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Single-pass membrane proteins, which constitute up to 50% of all transmembrane
proteins, are typically active in significant conformational changes, such as a dimer or
other oligomers, which is essential for understanding the function of transmembrane
proteins. Finding the key motifs of oligomers through experimental observation is a routine
method used in the field to infer the potential conformations of other members of the
transmembrane protein family. However, approaches based on experimental observation
need to consume a lot of time and manpower costs; moreover, they are hard to reveal the
potential motifs. A proposed approach is to build an accurate and efficient transmembrane
protein oligomer prediction model to screen the key motifs. In this paper, an attention-
based Global-Local structure LSTM model named GLTM is proposed to predict dimers
and screen potential dimer motifs. Different from traditional motifs screening based on
highly conserved sequence search frame, a self-attention mechanism has been employed
in GLTM to locate the highest dimerization score of subsequence fragments and has been
proven to locate most known dimer motifs well. The proposed GLTM can reach 97.5%
accuracy on the benchmark dataset collected from Membranome2.0. The three
characteristics of GLTM can be summarized as follows: First, the original sequence
fragment was converted to a set of subsequences which having the similar length of
knownmotifs, and this additional step can greatly enhance the capability of capturing motif
pattern; Second, to solve the problem of sample imbalance, a novel data enhancement
approach combining improved one-hot encoding with random subsequence windows
has been proposed to improve the generalization capability of GLTM; Third, position
penalization has been taken into account, which makes a self-attention mechanism
focused on special TM fragments. The experimental results in this paper fully
demonstrated that the proposed GLTM has a broad application perspective on the
location of potential oligomer motifs, and is helpful for preliminary and rapid research
on the conformational change of mutants.
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INTRODUCTION

Single-pass membrane proteins are one of the most widely
classified membrane proteins, composed of a single
transmembrane ™ helix and several water-soluble domains,
and play an important role in cell signaling, motility, and
material transport (Rawlings 2016). Compared with the active
state of the multi-pass membrane protein is located within the
TM helical bundle, the single TM helix of single-pass membrane
protein was initially considered as a merely hydrophobic anchor
(Zviling et al., 2007). However, the TM helix of single-pass
membrane protein has been verified in making crucial
contributions to the protein-protein interaction in recent years.

The intramembrane helix-helix interaction of single-pass
membrane protein was firstly confirmed in the dimerization
process of human glycophorin A (GpA). In the 3D model for
the homo-dimer of human GpA, researchers observed the most
helix contact points occurred in the GxxxG motif of TMD (Russ
and Engelman 2000). Moreover, the statistical result indicated
that the GxxxG motif was one of the significant expression
residue pairs in the TM domain (Senes et al., 2000), and these
single-pass membrane proteins have a high homo-dimerization
tendency when their TM domain contains GxxxG motif (Brosig
and Langosch 1998). Except for the GxxxG motif, the polar
residue and the leucine zipper also confirmed their
irreplaceability in the assembly of oligomeric complexes (Li
et al., 2012). The interhelical hydrogen bond of the polar
residue directly influences their dimerization degree (LaPointe
et al., 2013). The leucine zipper is a (abcdefg)n heptad repeat
motif with leucine at every fourth position and hydrophobic
residues at every first position. This “knobs-into-holes” type of
side-chain packing facilitates self-associates of the TM domain
(Oates et al., 2010). Significantly, the conformational change of
single-pass membrane protein as typically receptor activation
basis selectively regulated cellular signaling (Hubert et al., 2010).
Many diseases are directly related to the dysfunction of
transmembrane receptor proteins, research of oligomers offers
the opportunity to design drug targets and develop new
pharmaceuticals (Cymer and Schneider 2010).

The amino acid residues frequency of the TM domain was
used to distinguish different homo-oligomer forms in the earliest
oligomer prediction model (Song and Tang 2005); their
prediction results confirmed the importance of residue
composition for protein quaternary structures. To avoid losing
important sequence context information of protein sequence, the
pseudo-amino acid composition (PseAAC) was proposed to
replace the simple amino acid composition (Zhang et al.,
2006). Discrete wavelet transformation was used to decompose
digit signals of protein primary structure into different
coefficients, and screen out effective global context features
(Qiu et al., 2011). This global feature description method
combined with a decision-tree algorithm obtained outstanding
prediction accuracy (Sun et al., 2012). Moreover, the functional
domain was discovered to be involved in molecular evolution in
recent years. The functional domain information has been
confirmed to improve the prediction performance, but the
application of these oligomer prediction models was limited in

the poor interpretability. For single-pass membrane proteins, an
interpretability motif discovery approach was employed to locate
their potential oligomer motifs by corresponding oligomer
prediction results.

