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Abnormal characterization of dynamic functional 
connectivity in Alzheimer’s disease
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Abstract  
Numerous studies have shown abnormal brain functional connectivity in individuals with Alzheimer’s disease (AD) or amnestic mild 
cognitive impairment (aMCI). However, most studies examined traditional resting state functional connections, ignoring the instantaneous 
connection mode of the whole brain. In this case-control study, we used a new method called dynamic functional connectivity (DFC) to look 
for abnormalities in patients with AD and aMCI. We calculated dynamic functional connectivity strength from functional magnetic resonance 
imaging data for each participant, and then used a support vector machine to classify AD patients and normal controls. Finally, we highlighted 
brain regions and brain networks that made the largest contributions to the classification. We found differences in dynamic function 
connectivity strength in the left precuneus, default mode network, and dorsal attention network among normal controls, aMCI patients, and 
AD patients. These abnormalities are potential imaging markers for the early diagnosis of AD. 
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Introduction 
A patient is diagnosed with dementia every 3 seconds, and the global 
number of people with dementia is expected to reach more than 70 
million by 2030 (McDade and Bateman, 2017). Alzheimer’s disease 
(AD) is one of the most common causes of dementia in older adults. 
Despite the tremendous burden for patients, their families, and 
societies, effective treatments for AD are still lacking (Tiwari et al., 
2019). Amnestic mild cognitive impairment (aMCI) has been regarded 
as a transitional stage between normal aging and AD (Blennow and 
Hampel, 2003). Interestingly, not all aMCI patients experience further 
progression. Thus, studying aMCI and AD patients simultaneously 
might aid the discovery of biomarkers of disease progression (Drago 
et al., 2011). Making timely and effective diagnoses in the early 
stages of AD could lead to promising opportunities for interventions 
(Grady et al., 1988; Jack et al., 2010).

Functional magnetic resonance imaging (fMRI) is  used to 
noninvasively obtain brain activity information by measuring blood 
oxygen level-dependent signals (Logothetis and Wandell, 2004; Cai 
et al., 2020; Huang et al., 2020; Xing et al., 2021). Previous fMRI and 
structural MRI studies have shown evidence of reduced gray matter 
volume and cortical thickness in multiple brain regions (Wenk, 2003; 
Suzuki et al., 2019) in the preclinical phase of AD, and these changes 
are strongly associated with altered cognitive function. In particular, 
resting-state fMRI has great potential for discovering biomarkers of 
AD, which could facilitate early diagnosis of AD and understanding 
of the underpinning mechanisms (Luo et al., 2019). Widespread 
alterations in connectivity among multiple brain systems have been 
reported in AD patients (Dennis and Thompson, 2014). For instance, 
AD patients exhibited decreased connectivity in the default mode 
network (DMN), as well altered functional connectivity between 
the default-mode and salience network (Schultz et al., 2017). 
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Graphical Abstract Differences in the strength of dynamic functional connectivity among 
individuals with amnestic mild cognitive impairment, Alzheimer’s disease, 
and normal controls

From the Contents
Introduction 2014

Participants and Methods 2015

Results 2017

Discussion 2019



NEURAL REGENERATION RESEARCH｜Vol 17｜No. 9｜September 2022｜2015

NEURAL REGENERATION RESEARCH
www.nrronline.orgResearch Article

These large-scale dynamic network abnormalities were related to 
reduced cognitive performance, as well as to the levels of molecular 
biomarkers of AD and AD-related genetic risk factors (Wang et al., 
2021).

Static resting-state functional connectivity has been widely used to 
measure the correlation between averaged time courses in different 
brain regions. However, dynamic connectivity analysis is used to 
calculate the variability of functional connectivity over time by 
considering temporal fluctuations within varying windows (Hutchison 
et al., 2013). Dynamic functional connectivity (dFC) has certain 
advantages with respect to static connectivity, such as providing 
more useful information to distinguish patients from healthy controls 
(Rashid et al., 2014). One of these novel measures is dFC strength 
(dFCS), which represents the strength of the dynamic correlation 
between the time series of voxels. This measure reflects the dynamic 
interconnections between brain regions from the voxel perspective 
(Luo et al., 2019). However, few studies have investigated the 
variability of dFCS in AD patients, especially in the aforementioned 
DMN. Based on a series of previous studies, we hypothesized that, 
compared with cognitively normal older adults, the dFCs of the DMN 
would be low in patients with AD and aMCI, and that this would be 
associated with overall cognitive ability.

dFC features can reflect detailed changes in brain activity (Du et al., 
2017). When static and dFC features were compared in terms of 
utility in clinical disease recognition, the dFC features were more 
accurate in identifying diseases, and combining static and dynamic 
features did not lead to a significant improvement in accuracy (Rashid 
et al., 2016). Numerous studies have indicated that dFC is better able 
to distinguish patients from controls compared with state functional 
connection analysis (Rashid et al., 2014; Chen et al., 2018; Yang et al., 
2019), which is widely used in studies of autism (Chen et al., 2017), 
schizophrenia (Duan et al., 2020), and depression (Liao et al., 2018). 
In recent years, some investigators have used the dynamic amplitude 
of low frequency fluctuation signals to examine characteristics of AD 
(Zeng et al., 2019), but few studies have compared dFC among AD, 
aMCI, and normal control (NC) groups.

