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Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) is an important threat as it causes
serious hospital and community acquired infections with deathly outcomes oftentimes, therefore,
development of new treatments against this bacterium is a priority. Shikimate kinase, an enzyme in
the shikimate pathway, is considered a good target for developing antimicrobial drugs; this is given
because of its pathway, which is essential in bacteria whereas it is absent in mammals. In this work, a
computer-assisted drug design strategy was used to report the first potentials inhibitors for Shikimate
kinase from methicillin-resistant Staphylococcus aureus (SaSK), employing approximately 5 million
compounds from ZINC15 database. Diverse filtering criteria, related to druglike characteristics
and virtual docking screening in the shikimate binding site, were performed to select structurally
diverse potential inhibitors from SaSK. Molecular dynamics simulations were performed to elucidate
the dynamic behavior of each SaSK–ligand complex. The potential inhibitors formed important
interactions with residues that are crucial for enzyme catalysis, such as Asp37, Arg61, Gly82, and
Arg138. Therefore, the compounds reported provide valuable information and can be seen as the
first step toward developing SaSK inhibitors in the search of new drugs against MRSA.

Keywords: MRSA; shikimate kinase; virtual screening; molecular dynamics; ADME-Tox properties

1. Introduction

Today, antimicrobial resistance in bacteria has become a serious healthcare concern [1];
the World Health Organization (WHO) published a list of 12 bacteria in 2017 [2], their level
of resistance to antibiotics has become so grave, that they represent an important threat.
Therefore, these organisms have been declared priority pathogens to encourage antibiotic
drug design by pharmaceutical companies [3]. From the Gram-positive bacteria shown
on this list, drug-resistant Staphylococcus aureus has become one of the most problematic
pathogens worldwide.

Methicillin-resistant Staphylococcus aureus (MRSA) has been widely known as a major
cause of nosocomial and community-acquired infections that range from mild cases, such
as skin and soft tissue infections, to more serious and deadlier, like bacteremia, osteomyeli-
tis, and infective endocarditis [4]. In 2017, an estimated of 12,000 cases of MRSA infections
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and 20,000 deaths associated with it, occurred in the United States alone [5]. Over the
years, MRSA has shown an alarming increase in antimicrobial resistance [6–8], developing
resistance to vancomycin as well, the last resort treatment for MRSA infections [9]. Further-
more, the recent underdevelopment trend of new antimicrobial agents by pharmaceutical
companies has added to the threat that this pathogen already presents [10,11]. Moreover,
it has become apparent that research and discovery of new drugs, that possess unique
mechanisms of action to prevent chances of developing drug resistance, are becoming
urgently necessary.

Accordingly, pathways that are essential for bacterial survival, absent in humans,
have become ideal targets to obtain new antimicrobial agents. The shikimate pathway
(SP) enzymes are attractive targets for the development of antimicrobial drugs, given that
this pathway is only present in bacteria, plants, fungi, apicomplexan parasites, and it
is absent in mammals [12]. SP links carbohydrate metabolism to aromatic compounds
biosynthesis by means of seven metabolic steps culminating in chorismate production, an
important precursor for the synthesis of aromatic amino acids, folate, ubiquinone, among
other essential molecules [13]. This route has been previously validated as an antimicrobial
target [14], therefore, the design of inhibitors against enzymes of this route has gained
significant attention over the years [15].

Shikimate kinase (SK, EC 2.7.1.71) is the fifth enzyme in SP, it catalyzes the conversion
of shikimate to shikimate 3-phosphate by phosphorylation of the 3-hydroxyl group of
shikimates using ATP as co-substrate; this enzyme has already been established as a
promising target, it is essential in a variety of organisms like Mycobacterium tuberculosis,
where the deletion of the aroK gene, which codes for SK, disrupts cell viability [16]. SK has
been recognized as a member of the nucleoside monophosphate kinases (NMP) family; it
possesses three domains, the CORE domain, which involves residues that belong to the
conserved binding loop (P-loop) which forms the binding site of ATP and ADP, the LID
domain that closes over the active site and contains important residues for ATP binding,
and the NMP-binding domain, an important region that corresponds to the shikimate
binding region [17]. In 2019, our group reported the biochemical, kinetic, and structural
characterization of SK from MRSA (SaSK). In that work, it was found that SaSK shares
common characteristics with other bacterial SKs, and by performing homology modeling
and molecular dynamics studies important structural information was reported [18].

