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ABSTRACT

Recent studies show that annotated long noncoding
RNAs (lncRNAs) and circular RNAs (circRNAs) en-
code for stable, functional peptides that contribute
to human development and disease. To systemati-
cally discover lncRNAs and circRNAs encoding pep-
tides, we performed a comprehensive integrative
analysis of mass spectrometry-based proteomic and
transcriptomic sequencing data from >900 patients
across nine cancer types. This enabled us to identify
19,871 novel peptides derived from 8,903 lncRNAs.
Further, we exploited open reading frames overlap-
ping the backspliced region of circRNAs to identify
3,238 peptides that are uniquely derived from 2,834
circRNAs and not their corresponding linear RNAs.
Collectively, our pan-cancer proteogenomic analysis
will serve as a resource for evaluating the coding
potential of lncRNAs and circRNAs that could aid fu-
ture mechanistic studies exploring their function in
cancer.

INTRODUCTION

Long noncoding RNAs (lncRNAs) are a heterogeneous
class of RNA molecules having >200 nucleotides with di-
verse regulatory mechanisms (1,2). A subset of lncRNAs
has established oncogenic or tumor-suppressive roles in
cancer (e.g. HOTAIR, MALAT1 and NEAT1) (3–5) and
has clinical utility as prognostic and predictive biomark-
ers (6,7). To date, annotating a lncRNA has relied on
sequence-based features such as the presence and length
of an open reading frame (ORF), as well as similarity to
known proteins (8), to establish whether it lacks coding po-
tential (1). However, an increasing number of studies are
demonstrating functional roles for micropeptides encoded
by short ORFs (sORFs) in well-characterized lncRNAs

such as HOXB-AS3 in colon cancer (9), LINC00961 in mus-
cle development (10) and the circular form of LINC-PINT
in glioblastoma (11).

Circular RNAs (circRNAs) are RNA molecules of cova-
lent continuous loops formed through noncanonical splic-
ing methods such as backsplicing (12). Although circR-
NAs are abundantly present in the human transcriptome,
their functions remain understudied (13). To date, one of
the prevailing models is that circRNAs act as microRNA
sponges (14). However, the discovery of novel functional
peptides encoded by circRNAs in human development and
disease offers an alternative mechanism of function. This
can be exemplified by functional peptides resulting from
the circular ORF (cORF), which can span the backsplice
junction. Recent examples include a backspliced junction
cORF between exons 3 and 4 of FBXW7 in glioma (15),
an 87-aa (amino acid)-long peptide not shared with linear
LINC-PINT in glioblastoma (11), a backspliced junction
cORF extending two ZNF609 exons in myogenesis (16), and
a backspliced junction cORF between exons 24 and 25 of
PPP1R12A in colon cancer (17).

Despite numerous studies revealing the presence of trans-
latable sORFs and cORFs that have a role in human devel-
opment and disease (9–11,15–21), the computational tools
used to predict whether a lncRNA or a circRNA can po-
tentially translate into a protein have difficulty detecting
sORFs (<100 codons) or unique cORFs that span back-
splice junctions. The predominant experimental strategy for
systematically identifying annotated noncoding RNAs that
may encode small peptides is high-throughput sequencing
of ribosome-protected fragments (22,23). However, this ap-
proach is limited since ribosome occupancy does not nec-
essarily confirm active translation but may be a mere in-
dicator of translation initiation (24). To address this gap,
we discovered novel peptides encoded by lncRNAs and cir-
cRNAs through proteogenomic integration of 921 patients
across nine cancer types using mass spectrometry-based
proteomic data (MS/MS) from the Clinical Proteomic Tu-
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mor Analysis Consortium (CPTAC) (25–32), with tran-
scriptome sequencing data from The Cancer Genome At-
las (TCGA) and publicly available datasets (33). The identi-
fied peptides are available at the PepTransDB resource (Pep-
tide Encoding Transcripts Database, https://www.maherlab.
com/peptransdb).

