used β̂ACC-WM, with the parametric working model identical to that used to impute the
alcohol variable in MI (i.e. negative binomial regression imputation). This gave estimates with smaller
standard errors than CCA, and also lower than MI. The estimated constant and effect of alcohol were both
in between the corresponding CCA and MI estimates. The estimated BMI effect was close to that from
CCA, and the estimated age effects were similar to those from CCA. Using β̂ACC2-WM led to an estimated
constant closer to that from CCA and an estimated effect of alcohol which was smaller than from CCA.
Standard errors were very slightly smaller than from β̂ACC-WM. The non-parametric estimator β̂ACC-NP gave
estimates with much larger standard errors, whereas β̂ACC-NP2 gave estimates with standard errors smaller
than those from β̂ACC2-WM.

Overall inferences from the methods were fairly similar. Nevertheless, standard errors were smallest
from the proposed ACC estimator(s), and in particular were smaller than CCA for the effects of the fully
observed covariates. There is the suggestion that the estimated effect of the alcohol variable was larger
when assuming MAR compared with assuming missingness conditionally independent of outcome. Unlike
in the simulations, there was no apparent substantial bias in the estimated constant from the methods which
assumed MAR.

5. DISCUSSION

In some settings, contextual knowledge will suggest that missingness in a covariate, such as income, is
driven primarily by the value of the covariate itself, such that data are MNAR. In prospective studies, miss-
ingness in covariates measured at study entry may often plausibly be affected by the covariates themselves
(and hence again MNAR), and given these, be independent of the (future) outcome. In these settings,
an analysis based on the MAR assumption, such as most implementations of MI and IPW, will lead to
asymptotically biased estimates and invalid inferences. For a linear conditional mean model, the analytical
results of Appendix G of supplementary material available at Biostatistics online and simulation analyses
suggest that the biases may be moderately large for the intercept parameter, but are sometimes modest for
the parameters corresponding to covariate effects. However, there likely exist MNAR scenarios in which
CCA is unbiased but MAR estimators of covariate effects are biased to a larger extent.

In contrast, if missingness is conditionally independent of outcome, which includes a particular class
of MNAR mechanisms, CCA is unbiased but does not make use of all of the observed information. Our
proposed augmented CCA estimator improves upon the efficiency of CCA, by relying on a parametric
model for how missingness is associated with fully observed covariates and outcome. While one may
argue whether it is appropriate to increase precision by relying on additional models, we note that this
is also the case for other missing data methods. Furthermore, standard model selection techniques can
be used since this model only involves fully observed variables. Given the assumption that missingness
is independent of outcome given covariates, CCA and our proposed augmented CCA estimator are both
consistent, provided the missingness model used in the latter is correctly specified.

Consistent with the findings of others (e.g. White and Carlin, 2010), in both our simulations and data
analysis, while efficiency gain is possible for the coefficients of fully observed covariates, neither MI nor
ACC gave improved efficiency for the covariate which was partially observed. This emphasizes the point
that, in the absence of auxiliary variables or external information, the gain in efficiency (for both MI and
ACC) is achieved through utilizing the observed information in incomplete cases. This implies that in
studies where missingness only occurs in the exposure of interest, there is little efficiency to be gained for
the exposure effect through using an estimation method which utilizes the incomplete cases.
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For the proposed estimator, we have considered estimating the optimal augmentation function
φ(Y, Z , β) either using a parametric working model or non-parametric kernel regression methods. For
the latter, we found that direct non-parametric estimation of the optimal augmentation function lead to
estimates with high variability, and in fact efficiency worse than CCA. In contrast, non-parametric estima-
tion of the first two moments of the partially observed covariate, which is sufficient in the case of a linear
conditional mean model, gave estimates with efficiency essentially identical to that obtained using the true
optimal augmentation function. Further work is thus warranted regarding how to best non-parametrically
estimate the optimal augmentation function directly for conditional mean models which are not linear.

The data analyst who adopts the assumption R ⊥⊥ Y |X, Z should be aware of the fact that the observed
data may sometimes carry evidence to refute it (see Appendix A of supplementary material available at
Biostatistics online). This can be a concern in settings where the outcome is continuous, but the covariates
are discrete with few levels (see, e.g. Vansteelandt, 2009 for an example where failure to study the testabil-
ity of missing data assumptions lead to a severely biased analysis); however, we tend not to worry about it
in more realistic settings where the power to refute the assumption will typically be very low. Further, the
data analyst should consider whether their postulated model for R|Y, Z is compatible with the restrictions
imposed by the missing data assumption R ⊥⊥ Y |X, Z together with the conditional mean model; careful
checking of the missingness model is therefore recommended.

Throughout, we have restricted our development to the case of a single partially observed covariate
or vector of covariates. However, we believe the approach may be extendable to more general patterns of
missingness, including non-monotone patterns, and describe how this could be done for the case of two
partially observed variables in Appendix H of supplementary material available at Biostatistics online.
An advantage of such an approach would be that the missingness assumption R ⊥⊥ Y |X, Z , where R is
a vector of missingness indicators, is easier to interpret than MAR when missingness is non-monotone
(Robins and Gill, 1997).

Lastly, we note that in the case of data MAR, so-called doubly robust estimators are available, which
remain consistent so long as either the model for missingness or the imputation type model is correct
(Tsiatis, 2006). The ACC estimator developed here does not possess such a doubly robust property, and it
is indeed unclear whether such estimators exist under the assumptions considered here.

6. SOFTWARE

A Stata program implementing β̂ACC2-WM for conditional linear mean models is available for free down-
load by typing “net from http://missingdata.lshtm.ac.uk/stata” into Stata’s command window and selecting
“augcca”.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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