Rapid developments in computer science and the accumulation 
of brain imaging data have provided clinical researchers with new 
approaches for differentiating and predicting AD and aMCI (Pereira et 
al., 2009). One of these techniques is a machine learning algorithm 
called a support vector machine (SVM). SVMs map the input vectors 
(input data) into a high-dimensional feature space and then compute 
a hyperplane that divides these input vectors into two classes. 
SVMs have been extensively used in AD pathology research, drug 
development, and computer-aided diagnoses (Haller et al., 2011). For 
instance, Zhao et al. (2019) used a SVM to identify 257 microRNAs 
associated with AD. Lv and Xue (2010) improved the effectiveness 
of a SVM in predicting inhibitors of acetylcholinesterase, a drug 
for AD, using a new feature selection method. Chaves et al. (2009) 
obtained a diagnostic accuracy of 98.3% for early AD diagnosis using 
voxels in the temporal and parietal regions as features. Recently, 
resting-state fMRI data has become much easier to collect, making 
it a useful tool for discovering the biomarkers of AD. Furthermore, 
dynamic connectivity (e.g. dFCS) can provide more information about 
how neural processes change over time (Ma et al., 2020). However, 
no studies have employed SVMs to conduct aMCI-NC and AD-NC 
classifications using dFCS variability as features.

To examine our above-mentioned hypothesis, we compared 
differences in dFCS at the voxel level among three groups (AD, aMCI, 
and NC), and then explored the relationship between comprehensive 
cognitive performance and dFCS variability in statistically significant 
regions. In addition, to investigate potential dFCS variability in pre-
clinical diagnoses of AD, we trained two SVM models to conduct 
aMCI-NC and AD-NC classifications, respectively, and visualized the 
weights of brain regions and brain networks that contributed to the 
classification.
 
Participants and Methods   
Participants
This case-control study was approved by the Institutional Ethics 
Committee of the General Hospital of the Chinese PLA General 
Hospital (approval No. 20100317-001) on April 28, 2010 (Additional 
file 1). All subjects were recruited from the Neurology Outpatient 
Clinic of PLA General Hospital (Beijing, China) between January 
1, 2017 and March 12, 2020, and two experts (BZ and YEG) were 
involved in the final diagnosis of each subject. All subjects agreed to 

participate and signed ethical informed consent forms (Additional 
file 2). They underwent standard pre-experimental physical and 
psychological examination batteries, neuropsychological screening, 
and a cranial magnetic resonance scan. A total of 107 subjects were 
included in this study, including 36 patients with AD, 30 patients with 
aMCI, and 41 individuals who were cognitively NC. This study was 
conducted in accordance with the STrengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) statement (von Elm 
et al., 2007) (Additional file 3).

Selection criteria
We included AD patients who (1) met the criteria for AD diagnosis 
jointly developed by the National Institute of Neurological and 
Communicative Disorders and Stroke (NINCDS) (McKhann et 
al., 1984) and the Alzheimer’s Diseases and Related Disorders 
Association (ADRDA) (McKhann et al., 1984); (2) had a final score of 
1 or 2 on the Clinical Dementia Rating Scale (CDR) (Sperling et al., 
2011); (3) had no history of use of medications that affect cognition 
(e.g., acetylcholinesterase inhibitors, NMDA receptor antagonists); 
and (4) were aged 60–80 years.

In accordance with Peterson’s criteria (Petersen et al., 2014) 
for mild cognitive impairment, we selected aMCI patients with 
(1) self-reported cognitive decline or confirmed decline from a 
knowledgeable person, with clinically significant symptoms of 
cognitive decline that had persisted for at least six months, and who 
did not met the criteria for a dementia diagnosis; (2) a score of 0.5 on 
the CDR; (3) an activities of daily living score (Petersen et al., 2001) 
of 26 or less and no significant impairment in the ability to perform 
activities of daily living; and (4) a Mini-Mental State Examination 
(MMSE) score (Petersen, 2004) no less than 24. We selected normal 
controls who were over 65 years old with a CDR score of 0, activities 
of daily living score less than 26, and MMSE score greater than 24. 

We excluded patients with a Hachinski ischemic index score (Pantoni 
and Inzitari, 1993) of 4 or more, hypothyroidism, vitamin B12 or 
folic acid deficiency, a long history (more than 5 years) of smoking 
and alcohol abuse, inability to complete an MRI scan (patients with 
contraindications to MRI scanning, i.e., severely febrile, critically 
ill, claustrophobic, in early pregnancy, and with metal implants in 
the body or metal foreign bodies) or neuropsychological testing, 
traumatic brain disease or a history of other brain disorders, 
Parkinson’s syndrome, epilepsy, and those with other systemic 
neurological disorders that severely affect cognitive function and 
systemic disorders that can affect MRI scans or neuropsychological 
tests. We excluded patients whose fMRI images failed visual quality 
control or pre-processing. The trial procedure is shown in Figure 1.