In previous functional motif detection studies, researchers
mainly adopted rigorous statistical formulation to search for
overexpression subsequence patterns (Liang et al., 2012).
TMSTAT directly calculated the frequency of all pairs and
triplets of residues to screen out overexpression subsequence
patterns in the TM domain (Senes et al., 2000). A regular
expressions algorithm was used to more precisely specify
special residues position and interval size in SLiMFinder
(Edwards et al., 2007). As researchers realized the complexity
of nearby residues dependence, Markovian models were
gradually used to discover potential motif patterns, such as
NestedMICA (Dogruel et al., 2008), weighted hmm (Song and
Gu 2015), and HH-MOTiF (Prytuliak et al., 2017). Note that
these oligomer motifs as biologically defined anchors or
landmarks are limited in a sequence interval. The
discriminative motif discovery models DEME (Redhead and
Bailey 2007) and DlocalMotif (Mehdi et al., 2013) introduced
spatial confinement scores of each subsequence pattern to
distinguish unrelated subsequence patterns and local
functional motifs. DiMotiF proposed peptide-pair encoding
(PPE) to probabilistic segmentation variable-length
subsequence patterns and screened out positively related
subsequences as potential motifs after annotating possible
secondary structures of these subsequences (Asgari et al.,
2019). Although these above search algorithms have strong
statistical analysis ability to detect subtle subsequence pattern
signals from large datasets, these motif discovery approaches
cannot define their corresponding biological function for
discovered subsequence patterns.

In this paper, we propose a motif localization model called
GLTM to locate potential dimer motifs in the dimer prediction
process. The Global-Local Bi-LSTM structure was the
fundamental component of our motif localization model, and
this idea of bilayer structure referred to the influence of highly
conserved subsequence patterns and TM domain context
information on oligomerization. Combined with the advantage
of a Global-Local structure and the character of one-hot
encoding, GLTM achieved a new data enhancement on the
data preprocessing module. Additionally, new positional
penalization was proposed to encourage a self-attention
mechanism focused on known subsequence patterns. In the
benchmark dataset, GLTM reached 97.5% accuracy and
successfully located most key residue with self-focus and
position penalization. Moreover, we discuss the existing
deficiencies and application prospects of the motif localization
model in the dimerization study of residue mutations.

MATERIALS AND METHODS

Dataset
TheMembranome database was the first comprehensive resource
on single-pass membrane proteins and is widely used to assist
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analysis and computational modeling of single-pass membrane
protein and their complexes (Lomize et al., 2017). The
Membranome database collects and compiles diverse data of
single-pass membrane proteins, including amino acid
sequence, domain architecture, protein topology, and
oligomeric states. More importantly, Membranome contains
known key residues involved in the homo-dimerization
interface according to both mutagenesis studies and
computational models.

A new benchmark dataset was established and used for
training and testing our motif localization model. Firstly,
334 homo-dimers, which were verified by nuclear magnetic
resonance (NMR), mutagenesis experiments, crystal structures
of dimers, or other validation methods of TM helix association,
were collected from Membranome. Secondly, the orthologs of
these 334 homo-dimers with similar oligomerization tendencies
were collected from UniProt. Thirdly, chosen dimer motifs were
spatially confined in the TM domain, and the C-terminal region
of the TM domain participated in helix-helix interactions. Forty
residues length of dimer fragment and no-dimer fragment were
intercepted from each collected single-pass membrane protein
sequence. Finally, the R1937 benchmark dataset collected 524

dimer fragments, 1,413 no-dimer fragments, and 24 known
motif positions based on 70% maximal identity.

Construction of GLTM Model
In bioinformatics areas, machine learning models widely used
k-mers as the protein sequences representation method. Fixed-
length subsequences were segmented from the original sequence
and regarded as units of biological sequences to encoding in the
k-mers treatment method. However, the directly one-hot
encoding for subsequence units ignores these strong coupling
effects between different positions in the oligomer research of TM
protein (Liang et al., 2012). This means that the representation
method of short sequence fragments needs to intensify the
context information of the TM domain for the oligomer
prediction task. Hence, an improved k-mers treatment method
was proposed to intensify the independence of every residue
based on Global-Local Bi-LSTM bilayer structure.