This study was initiated to work with a chemical library of around 5 million small
molecules under a computer-assisted drug design strategy; it included virtual screening,
ADME-Tox properties predictions, and molecular dynamics simulations; it was completed
to report the first set of potential inhibitors from SaSK.

2. Results and Discussion
2.1. Compounds Filtering

It is increasingly becoming apparent that toxic properties are crucial determinants
for the successful development of new drugs. There are unfavorable characteristics that
may lead to rejection of possible candidates in the later stages of the drug process [19]. In
this study, a total of 5,044,253 compounds, based on SaSK substrate molecular weight and
Log p value, were selected from ZINC15 Database (MW ≤ 350 Da and a Logp value of
−1). Afterwards, a filtering strategy was applied considering different parameters, such
as Lipinski “Rule of Five” compliance, risk of potential toxicity (Mutagenic, Tumorigenic,
Reproductive, and Irritant effects), topological surface area (TPSA), number of rotatable
bonds, and finally, a clustering by structure similarity, providing as a result a total of 52
molecules (Figure 1, Table S1).
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Figure 1. Workflow to select the potential SaSK inhibitors by computer-assisted drug design.

2.2. Virtual Screening

Currently, virtual screening has become essential for the drug design process, it per-
mits an accurate prediction of the position and conformation of a ligand in the binding
site of a target protein through an established scoring function [20]. After filtering, 52 com-
pounds were docked into the SaSK active site using the protocol described in materials and
methods; the five molecules with the highest docking score and structural diversity were
selected in this study (Figure 1 and Table 1).
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Table 1. Glide XP docking results for the top five hits.

Compound Zinc ID Structure Docking Score
(kcal/mol)

Interacting Residues
(Distance Cut-Off

4.0Å)

C1 000737165696
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C3 000653035164
S enantiomer
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Docking results show that compounds interact with residues important for substrate
binding or enzyme catalysis, such as Gly82 and Arg138, both are in charge of the sta-
bilization and orientation of shikimate; moreover, Gly83 also participates in substrate
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stabilization [21]. Conversely, Arg120 is a residue present in the LID domain known for
its function as a substrate stabilizing residue in the ATP-shikimate complex [22]. Finally,
Asp37 participates in the interaction with the hydroxyl groups of shikimate molecule [23]
while Asp35 is an important residue in the nucleotide binding domain that forms hydrogen
bonds with other residues that facilitate the approximation of shikimate and ATP [21]
(Table 1 and Figure 2).

Although, there are no reports in literature of inhibitors for SaSK, other shikimate
kinases, in particular for M. tuberculosis and H. pylori, have been shown [22,24]. These
molecules comprise several scaffolds, such as pyrazolone derivatives, manzamines, 2-
aminobenzothiazoles, and substrate analogues, that particularly target the shikimate bind-
ing site [25–27].

Docking results in this study were able to select compounds that possess a particular
orientation that allows them to perform important interactions with residues that are vital
for enzyme catalysis, such as Arg61, Arg138, and Gly82, which are reported to be critical
for ligand stabilization and orientation in studies performed in M. tuberculosis shikimate
kinase [21–23,28].

2.3. Molecular Dynamics Studies

For purposes of gathering added information about SaSK-potential inhibitor complex,
molecular dynamics simulations of 100 ns were performed. First, protein–ligand complex
stability was evaluated analyzing the root mean square deviation (RMSD) of the Cα protein
atoms. The data show that after 20 ns, four of the complexes reach stability, however,
C5 leaves the binding site after 6 ns of simulation, therefore, no analysis was performed
for this compound. Average RMSD values obtained are 0.416, 0.397, 0.397, and 0.459 nm
for SaSK-C1, SaSK-C2, SaSK-C3, and SaSK-C4 complexes, respectively, indicating that all
remain stable during simulation time (Figure 3).

Furthermore, root mean square fluctuations analysis (RMSF) was performed, the
results show that in all four complexes, the highest fluctuation observed corresponds to the
LID domain (residues 120–135 in SaSK), a region that it is known for its great flexibility [29],
in this case, this movement can be attributed to an essential movement to accommodate
the compound within the binding site. These fluctuations are more notorious in SaSK-C1,
SaSK-C3, and SaSK-C4 complexes (Figure 4). Average RMSF values obtained are 0.172,
0.191, 0.184, and 0.186 nm for SaSK-C1, SaSK-C2, SaSK-C3, and SaSK-C4, respectively.