Figure 1 ｜ Patient flow chart.
AD: Alzheimer’s disease; aMCI: amnestic mild cognitive impairment; fMRI: 
functional magnetic resonance imaging; NC: normal control.

Patients eligible for enrollment criteria

Step 1: Collection of medical history + neurological examination + full set 
of neurological scale screening + laboratory tests + preliminary image 
screening

Step 2: Clinical diagnosis and identification by two experienced 
experts

NC group aMCI group AD group

Magnetic resonance data acquisition

3.0T fMRI

Image processing and analysis of fMRI data
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Neuropsychological tests
All subjects underwent a series of neuropsychological tests, including 
the MMSE, CDR, Geriatric Depression Scale (GDS), Montreal cognitive 
assessment (MoCA), and the Activities of Daily Living Scale (ADLS). 
The MMSE is currently the most widely used scale for evaluating 
cognitive function. It is simple and easy to implement, and includes 
items about time, place, calculation, and memory. The total score 
ranges from 0–30 points, and lower scores reflect worse cognitive 
function (Petersen, 2004). The MoCA is used to quickly screen for 
mild cognitive dysfunction. It includes a total of eight tests measuring 
different cognitive domains such as memory, executive function, 
visual space, and attention. The maximum score is 30 points. If the 
patient has 12 or fewer years of education, 1 point is added to the 
total score. A lower score reflects worse cognitive function. The 
CDR is mostly used to assess the degree of cognitive impairment 
in patient populations, and covers memory, orientation, judgment, 
problem-solving, and social activities. The total score is expressed 
as 0, 0.5, 1, 2, or 3 points. A higher score reflects worse cognitive 
function (Sperling et al., 2011). We also used the GDS-15, which is 
currently recommended by the American Academy of Geriatrics 
for screening depression in older people, and has a total score of 
0–15. Higher scores represent more serious depression. Patients 
with > 4 points on the GDS-15 were excluded from this study. Finally, 
we used the ADLS, which includes the basic ADL and instrumental 
ADL, and covers 20 activities such as eating, dressing, bathing, and 
handling money independently. The ADL is considered to be the most 
appropriate assessment of activity ability in elderly individuals. Each 
item is worth 1–9 points, for a total of 20–180 points. A higher score 
indicates worse living ability. 

fMRI
Image acquisition and preprocessing
MRI images were acquired by an experienced physician using a 
Siemens 3.0T MRI scanner with a 20-channel cranial coil. Scanning 
was conducted at the outpatient clinic of the Department of 
Radiology, Chinese PLA General Hospital. fMRI images were acquired 
using a gradient echo combined with a single excitation echo planar 
imaging sequence (64 × 64 resolution, 2000 ms repetition time, 
30 ms echo time, 30 axial layers with 1 mm layer space and 3 mm 
thickness, 220 mm × 220 mm field of view, 90 flip angle, and duration 
of 8 minutes 6 seconds). We used the following protocol to obtain 
better MRI quality. First, all subjects underwent safety training prior 
to image acquisition. The subjects wore latex earplugs and a fixed 
head strap throughout the scan to minimize the effects of instrument 
noise and involuntary head movements. They were asked to lie down 
and relax with their eyes closed, and to avoid systematic thinking 
during the scan.

We used DPASFA (Data Processing Assistant for Resting-State 
fMRI package, version 4.2; http://www.restfmri.net) for fMRI 
preprocessing. Briefly, the standard process is as follows. First, we 
excluded the first 10 volumes in each fMRI dataset to account for 
changes in the magnetic field stability during scanning and the 
subject’s adaptability to the scanning environment. Second, we 
corrected the data for participant head movements and slice-timing 
(Buchanan et al., 2020). Third, we registered all images to standard 
Montreal Neurological Institute neuroimaging space and performed 
spatial correction with a full width at half maximum Gaussian kernel 
function to reduce individual anatomical structure differences and 
spatial noise (resample resolution of 3 mm × 3 mm × 3 mm and 
kernel length-width-height of 6 mm × 6 mm × 6 mm). Finally, we 
denoised the data via linear regression and a subsequent temporal 
band-pass filter (0.01–0.1 Hz) to regress out interfering covariates 
including Friston 24 motion parameters, linear drift, white matter 
signal, and cerebrospinal fluid signal.

dFCS
We used the DynamicBC toolkit (v1.1, www.restfmri.net/forum/
DynamicBC) to calculate the global dFCS for each voxel with the 
sliding window approach, as shown in the flow chart in Figure 2. We 
set the length of the window to 50 repetitions with an overlap of 0.6. 
The rest of the parameters were identical to a previous study (Luo et 
al., 2019) (230 total repetitions were available and 7 windows were 
created.) For each window, we first calculated the global dFCS at each 
voxel as the sum of the functional connectivity between this voxel 
and the other voxels in the brain mask. We adopted the threshold 
P < 0.001 to eliminate voxels with weak correlations attributable to 
signal noise and removed negative correlations. Then, we obtained a 
series of dFCS maps corresponding to the number of windows. The 
variance of each dFCS map across time was calculated to measure 

its temporal variability. Finally, on the basis of a previous study, 
the variance of the dFCS map for each subject was transformed to 
a Z score by subtracting the mean values divided by the standard 
deviation of all values within the brain mask to control the global 
effects (Zou et al., 2008).

