
PRIMER

Combined methods reveal task activation

dynamics in human brain networks
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A clear understanding of how human brain networks reflect task per-
formance has been lacking, in part due to methodological difficulties.
A new study combines the temporal resolution of EEG, MRI source
localization, and multivariate modeling to address this need.

Complex cognitive functions are carried out by the activity of billions of neurons organized

into large-scale networks in the human brain. It is a primary aim of modern neuroscience to

understand how cognitive information is represented in this system. In recent years, research-

ers have made some progress towards this goal. Using functional magnetic resonance imaging

(fMRI), researchers have been able to track task information distributed across widespread

brain regions [1,2]. In a recent paper in PLOS Biology, Mill and colleagues [3] expand on this

work by merging modalities and models, providing a dynamic picture of how task representa-

tions in brain networks evolve across a trial.

A comprehensive picture of task representations and how they relate to human brain net-

works over time has historically been difficult due to key limitations in noninvasive imaging

methods. fMRI provides relatively good spatial resolution and coverage, allowing for the delin-

eation of networks at millimeter scale across the whole brain, but it is too slow to capture high-

frequency activity. Electroencephalography (EEG) is fast, measuring electrical neural signals at

the rate of milliseconds, but it is difficult to localize EEG signals to specific brain regions.

Because animal literature from invasive intracranial recordings suggests that task information

is encoded at fine temporal and spatial scales [4], advances in pushing the spatiotemporal reso-

lution of human research are critically important. This more detailed spatiotemporal pattern

can then serve as the basis to model how brain activity encodes task information, providing

insight into underlying mechanisms.

In their new study, Mill and colleagues [3] present a modeling approach (Fig 1) AU : AnabbreviationlisthasbeencompiledforthoseusedinFig1:Pleaseverifythatallentriesarecorrect:to investi-

gate spatiotemporal task representations using EEG connectivity estimates, which were source

localized and mapped onto networks previously defined with fMRI. This method represents

an important advance in our ability to characterize where, when, and how brain network activ-

ity is related to task states.

Previous work by Cole and colleagues [5] used brain network structure from resting state

fMRI—shown to be largely stable within people across tasks [6]—to create an activity AU : Anabbreviationlisthasbeencompiledforthoseusedthroughoutthetext:Pleaseverifythatallentriesarecorrect:flow

model in which task-evoked fMRI activity from one region was predicted from contemporane-

ous activity in another. This work was successful in predicting task activations, but due to the
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slow nature of fMRI, it could not make strong claims about the directional pattern of activity

spread. In the current work, Mill and colleagues [3] extend their model to EEG with dynamic

activity flow modeling (DAFM). DAFM provides a directed connectivity structure from the

resting state (in this case, EEG signal) by estimating the activity in a target region using time-

lagged signals from other regions. This pathway can be used to predict the activity in a

response-generating (e.g., motor) region when loaded with prior task-evoked activity from

other regions.

To study how brain networks support task representations, the authors brought in multi-

variate pattern analysis (MVPA). These multivariate techniques have been fruitfully applied to

fMRI data to reliably discriminate task information based on brain activity patterns (e.g., visual

versus auditory stimuli, or left versus right hand response) [1]. However, even the simplest

cognitive task involves multiple steps, where the task representation unfolds in the brain across

distributed networks. The current paper highlights the temporal dimension of task representa-

tions in each brain network by applying MVPA to EEG data that were source localized and

projected onto brain networks previously defined via fMRI.

Source localization was key to overcoming the limitation of spatial ambiguity in EEG data

in this work. The authors used anatomical MRI data to obtain individualized head models that

allow for neural source localization with fine granularity [7]. The sources were then associated

with a whole-brain map of 264 regions organized into 11 well-validated large-scale brain net-

works [8]. Mill and colleagues [3] were able to use this data to reveal that, while task represen-

tation can be recovered in all major functional networks, they emerge in a graded fashion,

Fig 1. Mill and colleagues [3] study brain network interactions in task representations by combining EEG task and rest information

source modeled to functional networks from previous fMRI results. Using MVPA in a sensory-motor task, they decode task

information over time per network, finding motor and cognitive control networks are particularly prominent in decoding accuracy and

temporal onset. Using DAFM, they predict future EEG task activity from lagged resting state EEG patterns and task activity. DAFM,

dynamic activity flow modeling; EEG, electroencephalography; MVPA, multivariate pattern analysis.

https://doi.org/10.1371/journal.pbio.3001749.g001
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both in terms of their temporal order and decoding accuracy (Fig 1). This result balances the

view of network specialization and spatially distributed task involvement.

Combining multivariate pattern classification and DAFM, the authors provide a powerful

method to infer how task information propagates across the brain. Using the pathway esti-

mated from resting-state EEG data, task-evoked activity in nonmotor regions not only predicts

motor region responses but also can be used to decode response choice. The authors further

conducted a lesion simulation, which selectively removed (“lesioned”) all but one functional

network. By comparing the resulting task representation accuracy and how it evolved dynami-

cally at a sub-second timescale, the authors inferred the relative contributions of each network

towards response-relevant computation. This approach opens a window to understanding the

impact of any individual region on the whole brain network.

Future studies will be critical to expand on the potential of this work. First, while the spatial

resolution here is significantly better than most previous EEG studies, it is still lower (network

level) and dependent on assumptions (source modeling) relative to invasive electrophysiologi-

cal recordings and fMRI. Future improvements to DAFM may come from grounding the

model in robust high-spatial resolution data such as human electrocorticography and through

continued improvements in source modeling techniques. Second, the authors focused on

decoding a relatively simple sensory-motor task in this proof-of-concept article. Future appli-

cations will be needed to explore how this model delineates spatiotemporal network activity in

more complex task contexts. Finally, the simulated lesions imposed by the authors suggest that

an exciting avenue of future work will be to pair this model with recordings from patients with

brain damage or participants undergoing brain stimulation.

In sum, Mill and colleagues [3] demonstrate a significant step forward in overcoming spa-

tiotemporal limitations of noninvasive human imaging by merging modalities and methods.

Through this approach, the authors are able to present a dynamic view of brain network activ-

ity during tasks. This novel approach provides a roadmap for how to jointly answer where,

when, and how questions regarding human brain function.
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