Furthermore, to assess the effect of compound binding in protein tertiary structure,
the radius of gyration (Rg) analysis was realized. As it can be seen, the value of Rg in
each complex keeps constant during entire simulation time, suggesting that none of the
potential inhibitors alters the structure of the protein (Figure 5).
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Figure 5. Radius of gyration for SaSK in complex with C1(Blue), C2 (Orange), C3 (Gray), C4 (Yellow).

Finally, hydrogen bond analysis was performed. The data show that the number of
H-bonds in the complexes vary during simulation time with an average of 7, 4, 3, and 1 for
SaSK-C1, SaSK-C2, SaSK-C3, and SaSK-C4, respectively, suggesting a better binding mode
for compound C1 (Figure 6 and Table 2).
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Table 2. Interacting residues through the 100 ns simulation time at selected time frames.

0 ns 20 ns 40 ns 60 ns 80 ns 100 ns

C1 * Arg61, Gly82,
Arg138

* Gly15,
Lys18

* Gly15, Lys18,
Arg61

* Gly15, Lys18,
Arg138

* Gly15, Lys18,
Arg138

* Gly15, Lys18,
Arg138

C2

* Lys18, Arg61,
Gly82,

Arg120 Asn122,
Arg138

* Lys18, Arg61,
Gly82

* Lys18, Arg61,
Gly82,

Asn115

* Lys18, Gly82,
Lys126

* Asn122,
Lys 126, Arg138 * Thr127

C3 * Lys18, Asp37,
Arg120, Arg138

* Ser19,
Asp35,
Gly82,

Arg120, Asn124

* Ser19,
Asp35, Arg120,

Asn124

* Asp35,
Arg120, Ala123

* Ser19,
Asp35,
Arg61

* Ser19,
Asp35, Arg120,

Asn122

C4
*Ser19,
Glu41,
Arg120

*Glu41,
Gly82

*Glu41,
Arg120

*Asp37,
Glu41

*Glu41,
Gly82

*Ser19,
Glu41

,

* H-bond interactions.

2.4. Linear Interaction Energy

The linear interaction energy (LIE) [30] approach is an extensively described method
to compute binding affinities. It permits to combine explicit conformational sampling
(of the protein-bound and unbound-ligand states) with efficiency to be able to calculate
quantitative values for the protein–ligand binding free energy ∆Gbind.

In this study, the LIE method was employed to calculate the binding affinities of the
four complexes evaluated by molecular dynamics. Results show that C1 and C4 obtained
a negative value for ∆Gbind because of a combination of Van der Waals and electrostatic
interaction energies, while C2 and C3 obtained a positive one, indicating that the former
make a more stable complex with SaSK than the latter (Table 3).

Table 3. Binding free energies calculated by the LIE method for each complex in MD simulation.

Energy (Kcal/mol)

Complex (VLJ)Bound (VLJ)Free (VCL)Bound (VCL)Free
∆Gbind

kcal/mol

SaSK-C1 −21.39 −5.46 −107.92 −70.41 −21.62

SaSK-C2 −14.45 1.96 −65.15 −160.90 48.41

SaSK-C3 −13.93 −4.69 −6.74 −8.58 0.8

SaSK-C4 −23.25 −14.70 −28.31 −43.56 −37.47

(VLJ)bound: average Lennard–Jones energy for ligand–protein interaction; (VLJ)free: average Lennard-Jones energy for ligand-solvent
interaction; (VCL): average electrostatic energy for ligand-protein interaction; (VCL)free: average electrostatic energy for ligand–solvent
interaction.

2.5. ADME-Tox Evaluation

In the final analysis to complete the characterization of these potential inhibitors, an
important issue during first steps of drug design process is the prediction of the ADME-Tox
properties of the molecules. In this context, a detailed study was performed for the four
compounds using the SwissADME online tool [31] and PreADMET server [32]. The data
show that, in general, all compounds obtained evaluations in the permitted range of each
characteristic, which indicates the drugability potential of these compounds (Tables 4 and
5). It is important to note that this type of characterization has not been reported for
inhibitors against other SKs from bacteria [22,24].
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Table 4. Physicochemical properties of potential SaSK inhibitors.