Data analysis
Data analysis was performed using the DynamicBC toolbox in Matlab 
2018b (The MathWorks, Inc., Natick, MD, USA) as described below. 
First, we compared demographic factors, including age, gender, 
and years of education using either an analysis of variance or the 
Chi-squared test among the AD, aMCI, and NC groups. Second, we 
conducted a voxel-wise one-way analysis of covariance with age, 
gender, and education as covariates to determine the altered variance 
of dFCS among the three groups. We corrected the results via 
threshold-free cluster enhancement correction (Smith and Nichols, 
2009) at a significance level of 0.05. Third, we extracted the variance 
of the dFCS values with significant differences among the three groups 
by summing the Z scores of the clusters with statistical significance, 
and then conducted between-group comparisons via two-tailed two-
sample t-tests. Finally, to investigate the relationship between cognitive 
ability and dFCS variability in statistically significant regions, we 
conducted a partial correlation analysis of dFCS variance with MMSE 
scores and MoCA, controlling for age, gender, and years of education.

To discriminate aMCI and AD from NC, we used the variance 
of dFCS maps as features and trained linear SVM models using 
LIBSVN 3.25 (https://www.npackd.org/p/libsvm/3.25). This led to 
a model with more interpretability than other non-linear models 
and less susceptibility to over-fitting. Because of the limited study 
population, we used 5-fold cross validation (Figure 3) to evaluate 
the performance of the models. In each model, four-fifths of the 
participants were selected as the training dataset, and the other 
participants were used as the test dataset. Because the classification 
was pair-wise, we used a two-sample t-test to select the features with 
P values < 0.05 in the training dataset. Although they can preserve 
multivariate patterns, we did not use multivariate feature selection 
methods such as recursive feature elimination because they are time-
consuming. Before inputting the data into the model, we normalized 
the features using the mean values and standard deviations from 
the training dataset. We used the accuracy, sensitivity, specificity, 
area under the curve, positive predictive value, negative predictive 
value, and F-score to evaluate model performance. We used the 
permutation test to determine whether the obtained final metrics 
were significantly better than chance. Specifically, we ran the above 
prediction procedure 1000 times. For each time, we permuted the 
labels across the samples without replacements. The P values of the 
metrics were calculated by dividing the number of permutations 
with a higher value than the actual value for the real sample by the 
total number of permutations. For each sample, we also calculated 
the decision value, which is the distance between the samples on 
a hyperplane that is determined by SVM classifiers. We also used 
partial correlation analysis to explore the relationship between 
decision values and MMSE and MoCA scores.

Finally, we visualized the distribution of voxels contributing to the 
classifier by summing the weights (absolute weight)/distributions 
of the voxels separately on the brain region or network level using 
LIBSVN 3.25. Ninety brain regions were defined using the AAL 
template in standard space (Tzourio-Mazoyer et al., 2002). The 
whole brain was divided into seven networks based on a functional 
partition, as described by Yeo et al. (2011): visual network, 
somatomotor network, dorsal attention network, ventral attention 
network, limbic network, frontoparietal network, and DMN. The 
specific coordinates and detailed functions of the brain regions in 
these seven networks can be found in Bargmann and Marder (2013).
We also conducted a follow-up analysis. The goal of the training 
process for the SVM model was to determine a hyperplane and 
separate the different types of samples in the feature space. The 
coefficients defined by the hyperplane can be used to quantify the 
contribution of different features in the classification task, that is, 
the greater the absolute value of the coefficients, the greater the 
contribution of the corresponding features. We coded the patient 
sample as 1 and the control group as –1. Compared with the controls, 
the patient group had a higher number of features with positive 
coefficients in the hyperplane, that is, with positive contributions. 
In contrast, the eigenvalues with negative coefficients, that is, those 
with negative contributions, tended to be lower in the patient group. 
The statistical methods of this study were reviewed by the 
biostatistician of Chinese PLA General Hospital.
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Results
Demographic features of AD, aMCI, and NC groups
We found no significant differences in age, gender ratio, or years 
of education among the three groups (P > 0.05). However, the 
MMSE and MoCA scores were significantly different (P < 0.001), 
with the lowest scores for AD patients, highest scores for NCs, and 
intermediate scores for aMCI patients (Table 1).