GLTM consists of the data preprocessing module, local Bi-
LSTM layer, global Bi-LSTM layer, and self-attention layer
(Figure 1A). The first data preprocessing module used the
random step selection approach to segment the original
sequence and used improved one-hot encoding to represent

FIGURE 1 | (A)GLTMmodel composed of data preprocessing module, local Bi-LSTM layer, global Bi-LSTM layer, and self-attention layer. After continuous twenty
times prediction, the model chose the subsequence fragment that was predicted more than 10 times as potential motif. (B) Data preprocessing module used no-fixed
step and improved one-hot encoding to encode original sequence fragment.
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these repeated expression residues. Standard one-hot encoding
used independent binary vector dimensions to respectively
represent twenty standard amino acids (Jing et al., 2020). The
K length of local subsequences was converted to a k*20 binary
vector by standard one-hot encoding. Our improvement strategy
takes advantage of the LSTM network, memory cell of LSTM
accepts previous output and cell states as input, and transmits
current output and cell states to the next memory cell, this Bi-
LSTM structure effectively utilizes sequence context information.
Referred to the idea of one-hot encoding, two new binary vector
dimensions were proposed to represent repeatedly residues
information between contiguous windows, and two window
states were appended in every local window to represent
repetitious residues numbers. Therefore, the bidirectional
feature extraction process preferentially accepted repetition
residues information on the local Bi-LSTM layer, and original
local subsequences were encoded to k+2*22 binary vectors
(Figure 1B).

After the data preprocessing module finished subsequences
encoding, the encoded vectors directly input into their
corresponding local window in the local Bi-LSTM layer. The
next global Bi-LSTM layer only accepted the final state output of
every local window to extract oligomerization features.
Significantly, the weight redistribution process of the self-
attention mechanism was the most critical function to locate
motif. In order to redress these false weight redistribution
processes, new penalization terms were proposed and applied
in the last self-attention layer.

Two Penalization Terms in Attentional
Mechanism
The self-attention mechanism was widely applied in deep learning,
and the redistributive weight of subsequence represented its
importance degree for prediction results. Hence, in our motif
localization model GLTM, the highest weight of local subsequence
was regarded as the potential oligomer motif. When well-trained,
GLTMhad high prediction accuracy in recognizing dimer fragments.
However, accurately locating motifs was always difficult in our
previous experiments. This underlying problem, named shortcut
learning, is a common deep learning symptom. Shortcut learning
typically shows that the deep learning model usually chooses
unintended features in prediction results without restricted
conditions. Position penalization and self-focus penalization terms
were proposed to reduce these fault localization of unintended
subsequence patterns.

A(x) � softmax(Ws2tanh(Ws1H(x)T)) (1)
GLTM randomly chooses n local window numbers from each

sequence fragment, and the feature number of a local window is
set as u in each unidirectional. Global Bi-LSTM hidden state
H(x) is a weight matrix with a shape of n-by-2u. The calculation
of annotation vector A(x) needs to set an arbitrary
hyperparameter da. The weight matrix Ws1 is sized da-by-2u,
and the matrix Ws2 has the shape 1-by- da. The softmax(p)
ensures all elements of annotation vector A(x) sum up to 1.

si � ec− |cen(x,i)−l(x)|

∑
n
ec− |cen(x,j)−l(x)|, if l(x) ≠∅ (2)

S(x) � (s1, s2,/sn) (3)
The window position score vector S(x) of these known dimer

motifs was calculated in the data preprocessing module. Symbol c
is an arbitrarily constant parameter, cen(x) represents the
window center-positive of corresponding local subsequence,
and l(x) is the center of these known oligomer motifs.

P(x) � {
����A(x)A(x)T − I

����22, if s � ∅
‖S(x) − A(x)‖22, if s ≠∅

(4)

L(θ) � argmin
θ
(∑m

i�1(
����yi − sigmoid(A(xi, θ)H(xi, θ))

����22
+ αP(xi, θ))) (5)

Self-focus penalization term enhances single-window weight
by minimizing the disparity between A(x)A(x)T and an identity
matrix. Position penalization is used to learn known motif
distribution by minimizing the disparity between annotation
vector A(x) and window position score vector S(x) for these
known dimer motifs.