C1 C2 C3 C4

MW
(g/mol) 266.24 272.30 328.34 335.4

RB 4 4 5 3

HBA 9 8 7 6

HBD 0 0 4 1

MR 58.9 59.83 81.04 102.64

TPSA (Å2) 124.04 137.64 134.01 78.88

cLogP 0.47 −2.60 0.68 2.96

Lipinski rules
violations 0 0 0 0

Water Solubility

LogS −1.06 2.84 −1.0 −1.87

Class Very soluble Highly soluble Very soluble Very soluble

Druglikeness

Ghose Yes 1 violation:
WLOGP < −0.4

1 violation:
WLOGP<-0.4

No; 1 violation:
WLOGP < −0.4

Veber Yes Yes Yes Yes

Egan Yes 1 violation:
TPSA > 131.6

1
violation: TPSA > 131.6 Yes

Muegge Yes 1 violation:
XLOGP3 < −2 Yes Yes

Bioavailability Score 0.56 0.55 0.55 0.55

Medicinal Chemistry

PAINS No alerts No alerts No alerts No alerts

Brenk No alerts 1 alert: sulfonic_acid_2 No alerts No alerts

Leadlikeness Yes Yes No Yes

Synthetic accessibility 2.21 3.12 3.19 3.16

* All values were calculated with SwissADME web tool. Molecular weight (MW: 50–500 Da), number of rotatable bonds (RB: 0–5), number
of hydrogen acceptors (HBA: 0–10), number of hydrogen donors (HBD: 0–5), Molar refractivity (MR: 40–130), Topological Polar Surface Area
(TPSA: 20–130), octanol/water partition coefficient (cLOGP: −2 to 10), Lipinski, Ghose, Veber, Egan, and Muegge (Filters that determine
druglikeness of a compound: no violations are considered ideal), Number of Brenk alert and PAINS alert ( number of alerts for undesirable
substructures/substructures, a result with No alerts is ideal), Synthetic accessibility (Ease of compound synthesis: score ranges from 1 that
indicates very easy to 10 very difficult).
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Table 5. PreADMET results characteristics for potential SaSK inhibitors.

C1 C2 C3 C4

BBBP 0.0488584 0.0466103 0.037606 0.0466103

CaCo-2 (nm/s) 4.65788 2.24237 0.373322 2.24237

HIA (%) 64.622234 58.373794 69.411618 58.373794

MDCK (nm/s) 1.05816 354.049 0.591682 354.049

In vitro P-glycoprotein
inhibition Non Non Non Non

PPB (%) 65.392204 45.848496 39.567509 45.848496

Water solubility in pure
water (mg/L) 9254.72 2.96157e + 006 3141.21 2.96157e + 006

In vitro skin
permeability (logKp,

cm/h)
−2.71782 −2.46455 −4.61446 −2.46455

* All values were calculated with PreADMET server. BBBP, in vivo Blood-Brain Barrier Penetration (less than 0.1, low absorption to Central
Nervous System; 0.1–2, medium absorption), CaCo-2, in vitro CaCo-2 cell permeability (4–70 nm/s, middle permeability; more than 70
high permeability); HIA, Human Intestinal Absorption (20–70% moderately absorbed compounds; 70–100% well absorbed compounds);
MDCK, in vitro MDCK cell permeability (4–70 nm/s, middle permeability); In vitro P-glycoprotein inhibition (substrate or non-substrate
of the permeability glycoprotein, a negative result is ideal), PPB, in vivo Plasma Protein Binding (less than 90%, chemicals weakly bound);
In vitro skin permeability (logKp, cm/hour, the more negative the log Kp the less skin permeant is the molecule).

3. Materials and Methods
3.1. Small Molecules Chemical Library

In this study, A 3D small molecule database was retrieved from ZINC15 database
Tranches (http://zinc15.docking.org/, accessed on 9 January 2021) [33]. First, based on
substrate structure, a Log p value of −1 and a molecular weight ≤ 350 Da, were used
as selection criteria. By the time this work was finished, the number of compounds was
neighboring 5 million.

Prior to virtual screening by docking, compounds were filtered according to Lipinski’s
Rule of Five’ [34] to select those that possess physicochemical properties present in potential
drug candidates only. Additionally, given that unfavorable structural alerts that can
produce toxicity may lead to a compound being rejected in further studies [19,35], an in
silico toxicity risk assessment for Mutagenicity, Tumorigenic, Irritant, and Reproductive
effects was performed using Osiris Data Warrior software [36]. The presence of a single
toxic parameter was enough to eliminate a given compound. Furthermore, the topological
surface area (TPSA) was also calculated where a value ranging from >75 to <140 was
necessary to be included, along with a number of rotatable bonds of less than 5. Finally,
compounds were clustered according to their structure and similarity using as criteria that
the highest similarity value fell below 0.8 according to Data Warrior Software.