Table 1 ｜ Demographic and neuropsychological data for the AD, aMCI and 
NC groups

Item AD (n=36) aMCI (n=30) NC (n=41) F-value P-value

Age (yr) 71.6±8.8 69.4±8.8 68.3±6.8 3.0491 0.2177
Sex (male/
female)

16/20 11/19 21/20 0.0376 0.9814

Education (yr) 9.7±4.5 12.1±4.0 12.1±4.3 0.4472 0.7996
MMSE score 17.72±6.0 26.83±2.13 28.51±1.36 86.6850 < 0.001
MoCA score 14.37±3.15 22.11±2.62 26.64±2.65 104.5989 < 0.001

Data are expressed as mean ± SD, and were analyzed by one-way analysis 
of variance, except sex with number and analyzed by Chi-squared test. AD: 
Alzheimer’s disease; aMCI: Amnestic mild cognitive impairment; MMSE: 
Mini-mental state examination; MoCA: Montreal Cognitive Assessment; NC: 
Normal control.

Significant differences in the left precuneus among the AD, aMCI, 
and NC groups
Using voxel-wise analysis, we found significant differences in dFCS 
variance in a cluster including the left precuneus among the three 
groups (Figure 4A). The Montreal Neurological Institute coordinates 
of the peak voxel, which had an F value of 12.03, were (–3, –60, 57) 
and the cluster size was 6. Then, we extracted the mean variance 
of the dFCS in the left precuneus. A two-tailed two-sample t-test 
(Figure 4B) showed that the mean variances of the dFCS in the left 
precuneus region of patients with aMCI (P < 0.01) and AD (P < 0.001) 
were lower than that in the NC group.

dFCS variance in the left precuneus was positively correlated with 
MMSE and MoCA scores
A partial correlation analysis controlling for sex, age, and education 
revealed that the mean variance of the dFCS in the left precuneus 
was significantly positively correlated with MMSE (r = 0.29, P = 0.003) 
and MoCA (r = 0.24, P = 0.038) scores (Figure 5). 

Performance of classifiers
As shown in Table 2, except for the specificity and positive predictive 
value, for which the aMCI-NC classifier was better than the AD-NC 
classifier, the aMCI-NC classifier did not perform as well as the AD-NC 
classifier in all other measured domains.

Table 2 ｜ Performance of classifying the AD and aMCI groups from the NC 
group

NC vs. aMCI NC vs. AD

Data P-value Data P-value

Accuracy 0.68 0.007 0.71 0.004
Sensitivity 0.40 0.009 0.72 0.001
Specificity 0.88 0.031 0.71 0.039
Area under curve 0.61 0.05 0.75 0.001
Positive predictive value 0.71 0.014 0.68 0.031
Negative predictive value 0.67 0.006 0.74 0.003
F-score 0.51 0.011 0.7 0.001

AD: Alzheimer’s disease; aMCI: amnestic mild cognitive impairment; NC: 
normal control.

We performed a partial correlation analysis to explore whether the 
decision values generated from the SVM classifiers were correlated 
with the MMSE and MoCA scores. As shown in Figure 6, the decision 
values were significantly correlated with the MMSE (r = 0.42, P < 
0.001) and MoCA (r = 0.27, P = 0.016) scores.

Brain regions that most strongly contributed to classification
To identify the brain regions that most strongly contributed to 

classification, we calculated the mean positive and negative weights, 
respectively, for each region. Table 3 shows the ten regions that 
most negatively and positively contributed to the classification of 
aMCI and NC. Most of the contributive regions were in the frontal 
and temporal lobes, while some regions in the frontal, temporal, and 
occipital regions positively contributed to classification. 

Table 3 ｜ The ten regions that contributed most to the classification of the 
aMCI from the NC group

Region Absolute weight (×10–5)

Negatively
Left superior temporal gyrus 3.94
Left parahippocampal gyrus 3.84
Left rolandic sulcus 3.59
Right parahippocampal gyrus 3.06
Right Heschl’s gyrus 2.93
Right middle orbitofrontal cortex 2.37
Left superior orbitofrontal cortex 2.36
Right superior frontal gyrus 2.32
Left Heschl’s gyrus 2.32
Left amygdala 2.31

Positively
Left Heschl’s gyrus 3.46
Right middle temporal pole 3.13
Left superior temporal gyrus 3.06
Right middle orbitofrontal cortex 2.91
Left fusiform gyrus 2.83
Right fusiform gyrus 2.28
Left superior occipital gyrus 2.07
Left middle orbitofrontal cortex 2.02
Right superior frontal gyrus 1.99
Left inferior temporal gyrus 1.94

aMCI: Amnestic mild cognitive impairment; NC: normal control.

Pertaining to the classification of NC and AD, negatively contributive 
brain regions were mainly found in the bilateral temporal lobes 
and precuneus, while positive regions were located in the bilateral 
parahippocampal gyrus and orbital frontal lobes (Table 4).