MATERIALS AND METHODS

Data integration and proteogenomic search

To construct the database for the proteogenomic search,
we used three-frame translation of annotated transcripts
of lncRNAs from LNCipedia (34) and circRNAs from
the pan-cancer circRNA compendium MiOncoCirc (35).
Nonredundant translated ORFs from these transcripts
and protein sequences from UniProt were included in the
database (36). LncRNAs that match UniProt entries as-
signed as PE5 (uncertain) were filtered out to avoid re-
dundancy in the database. Additionally, those overlap-
ping protein-coding genes were kept as long as the pre-
dicted ORFs were not part of the coding sequence of
the protein-coding gene. To allow the use of false dis-
covery rate (FDR) filtering of identified peptide spectrum
matches (PSMs), the target-decoy strategy was utilized, and
the search database was appended with an equal num-
ber of decoy reversed sequences. Raw mass spectrometry
files were downloaded from the CPTAC data portal (https:
//cptac-data-portal.georgetown.edu/datasets) for each re-
spective cohort in mzML format. MS/MS spectra search
was performed using the MSFragger search engine (37). We
used semi-tryptic peptides with two allowed missed cleav-
age sites, precursor-ion mass tolerance of 20 ppm and al-
lowed 12C/13C isotope errors. To identify putative sORFs
and cORFs, we used sequences between start codons (AUG,
CUG, UUG) and stop codons (UAG, UGA, UAA) in each
of the forward translated frames with a minimum length of
100 nucleotides for lncRNAs and 200 nucleotides for circR-
NAs. The selected minimum threshold for ORF lengths was
based on the lengths of ORFs in lncRNAs and circRNAs
known to encode peptides.

For each cohort, the following post-translational mod-
ifications were specified depending on the protocol used
for protein labeling: for TMT labeling, cysteine car-
bamidomethylation (+57.0215) and lysine TMT labeling
(+229.1629) were specified as fixed modifications, while me-
thionine oxidation (+15.9949), N-terminal protein acety-
lation (+42.0106) and TMT labeling of peptide N termi-
nus and serine residues were specified as variable modi-
fications; for iTRAQ labeling, cysteine carbamidomethy-
lation (+57.0215), iTRAQ labeling of lysine (+144.10253)
and peptide N terminus were specified as fixed modifica-
tions, while methionine oxidation (+15.9949) was specified
as a variable modification; for label-free protocol, cysteine
carbamidomethylation (+57.0215) was specified as a fixed
modification, while methionine oxidation (+15.9949) was
specified as a variable modification.

PSMs were processed and filtered using PeptideProphet
as implemented in the Philosopher pipeline (https://github.
com/Nesvilab/philosopher) (38) using high-mass accuracy
binning and semi-parametric mixture modeling to assign
posterior probabilities and to filter out PSMs found by

chance. PeptideProphet results from each sample were then
used to infer high-confidence protein groups for each cohort
(protein inference), accounting for both unique and razor
peptides. PSMs and proteins that did not meet the 1% FDR
threshold were not included.

Sources used to identify high-confidence PSMs from lncRNA
transcripts

Basewise PhastCons 100-way conservation scores for
sORF coordinates were extracted from http://hgdownload.
cse.ucsc.edu/goldenpath/hg38/phastCons100way/hg38.
phastCons100way.bw from the UCSC human genome
database (39). Similarly, phylogenetic codon substitu-
tion frequency (PhyloCSF) scores for each frame were
extracted from https://data.broadinstitute.org/compbio1/
PhyloCSFtracks/hg38/latest/PhyloCSF+1.bw, https:
//data.broadinstitute.org/compbio1/PhyloCSFtracks/hg38/
latest/PhyloCSF+2.bw, https://data.broadinstitute.org/
compbio1/PhyloCSFtracks/hg38/latest/PhyloCSF+3.bw,
https://data.broadinstitute.org/compbio1/PhyloCSFtracks/
hg38/latest/PhyloCSF-1.bw, https://data.broadinstitute.
org/compbio1/PhyloCSFtracks/hg38/latest/PhyloCSF-
2.bw, https://data.broadinstitute.org/compbio1/
PhyloCSFtracks/hg38/latest/PhyloCSF-3.bw, for frames
1,2,3,4,5,6 respectively. CPC2 (40) and CNIT (41) were
used to predict the coding probability score for each
transcript from LNCipedia (34).