3.2. Docking Studies

The previously reported SaSK 3D homology model [18] was employed for docking
studies, the protein structure was prepared with the Protein Preparation Wizard in Maestro
(Schrödinger Suite Release 2019-4) [37]. Bonds order was assigned, hydrogen atoms were
added, and formal charges were treated, protein minimization was applied with the
OPLS3e forcefield. The grid box was generated with default settings, with a 10Å × 10Å
× 10Å size, using the center between amino acids Met14, Asp37, Ile48, Phe60, Arg61,
Gly81, Gly82, Gly83 Pro118, and Arg138, which correspond to amino acids forming the
shikimate binding site of the enzyme [26,29]. After filtering criteria (Figure 1), the 3D
ligand structures of compounds selected were prepared using Ligprep, at a selected pH
range of 7 ± 2, where ionization states were generated; the energy was minimized using
the OPLS3e force field. Docking studies were carried out with Glide [38] implemented
in the Maestro software, using the extra precision (XP) mode [39] that provides further

http://zinc15.docking.org/
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elimination of false positives by applying extensive sampling and a more stringent scoring
function, the best five poses of each compound were retained as output.

3.3. Molecular Dynamics Studies

Molecular dynamics simulations were performed using GROMACS version 2019.3 [40]
and CHARMM 36 forcefield [41]. Before MD simulation, compounds were parametrized
using SwissParam Server (http://swissparam.ch/, accessed 17 May 2021) [42]. SaSK
coordinates and topology were constructed using GROMACS, then each ligand was merged
into a complex with SaSK and the system was immersed into the center of a dodecahedral
box, the solute box distance was set at 1.0 nm. The system was solvated by the addition of
TIP3P waters [43] and counterions were added to reach a salt concentration of 0.15 M.

MD simulations began with an energy minimization (EM) simulation as the first step,
which was performed during 100 ps to reach a local minimum employing the steepest
descent algorithm. Afterwards, the system was submitted to temperature and pressure
equilibration by performing two 100 ps equilibration steps namely, an isothermal-isochoric
(NVT) ensemble followed by an isothermal-isobaric (NPT) ensemble under no position
restraint, thus bringing the system to a 310 K temperature and 1 bar pressure. Temperature
and pressure were maintained by employing the velocity-rescale thermostat [44] and the
Parrinello-Rahman pressure coupling methods [45]. Finally, a 100 ns timescale MD was
carried out, employing a 1.2 nm for short-range interactions and the leap-frog integrator
algorithm. MD simulations were then analyzed using Visual Molecular Dynamics (VMD)
software [46]. Furthermore, to explore the structural and dynamic behavior of the protein-
ligand complex, analysis of the MD data involved root mean square deviation (RMSD),
root mean square fluctuation (RMSF), radius of gyration (Rg), and hydrogen bond analysis
(H-bonding).

3.4. Linear Interaction Energy Calculations

Binding free energies were obtained for each of the complexes based on the linear
interaction energy (LIE) method calculated by the Equation (1):

∆Gbind = α[(VLJ)bound − (VLJ)free] + β[(VCL)bound − (VCL)free] + γ (1)

where (VLJ)bound indicates the average Lennard–Jones energy for ligand–protein interaction;
(VLJ)free is the average Lennard–Jones energy for ligand–solvent interaction; (VCL)bound
is the average electrostatic energy for ligand–protein interaction; (VCL)free is the average
electrostatic energy for ligand–solvent interaction; the LIE coefficients are given by α,
β, and γ which for small drug-like ligands correspond to α = 0.18, β = 0.50, and γ =
0.00 [30,47,48].

3.5. ADME Properties Prediction

Absorption, distribution, metabolism, and excretion properties of each potential
inhibitor were predicted using SwissADME web tool [31] and the online PreADMET server
(http://preadmet.bmdrc.org, accessed 23 August 2021) [32].

4. Conclusions

The study of an around 5 million small molecules database through a computer-
assisted drug design strategy, permitted to find the first set of potential inhibitors of SaSK.
According to the structural analysis, these compounds formed interactions with residues
important for enzyme catalysis. Furthermore, they demonstrated good ADME-Tox and
druglike characteristics, which make these molecules an attractive starting point for the
development of new drugs against MRSA.

Supplementary Materials: The following is available online. Table S1: Structures of the compounds
selected for virtual screening.

http://swissparam.ch/
http://preadmet.bmdrc.org
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