Table 4 ｜ The ten regions that contributed most to the classification of the 
AD from the NC group

Region Absolute weight (×10–5)

Negatively
Left middle temporal gyrus 4.17
Right supramarginal gyrus 3.76
Left medial orbitofrontal cortex 3.65
Right rectus gyrus 3.6
Right middle temporal gyrus 3.4
Right precuneus 3.26
Right inferior temporal gyrus 3.23
Right inferior parietal gyrus 2.14
Left rectus gyrus 2.14
Left precuneus 2.11

Positively
Left superior temporal gyrus 3.94
Left parahippocampal gyrus 3.84
Left rolandic operculum 3.59
Right hippocampal gyrus 3.06
Right heschl gyrus 2.93
Right middle frontal gyrus, orbital part 2.37
Left superior frontal gyrus, orbital part 2.36
Right superior frontal gyrus 2.32
Left heschl gyrus 2.32
Left amygdala 2.31

AD: Alzheimer’s disease ; NC: normal control.



2018  ｜NEURAL REGENERATION RESEARCH｜Vol 17｜No. 9｜September 2022

NEURAL REGENERATION RESEARCH
www.nrronline.org Research Article

Brain networks that most strongly contributed to classification
We also considered the mean positive and negative weights in the 
brain networks (Yeo et al., 2011). In the aMCI-NC classifier, the DMN 
and frontoparietal network were the most contributive networks 
(Figure 7), whereas in the NC-AD classifier, the weights were almost 
all negative and mainly located in the DMN (Figure 8). For both the 
aMCI-NC and AD-NC classifiers, the visual network, somatomotor 
network, ventral attentional network, and limbic network had 
positive weights, with two clear phenomena. First, the weight of the 
positive contribution of the above networks was significantly higher 
in the aMCI-NC group than in the AD group. Second, the contribution 
weight of the somatomotor network was mainly positive, and its 
weight was second only to that of the DMN.

B

A

C

D

Figure 2 ｜ Process of dFCS calculation.
(A) Raw fMRI. (B) Preprocessed fMRI. (C) Calculation of dFCS atlas using a 
sliding-window approach. (D) Final atlas of dFCS variance. dFCS: Dynamic 
functional connectivity strength; fMRI: functional magnetic resonance 
imaging.

Figure 3 ｜ Five-fold cross validation.
The dataset was divided into five parts for 5-fold cross validation. One part 
was selected as the test dataset, while the remaining four parts were used as 
the training dataset. This was repeated five times so that each fold of the data 
was selected as a test set once, enabling us to obtain the predicted labels 
for all of the data. ‘b’ and ‘w’ in the figure are the parameters of the SVM. 
Different colored balls represent the samples with different labels.
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Figure 4 ｜ The difference in dFCS among the NC, aMCI, and AD groups. 
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Figure 7 ｜ The weight of classifying the aMCI from the NC group.
(A) The distribution of negative weight. (B) The distribution of positive weight. 
(C) The weight of different functional networks. (D) The normalized weight 
(by the volume of the functional network) of different functional weights. 
“Default” represents the default mode areas. aMCI: Amnestic mild cognitive 
impairment; L: left; NC: normal control; R; right. 

Figure 8 ｜ The weight of classifying the AD from the NC group. 
(A) The distribution of negative weight. (B) The distribution of positive weight. 
(C) The weight of different functional networks. (D) The normalized weight 
(by the volume of the functional network) of different functional weights. AD: 
Alzheimer’s disease; L: left; NC: normal control; R; right.
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Discussion
We found that the dFCS variance in the left precuneus was 
significantly lower in AD and MCI patients compared with NCs, 
and that changes in the dFCS variance in the left precuneus were 
correlated with disease severity. In particular, the partial-correlation 
analysis showed that changes in dFCS variance in the left precuneus 
were linked to decreased MMSE scores after controlling for age, sex, 
and education as confounding variables. In addition, two SVM models 
were trained to classify AD from NC as well as aMCI from NC. Our 
results indicated that the AD-NC classifier had better performance 
than the aMCI-NC classifier. The mean weights across brain regions 
and brain networks imply that the temporal lobe plays a significant 
role in the development of AD and MCI, and that the DMN and 
frontoparietal network play prominent roles in the progression of AD. 
Together, our results suggest that these neural measures of dynamic 
connectivity strength may serve as biomarkers that could be used in 
the diagnosis, treatment, and ongoing assessment of AD. 

Altered dFCS variability in the left precuneus in AD patients
Our results indicate that dFCS variance in the left precuneus was 
significantly reduced in AD and MCI patients compared with healthy 
older people. The precuneus is the superior parietal part of the 
medial surface of each cerebral hemisphere, and is located in front 
of the cuneus (the superior part of the occipital lobe). The precuneus 
is a main node of the DMN, and part of the precuneus was included 
in the frontal parietal control network in our study. The precuneus 
has been associated with various cognitive functions including 
episodic memory, self-reflection, and other aspects of consciousness 
(Cavanna and Trimble, 2006). Interestingly, the precuneus shows 
both functional and structural lateralization. For instance, compared 
with the right precuneus, the left precuneus was found to exhibit a 
greater degree of atrophy during normal aging and AD progression 
(Love and Miners, 2016). Similarly, imaging studies have indicated 
that the left precuneus is more vulnerable and more susceptible to 
various neurological disorders, including AD (Fusar-Poli et al., 2011). 
Furthermore, the functional connectivity of the left precuneus was 
found to be more vulnerable in AD patients than NCs during memory 
tasks (Berthoz, 1997). Consistent with the aforementioned findings, 
we found the most significant dFCS variability in the left precuneus 
in patients with AD. This dysfunction in the left precuneus may be 
underpinned by the accumulation of Aβ and tau proteins in this 
region in early AD patients (Miners et al., 2016; Baghel et al., 2019). 
Together, our findings suggest that abnormalities in dFCS variability 
in the left precuneus have potential as a noninvasive marker for early 
AD, and that early clinical interventions targeting this region may 
slow AD or aMCI progression.