RESULTS AND DISCUSSION

Visualization Result of 26 Known Dimers
In order to verify our model performance, we visualized prediction
results and localization results for these containing key residues
sequences in Figure 2. Note that the same sequence fragment has
hundreds of digital matrix representations in the encoding stage.
GLTM chose the highest weight local subsequence as a predicted
dimer motif when this sequence representation was predicted to
dimers and repeated this process twenty times to obtain the more
robust localization result. Three color regions were used to mark
different localization degrees for the dimer motif, the blue region
represents that a subsequence has been predicted to be a dimer motif,
the orange region represents more than five predictions as a dimer
motif. The subsequences with the most robust prediction result,
predicted more than 10 times, comprise the red region. These key
residues involved in known dimerization are signalled by a black
underline.

We show the prediction performance of GLTM with the
different window size and number parameters in Table 1, and
three evaluation indices were both more than 90% in all
experiments. Most known key residues were steadily located in
visualization results, in particular for the GxxxG motif of
glycophorin A and YxxxxT motif of ζζ which belong to these
overexpression subsequence patterns. Only mere
unconventionality motifs were successfully located. It may
cause by the scarcity of special dimer samples, and this guess
was repeatedly verified in the following experiments.

Effect of Two Penalization Terms
In previous experiments, we discovered these successfully located
motifs lower than a quarter of the known key residues. In order to
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enhance the localization accuracy, we proposed two penalization
terms to reduce mislocated subsequences, one was self-focus
penalization, and the other was position penalization. The self-
focus penalization was proposed to distinguish the critical local
subsequence in the weight redistribution process. However,
diversified oligomer motif localization only relied on self-focus
penalization was insufficient. Position penalization was used to
encourage the local window weight distribution to approximate
the corresponding motif position distribution for these known
dimer motifs.

In order to compare the localization performance with
different penalization combinations, we showed the
localization results of part known dimer sequences in
Figure 3. Moreover, we drew the located subsequences
position distribution of these dimer fragments and no-dimer
fragments in Figure 4. Obviously, without self-focus penalization
and position penalization, the located subsequence distribution

for dimer fragment and no-dimer fragment had the same crest
position. This means that the weight redistribution process
focused on the specific position information rather than
subsequence patterns. This tendency deviated from our
oligomer motif localization principle. Two penalizations were
both successfully reduced the unintended feature extraction for
specific position information. However, part end-terminal
subsequences were mislocated as potential motifs only with
self-focus penalization. With self-focus and position
penalization, GLTM reaches outstanding localization accuracy
and stability in motif localization tasks.

Dimer Motif Localization of TNF Receptor
Superfamily
The tumor necrosis factor receptors superfamily (TNFRSF) is one
of the most important single-pass membrane protein families.

FIGURE 2 | Visualization result of 26 known dimers. True time represents the total true prediction number in twenty prediction results. Black solid line shows key
residues for known dimerization process. Different levels of potential motifs have been labeled in red, orange, and blue, respectively. The red denotes to the most
important residues in dimerization.

TABLE 1 | Accuracy performance of the model with different window size and window number.

Window
number

5 residue lengths 6 residue lengths 7 residue lengths

Accuracy Precious Recall Accuracy Precious Recall Accuracy Precious Recall

9 0.966 0.934 0.942 0.971 0.936 0.956 0.969 0.932 0.954
10 0.96 0.921 0.932 0.974 0.956 0.947 0.971 0.938 0.954
11 0.961 0.926 0.928 0.965 0.934 0.936 0.974 0.942 0.96
12 0.975 0.94 0.968 0.973 0.929 0.969 0.974 0.945 0.959
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Most TNF receptors are candidates for antibody-based
immunotherapy. A recently growing number of studies
showed some tumor necrosis factor receptors play an active
role in receptor signaling. In driving signaling, dimerization is
an essential process which participates in the assembly of higher-
order structures (Pan et al., 2019). In recent dimerization
research, part potential dimer motifs of TNFRSF were
speculated by alignment of TNFRSF sequences from various
organisms (Zhao et al., 2020). These speculated dimer motifs
referenced to prior biological knowledge had high credibility.

In order to verify our motif localization performance in the
TNFRSF dataset, these TM sequences of TNFRSF were collected

from UniProt version 2020_10. In the prediction results, partial
TM sequences were falsely predicted to dimerize, and these
subsequences of high weight were also marked in Figure 5.
False prediction results were caused by the whole
hydrophobicity discrepancy between training samples.
Moreover, we noticed the most speculated dimer motifs was
the GxxxG motif for TNFRSF, the known subsequence patterns
information of the polar residue and the leucine zippers
influenced specific GxxxG motif localization in position
penalization.