LncRNA differential expression analysis

TCGA RNA-seq pre-aligned bam files were downloaded
from the Cancer Genomics Hub (http://cghub.ucsc.edu/).
To focus on lncRNAs deregulated in tumors, we performed
differential expression analysis to compare gene expres-
sion between tumor and normal tissues using edgeR with
the negative binomial model (42). Differentially expressed
lncRNAs were identified as those with log2 fold change
(FC) beyond ±2 in at least one of the following TCGA
cohorts that have matched normal samples: HNSC (head–
neck squamous cell carcinoma), LUAD (lung adenocarci-
noma), KIRC (kidney renal clear cell carcinoma), LIHC
(liver hepatocellular carcinoma), PRAD (prostate adeno-
carcinoma), BRCA (breast cancer), CRC (colorectal can-
cer) and STAD (stomach adenocarcinoma).

CircRNA mRNA sequence extraction and junction peptide
identification

Using publicly available cDNA-Capture sequencing data
from the pan-cancer circRNA compendium MiOncoCirc
(35), terminal exon coordinates of all annotated circRNAs
were used to extract the FASTA sequences using bedtools
getfasta (43). Specifically, to extract the backsplice junction
sequences, the mRNA sequence of the 3′ exon was concate-
nated to the mRNA sequence of the 5′ exon. For single-
exon circRNAs, the exon mRNA sequence was repeated in
order to cover the backsplice junction without truncating
the exon. Peptides matching a UniProt coding sequence or
any other ORF from the linear template were filtered out to
identify peptides spanning backsplice junctions.

https://www.maherlab.com/peptransdb
https://cptac-data-portal.georgetown.edu/datasets
https://github.com/Nesvilab/philosopher
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/hg38.phastCons100way.bw
https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg38/latest/PhyloCSF+1.bw
https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg38/latest/PhyloCSF+2.bw
https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg38/latest/PhyloCSF+3.bw
https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg38/latest/PhyloCSF-1.bw
https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg38/latest/PhyloCSF-2.bw
https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg38/latest/PhyloCSF-3.bw
http://cghub.ucsc.edu/
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Figure 1. Overview of lncRNAs with peptide support in predicted sORFs. Description of the workflow used to identify novel peptides across the following
nine cancer cohorts: oral squamous cell carcinoma (OSCC), hepatocellular carcinoma (HCC), colorectal cancer (CRC), lung adenocarcinoma (LUAD),
clear cell renal carcinoma (CCRC), prostate adenocarcinoma (PRAD), early-onset gastric cancer (EOGC), ovarian cancer (OV) and breast cancer (BRCA).

RESULTS

An integrated proteogenomic database for long and circular
noncoding RNAs across nine cancer types

In order to systematically identify peptides encoded by non-
coding transcripts in cancer patients, we used a bottom-
up approach utilizing a comprehensive database of ORFs
in lncRNA and circRNA transcripts. To ensure we cor-
rectly identified peptides uniquely mapping to lncRNAs
and circRNAs, we included 20,595 protein sequences from
UniProt (36). To reduce the database size while accurately

estimating the FDR, we used annotated transcripts to pre-
dict ORFs in three-frame translated sequences, instead of
using six-frame translation of the genomic sequences, as
recommended previously (44). The database encompassed
620,578 canonical and noncanonical sORFs that were at
least 100 nucleotides long from 105,812 lncRNA transcripts
(54,150 genes) annotated in LNCipedia (34). We also in-
cluded 130,526 ORFs from 243,316 circRNAs in MiOnco-
Circ (35) that were at least 200 nucleotides. The proteoge-
nomic search was customized according to the parameters
described to generate the proteomic data from each co-
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Figure 2. Consensus set of high-confidence peptide-encoding lncRNAs. (A) Venn diagram showing the overlap of genes with PSMs that have a maximum
focal PhastCons conservation score for the encoding sORF >0.5, a peptide length >10, a positive PhyloCSF score, a CPC2 coding index ≥0.5 and a peptide
probability score >0.9. LncRNAs previously identified to encode for peptides are shown in the Venn diagram. (B) Violin plot showing the distribution of
PhastCons conservation scores of lncRNA transcripts with a high coding index and PhyloCSF scores that have peptide support or are inferred into protein
groups, along with lncRNAs that lack peptide support.

hort, accounting for different post-translational modifica-
tions (Figure 1, Supplementary Table S1).