In the present study, the mean MMSE score was lowest among AD 
patients, and we found a positive correlation between mean MMSE 
score and dFCS variability in the left precuneus after correcting for 
confounding variables. The MMSE is a rapid and comprehensive 
measure of overall cognitive function, and is widely used in clinical 
settings to screen for dementia (Tombaugh and McIntyre, 1992). A 
series of multicenter validation studies has shown that MMSE scores 
can accurately describe the trajectory of cognitive change in patients 
during the course of dementia development (Bergeron et al., 2017). 
For instance, a previous study found that increased MMSE scores 
predicted proneness to clinical symptoms in patients with AD (Li et 
al., 2016). By extending the results of that study, our findings suggest 
that changes in dFCS variability in the left precuneus might predict 
declines in cognitive ability during AD progression.

Classification of AD according to changes in brain regions and 
networks 
Previous studies have found that AD patients tend to have altered 
medial temporal lobe structures, especially hippocampal atrophy, 
enlarged ventricles, widened capsules, and other signs of brain 
atrophy. These changes can extend to the frontal lobe, parietal 
lobe, and cerebellum with disease progression (Villemagne et al., 
2018). In the present study, the brain regions that contributed to 
aMCI and NC classification were mainly distributed in the frontal 
lobe and temporal lobe, and these brain regions were included in 
the default network. At the same time, activity in the frontal lobes 
(including the orbitofrontal cortex), temporal lobes, and occipital 
lobes in aMCI and AD patients was enhanced compared with 
that in NCs. Previous studies have also found that MCI patients 
had excessive activation in the medial temporal lobe region, with 
reduced functional connectivity between the medial temporal lobe 
and other brain regions. This indicates that neuronal degeneration 

may increase functional connectivity in the medial temporal lobe, 
which may support performance in some subsystems (Alsop et al., 
2010; Pasquini et al., 2015). This region of the orbitofrontal cortex 
has functional connections with the thalamus, temporal lobe, 
amygdala, and olfactory system (Aggleton, 2012). In this study, we 
found different degrees of functional enhancement according to the 
stage of aMCI and AD. At the onset of AD, multiple brain regions are 
thought to compensate for neurological changes, thus upholding 
olfaction, feeding, auditory perception, and the reward system. This 
suggests that compensatory mechanisms are an indispensable part 
of the pathophysiological mechanisms of AD. Our brain network-level 
analysis revealed differences in brain networks between NCs and 
patients. For the aMCI-NC classifiers, the DMN and frontoparietal 
network made large cumulative contributions, whereas only the DMN 
showed a large contribution among the AD-NC classifiers. In addition, 
compared with the other brain networks, the frontoparietal network 
made a large contribution in terms of both classifiers, although this 
was less than the contribution of the DMN. 

A series of functional connectivity studies identified that AD and MCI 
patients are susceptible to changes in the DMN. This is consistent 
with our findings regarding the prominent contribution of the DMN 
in both classification models. The DMN is essential for memory, 
self-related cognitive processes, and cognitive control, which are 
involved in many cognitive functions in healthy individuals (Greicius 
et al., 2003). Disrupted DMN activity in AD and MCI patients has 
been found to contribute to the prominent decline of cognitive 
abilities. Our study provides new evidence regarding the role of 
DMN dynamics in distinguishing between AD, MCI, and healthy 
controls. The DMN plays an important role in self-related processing 
such as mind-wandering, which is essential for multiple cognitive 
functions (Vidaurre et al., 2017). Recently, dynamic changes in DMN 
functional connectivity were significantly implicated in flexible neural 
computation during both resting-state and cognitive tasks (Jones 
et al., 2011). Our results extend these findings by suggesting that 
altered DMN dynamics may contribute to the development of AD by 
disrupting flexible neural computation. 