We designed contrast experiments to verify the localization
effect of position penalization. We set three new training datasets

FIGURE 3 | Part localization results of GLTM with different penalization combination.

FIGURE 4 | (A) The position distribution of located subsequences for dimer fragments. (B) The position distribution of high weight subsequences for no-dimer
fragments.
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that include the different known motifs’ information. The RA
dataset included the information of the known GxxxG motif, the
polar residue, and the leucine zippers. The RB dataset only
utilized the information of the known GxxxG motif, and the
RC dataset had the information of polar residue and leucine
zippers. High position score subsequences were collected from
the training set, and their residue occurrence frequency was
calculated as the reference subsequences in Figure 6. The
located subsequences represented the residue occurrence
frequency for these located subsequences. Besides these
originally richly “blue” residues, the position penalization
enhanced the specific motif localization performance according
to supplied motif information.

The Influence of Sequence Context for Its
Dimerization
Oligomer motifs were usually simplified as a helix-helix
interactions paradigm, but more and more studies have
certified that these subsequence frames cannot simply be
regarded as a surrogate tool for oligomer state
determination (Li et al., 2012). Other residues also
influence helix-helix interactions besides oligomer motifs.
For instance, the TM domain context highly determines the
thermodynamic stability of TM helix-helix interactions than
local GxxxG motif in glycophorin A (Bano-Polo et al., 2012).
The SDS-PAGE analysis of glycophorin A mutants
demonstrated that the C-terminal region residues were also

important for their helix packing (Bano-Polo et al., 2012).
Partial residues deletion and replacement will damage
oligomerization to different degrees (Orzaez et al., 2000).
Moreover, researchers guessed the distance between the
dimerization motif and the flanking charged residues play a
key role in the stability of TM helix-helix interactions. We
chose 17 sequence fragments to research oligomerization
based on previous residue mutation experiments of
glycophorin A and ζζ. The first fifteen sequence fragments
had confirmed their dimerization degree in previous
biological experiments, and the dimerization interface
of the last seven mutants was destroyed by residue
replacement.

Most mutants of single hydrophobic residue replacement
were predicted to dimerize in Figure 7. Although the
prediction results of single residue mutants differ widely
from the actual dimerization degree, other mutants were
successfully predicted to not dimerize when the
hydrophobic residues had been massively replaced.
Significantly, the GxxxG motif and YxxxxT motif were
stable when located in most mutants. This visualization
results demonstrated that GLTM captured these
overexpression subsequence patterns and considered
sequence context information in oligomer prediction.
Current experiments were limited in the lack of oligomer
data. The motif localization model has broad application
prospects in mutant oligomerization research with the
rapid growth of sequencing data.

FIGURE 5 | Different levels of potential motifs has been predicted and labeled in red, orange and blue, respectively. Red denotes to the core of the potential motifs.
The speculative motifs generated by alignment of homologous species are marked by black solid line for comparison.
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CONCLUSION

In this paper, we propose an attention-based Global-Local structure
Bi-LSTMmodel named GLTM to locate potential dimer motif. The
three main components of GLTM can be summarized as follows:
The first component was data preprocessing module, this module
improved one-hot encoding to achieve a new data enhancement
approach of subsequence segmentation; The secondary global-local

Bi-LSTM structure was proposed to respectively extract local
subsequence patterns and global context features; Proposed
position and self-focus penalization reduce these irrelevant
subsequences localization in tertiary attention mechanism layer.
GLTM successfully located the most known key residues in the
established benchmark dataset. In comparative experiments, the
visualization results demonstrated the effectiveness of our proposed
position and self-focus penalization. Different from the oligomer

FIGURE 6 | Three contrast experiments respectively used RA, RB, and RC training datasets which include different known motifs information. Corresponding
reference subsequence represents the residues frequency of high window score subsequences. The located subsequence represents the frequency of 20 amino acid
residues for all located subsequences.

FIGURE 7 | Visualization results of 17 mutants. The labels of first 11 mutants were confirmed in biological experiments, and the labels of last six mutants were
speculated to be by their destroyed dimerization interface.
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motif discovery method, our motif localization model achieved end-
end motif localization function without multiple homologous
sequences alignment. More importantly, our motif localization
model has broad application prospects in the research of mutant
oligomerization.
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