LncRNAs encoding peptides and sequence conservation

As an initial step, we identified all lncRNAs with at least
one PSM in a predicted sORF independent of its relevance
in cancer. The proteogenomic search allowed us to iden-
tify 10,589 lncRNA transcripts with PSM support (10%
of all transcripts) corresponding to 8,903 genes (16.4% of
lncRNAs) with a total of 19,871 peptides (Supplementary
Tables S2 and S3).

Given the possibility that the identified peptides could in-
clude spurious matches due to the size of the proteogenomic
database, we integrated additional evidence for translation
from supporting datasets. Specifically, we required sORFs
to be highly conserved (PhastCons score >0.5) and have a
high PhyloCSF (45) score of the encoding sORF in three
translated frames (>0). Additionally, only sORFs that pro-
duced peptides longer than 10 amino acids were retained.
We finally considered the coding potential predicted using
intrinsic sequence features, requiring a CPC2 coding index
≥0.5 (40). These filters led to a reduced set of 216 lncRNAs
that were supported by proteomic samples as well as fea-
tures related to the predicted sORF. The set encompassed
previously well-characterized lncRNAs, such as TUG1 in
prostate cancer (19) and LINC01420 in nasopharyngeal
carcinoma (46) (Figure 2A). LINC-PINT, previously iden-
tified to encode a peptide in its circular form in glioblastoma
(11), met all of the criteria except for the peptide probability
and the coding index thresholds.

To evaluate whether our peptide-supported sORFs had
greater sequence conservation, we compared PhastCons
conservation scores between lncRNAs grouped by their

level of experimental support. Upon considering all PSM
and protein-supported lncRNAs, we found that lncRNAs
supported by PSMs had greater sequence conservation
compared to lncRNAs that lacked any peptide support
(Supplementary Figure S1). Including the coding index and
PhyloCSF filters confirmed greater conservation of PSM
and protein-supported lncRNAs compared to the remain-
ing unsupported lncRNAs (rank-sum test P < 2.2e−16)
(Figure 2B).

Using protein inference to infer peptides into protein
groups significantly reduced the number of candidates to
5,756 genes, 74 passing the aforementioned filters (conser-
vation, PhyloCSF score, peptide length and coding index).
Interestingly, among the top 50 lncRNAs inferred as protein
groups was an H19 isoform (LNCipedia ID: H19:11) that
had a high coding potential and was supported by a 20-aa
peptide and a 42-aa sORF in the BRCA and OSCC cohorts
(Figure 3, Supplementary Figure S2). Although sORFs
from lncRNAs inferred as proteins exhibit the highest con-
servation, exclusively considering lncRNAs that were in-
ferred as proteins as the only MS/MS-supported transcripts
is a limitation to the true landscape of lncRNAs encod-
ing small proteins. For instance, considering the conserva-
tion and PhyloCSF scores of PSMs allowed the detection
of peptide-encoding lncRNAs such as lnc-EVX2-8 located
at chr2:176200908–176201252 and LINC00431 located at
chr13:110983307–110990564. Both of these lncRNAs were
not inferred as proteins, but their encoding sORFs had en-
riched PhyloCSF and conservation scores (Figure 4). The
enriched conservation of the encoding sORF is also ob-
served in known micropeptide-encoding genes, such as that
encoding a peptide in LINC01420 (18) (Supplementary Fig-
ure S3).
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Figure 3. Average peptide probability of PSMs identified in transcripts inferred as proteins. From left to right, average peptide probability for the top peptide
of the protein group, maximum focal 100-way PhastCons conservation score for encoding sORF, coding probability predicted using CPC2, frequency of
each transcript in the nine cancer cohorts, length of top peptide for the protein group and length of the encoding sORF. Peptides are sorted based on their
frequency in the cohorts.