Our findings regarding abnormalities in dFCS variability in the 
frontoparietal network in AD and MCI patients are consistent with 
previous studies. The frontoparietal network is the key component of 
the triple network structure (Cocchi et al., 2013). It flexibly interacts 
with the DMN and the salience network to allocate cognitive 
resources according to task demands in various environments (Cocchi 
et al., 2013). Altered frontoparietal network connectivity has been 
associated with disrupted working memory and executive control in 
many neurodegenerative disease including AD and MCI. For instance, 
a previous task-based fMRI-based study found that MCI patients 
exhibited stronger neural activity in the frontal and parietal regions 
than healthy controls during memory encoding and retrieval, working 
memory, executive function, and perception-related tasks (Chand et 
al., 2017). Similarly, a review summarizing 75 fMRI studies reported 
that MCI patients showed hypoactivation in the frontoparietal cortex 
relative to healthy controls (Li et al., 2015). Our findings support and 
extend the conclusions of some studies proposing that AD and MCI 
share the same neural compensation mechanisms, and therefore, 
that activity patterns in brain networks should be similar between 
MCI and AD patients. Furthermore, our results suggest that altered 
dynamics in the frontoparietal network may be an essential element 
of AD pathology, which may be related to disrupted flexibility of 
cognitive control. 

In the aMCI-NC classifier, the visual network, somatomotor network, 
ventral attention network, and edge-centric functional network made 
large positive contributions to classification. In contrast, in the AD-
NC classifier, the positive contribution was relatively low among all 
networks. This indicates that the brain may enhance the variability 
of various networks to compensate for cognitive decline in the early 
stage of aMCI. However, by the late stage of AD, the variability of 
functional connectivity had decreased, which may signal occurrence 
of functional compensation. This is consistent with literature 
indicating that compensation mostly occurs in the MMCI stage, but 
not in the AD stage (Delli Pizzi et al., 2019; Skouras et al., 2019).

Limitations
This study had several limitations. First, when we calculated dFCS, 
we summed the values of all voxels rather than the calculated mean 
value. This may have created a bias towards larger networks because 
they have more voxels. Second, the results of our analysis suggested 
that the performance of the classifier in terms of AD diagnosis was 
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not particularly high, which may have been related to the sample 
size of the study. However, dFCS is still a good model for studying the 
pathophysiological mechanisms of AD, and multivariate statistical 
analysis can serve as a supplement. Our effect size may have been 
higher if we had used a structural modality. However the goal of 
our study was to examine this application of functional modalities. 
Our results may have been limited by the small sample size. Future 
studies with larger sample sizes are needed.

Considering our relatively small sample size, and our plan to consider 
the contribution of all of the voxels in terms of dFCS variability 
in the classification system, we used SVM models because they 
have computational simplicity and efficiency for small samples 
(Zendehboudi et al., 2018). However, SVMs have several limitations. 
For instance, the performance of an SVM decreases when the 
dimensionality of the features exceeds the number of training data 
points. The SVM can neither divide the data points on the hyperplane 
nor describe the points outside the hyperplane in terms of attributes 
reflecting the distance from the point to the hyperplane. As a result, 
we could not fully consider the variability of dFCS among the AD 
patients in this study. Finally, using cross-validation combined with 
permutation tests, as we did in this study, is the most common 
solution for small sample problems in almost all machine learning 
studies. However, the uncertainty of the point estimates obtained 
using this validation method is unknown, and this uncertainty seems 
to be greater in biomedical settings (Rodríguez-Pérez et al., 2018). 
Therefore, future small sample studies should use this method 
in conjunction with advanced forms such as Bayesian confidence 
intervals.

Previous studies have shown that AD causes the cerebral cortices, 
including the temporal, frontal, and parietal lobes, to shrink over 
time (Chard et al., 2002; Li et al., 2016; Pini et al., 2016). This differs 
from what we found in the group comparisons. Considering that AD 
patients in traditional autopsy studies tend to have a more severe 
disease course than the patients in this study, changes in dFCS in 
the left precuneus might precede massive gray matter atrophy in 
other regions such as the temporal lobe. This conjecture should be 
examined in future longitudinal studies with larger samples. Our 
classification analysis indicated that the DMN including the temporal 
lobe contributed to the discrimination of AD patients from healthy 
controls. This indicates that the temporal lobe in the AD patients in 
this study may have undergone slight alterations that were not yet 
sufficient to distinguish between AD patients and healthy controls 
independently. Together, our findings suggest that clinicians should 
be concerned about abnormalities in the functional connectivity of 
the left precuneus. Because of the relatively small sample size in the 
present study, systematic, large-sample, longitudinal studies focusing 
on the left precuneus are needed to further validate our results and 
uncover more details regarding AD pathology.

Conclusion
In this study, we found significant abnormalities in dFCS variability 
in the left precuneus among AD and MCI patients, which were 
associated with reduced overall cognitive performance. Furthermore, 
SVM classification showed that dFCS variability in the DMN and 
frontoparietal network could be used as significant features to 
classify AD-HC and MCI-HC. Our findings build upon previous static 
functional connectivity studies of AD and highlight the important 
role of dynamics of the precuneus, DMN, and frontoparietal network 
in flexible computation during the resting-state. Alterations in 
these neural processes may contribute to the development of AD. 
Furthermore, our results suggest the potential of dFCS variability, 
especially in the precuneus, DMN, and frontoparietal network, as 
an AD imaging marker for the early diagnosis of AD. Considering 
the relatively small sample size and methodological limitations, the 
results of this study need to be validated by future research.
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