LncRNAs with peptide support that are differentially ex-
pressed in cancer

To further implicate and prioritize noncoding RNAs en-
coding small peptides in cancer, we leveraged transcrip-
tome data to identify differentially expressed lncRNAs.
While SPAR (small regulatory polypeptide of amino acid
response, encoded by LINC00961) was initially found to
encode a functional peptide in muscle development (10), it
was downregulated in BRCA and LUAD (log FC = −2.2
and −2.6, respectively). Further, concordant with previous
reports implicating HOXB-AS3 in suppressing colon can-
cer growth (9), its expression was downregulated in colon
cancer (log FC = −2.6). Overall, of the genes showing high
sequence conservation, a positive PhyloCSF score and high

coding probability and with a long peptide (>10) in at least
one cancer, 24 were differentially expressed in at least one
of the nine cancers (log FC beyond ±2) (Figure 5).

Proteomic samples are enriched with peptides from cORFs
extending junction exons

To identify ORFs emerging from circRNAs, we utilized a
similar proteogenomic search approach for circRNAs uti-
lizing the pan-cancer circRNA compendium MiOncoCirc
(35). In total, there were 2,834 circRNAs with 3,238 pep-
tides in at least one cancer type (Supplementary Table S4).
To discover peptides unique to circRNAs, we filtered pep-
tides that were shared with either the noncanonical ORFs
(Figure 6A; type 2) or the coding sequence of the linear
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transcript (Figure 6A; type 1). This enabled us to focus on
peptides that emerge either from a predicted cORF that
spans the backsplice junction between two exons or from
the circularization of a single exon (Figure 6A; type 3). This
revealed 2,010 peptides spanning backsplice junctions in
1,964 circRNAs (Supplementary Table S5). To further pri-
oritize peptides with strong support for both exons flanking
the backsplice junction, we quantified the number of amino
acids from each of the junction exons. Collectively, we found
a total of 774 junction peptides where at least a third of the
amino acids from the peptide map to each side of the junc-
tion.

In order to identify peptides covering most of the pre-
dicted cORF, we ranked the remaining peptides in descend-
ing order of length from each cancer, as well as the longest
peptides shared between at least two cancers (a minimum
of two cancers and a maximum of seven cancers) (Figure
6B). Several circRNAs showed exclusive or higher expres-
sion in the cohort at which their peptides were identified.
For instance, circCUBN, supported by a 42-aa peptide in
PRAD with 47.6% of the amino acids from the 3′ exon and
52.4% from the 5′ exon, was only expressed in prostate can-

cer (average of two mapped backsplice reads) but not ex-
pressed in any of the remaining cancer types (Figure 7A).
Similarly, circCOG5, with a 7-aa peptide resulting from the
circularization of exon 13 from the linear COG5 template,
was identified in seven cancers (BRCA, OSCC, EOGC,
PRAD, LUAD, HCC, CCRC) except for ovarian cancer,
a cohort that lacked peptide support for this circRNA
(Figure 7B).

DISCUSSION

Most analysis of proteomic samples from cancer patients
focused on the discovery of novel peptides from protein-
coding genes, overlooking novel peptides from noncoding
RNAs with potential roles in cancer. The robustness of
our methods can be exemplified by our ability to confirm
lncRNAs previously shown to encode functional proteins
[a known sORF in LINC01420 (18) and a novel sORF in
TUG1 (19)]. However, our analysis also identified many un-
characterized lncRNAs that are unique in each cancer co-
hort and potentially contribute to tumorigenesis via an en-
coded small protein, with ovarian cancer having the highest
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number of unique peptides (52.1% of all uniquely identified)
and colorectal cancer having the lowest (1.5%). Examples of
top-scoring lncRNAs (conservation score >0.9) that have
uniquely identified peptides in each subtype include lnc-
HJURP-6 in Luminal B samples (117-aa-long ORF), lnc-
ZNF627-2 in HER2-enriched samples (444-aa-long ORF),
lnc-CIAO1-6 in Lumina A samples (118-aa-long ORF) and
AATBC in Basal-like samples (52-aa-long ORF). There are
also peptides uniquely identified in each cohort such as lnc-
PPME1-4 in PRAD (298-aa-long ORF), lnc-PROC-5 in
CCRC (57-aa-long ORF), lnc-IL20RA-4 in LUAD (165-
aa-long ORF), lnc-BOLA2-2 in OSCC (294-aa-long ORF),
LINC02370 in OV (189-aa-long ORF), lnc-NBPF14-1 in
HCC (172-aa-long ORF), lnc-ZNF716-2 in EOGC (251-

aa-long ORF) and LINC01579 in CRC (35-aa-long ORF).
We did not observe an overall difference in the quantity of
peptides between the four subtypes of breast cancer (1,220
peptides for Basal-like samples, 1,409 peptides for HER2-
enriched samples, 1,419 peptides for Luminal A samples
and 1,637 for BRCA-Luminal B samples). By performing
a pan-cancer analysis, we were able to identify lncRNAs
with peptide support across all nine cancer types (i.e. lnc-
PRSS1-2:1 with a 60-aa-long noncanonical ORF and lnc-
NUDCD2-8:1 with a 91-aa-long noncanonical ORF). The
ability to reliably detect a small encoded peptide across
cancer types further emphasizes their potential mechanistic
role and potential contribution to tumorigenesis. It is also
plausible that these broadly expressed noncoding RNAs en-
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coding small proteins could have a similar regulatory role in
additional cancer types beyond those in our study.

By using multiple conservative filters, we were able to
nominate high-confidence noncoding RNAs that may en-
code small proteins. Notably, we also identified lncRNAs
that were predicted to have sORFs, display sequence conser-
vation and could encode for peptides but were not captured
by the proteomic data. It is possible that the peptides were
not sampled in the existing proteomic data, that these are
tumor suppressors that have lost expression and are there-
fore under-represented or these noncoding RNAs function
through small encoded proteins in a completely different
context unrelated to cancer. As a result of applying strin-

gent criteria, it is possible we are still under-representing
the quantity of noncoding RNAs encoding small peptides.
For instance, PCAT14 (Prostate Cancer Associated Tran-
script 14), which was previously reported in prostate cancer
patients (6) to encode a peptide corresponding to a previ-
ously reported HERV-K gag ORF (47), did not meet the
PhyloCSF or the conservation filters but was supported by
a high-confidence peptide. This highlights the importance
of peptide support as evidence for the translation potential
of a transcript compared to conservation score or coding
index alone.

Our ability to identify encoded proteins within circR-
NAs has additional challenges relative to lncRNAs due to
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the shared sequence between the circRNA and linear tran-
script (Figure 6A; types 1 and 2). While it is not possi-
ble to discriminate whether a small protein encoded within
these common sequences originated from the circRNA or
linear transcript (or both), this can be addressed exper-
imentally (11). Notably, we identified 3,238 peptides de-
rived from 2,834 circRNAs corresponding to a noncanoni-
cal ORF (Figure 6A; type 2). Since these are not the canon-
ical proteins, these candidates represent a rich resource of
small proteins that may be functionally relevant and war-
rant further investigation independent of whether they orig-
inated from the circular or linear transcript. However, in our
integrative analysis we focused on the peptides that corre-
spond to the only region that is unique to the circRNA, the
backspliced junction. Doing so allowed the identification of
cancer-relevant junction peptides from circRNAs, such as
circCOG5 in seven cancers and circHDAC2 in six cancers.

Despite recent findings showing lncRNAs and circRNAs
functioning through encoded proteins, the detection of a
peptide does not imply function. Therefore, we envision our
results will serve as a resource for the community to confirm
whether an lncRNA or a circRNA has any experimental ev-
idence supporting its coding potential that may guide sub-
sequent mechanistic studies. Further, as part of our analysis
we revealed many novel lncRNAs that have peptide support
but did not appear to be differentially expressed in the can-
cer types sampled. These findings have implications beyond
cancer by revealing lncRNAs that may encode small pro-
teins that function in human development and other dis-
eases.
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