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Abstract
Emerging data suggest that Electro-Convulsive Treatment (ECT) may reduce depressive

symptoms by increasing the expression of Brain-Derived Neurotrophic Factor (BDNF). Yet,

conflicting findings have been reported. For this reason we performed a systematic review

and meta-analysis of the preclinical and clinical literature on the association between ECT

treatment (ECS in animals) and changes in BDNF concentrations and their effect on behavior.

In addition, regional brain expression of BDNF in mouse and human brains were compared

using Allen Brain Atlas. ECS, over sham, increased BDNFmRNA and protein in animal brain

(effect size [Hedge’s g]: 0.38−0.54; 258 effect-size estimates,N = 4,284) but not in serum (g =

0.06, 95%CI = -0.05−0.17). In humans, plasma but not serum BDNF increased following

ECT (g = 0.72 vs. g = 0.14; 23 effect sizes, n = 281). The gradient of the BDNF increment in

animal brains corresponded to the gradient of the BDNF gene expression according to the

Allen brain atlas. Effect-size estimates were larger following more ECT sessions in animals

(r = 0.37, P < .0001) and in humans (r = 0.55; P = 0.05). There were some indications that the

increase in BDNF expression was associated with behavioral changes in rodents, but not in

humans. We conclude that ECS in rodents and ECT in humans increase BDNF concentra-

tions but this is not consistently associated with changes in behavior.

Introduction
Electro Convulsive Treatment (ECT) has been used as a treatment for mood disorders for
years. There is little doubt on the clinical efficacy of ECT [1, 2], yet, how it improves mood
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remains unclear [3, 4]. Emerging data have led to the idea that ECT may reduce depressive
symptoms by increasing the expression of Brain-Derived Neurotrophic Factor (BDNF), a key
regulator of neuronal functioning [5]. This idea rests on the neurotrophin hypothesis, which
posits that depressive disorders are secondary to a stress-induced lowered expression of BDNF
[6]. Complementary, it predicts that antidepressants are efficacious, because they increase
BDNF expression and herewith boost neuronal plasticity [7–9].

Preclinical and clinical studies both have provided support for the neurotrophin hypothesis.
Nibuya et al. [10], for instance, showed in rats that Electro-Convulsive Shocks (ECS, the equiv-
alent of ECT in animals) increases the expression of hippocampal BDNF mRNA. This has
been replicated and extended to other brain regions (e.g., the amygdala [11]) and was shown
for BDNF protein levels [12]. Interestingly, and in line with the neurotrophin hypothesis, some
studies show that the increase in BDNF following ECS is associated with a decrease in depres-
sion-like behaviors.

Measurements in brain tissue, as they are applied in preclinical studies, obviously cannot be
pursued in humans. Clinical studies usually measure the change in peripheral (e.g., blood
serum) BDNF protein concentrations over treatment with ECT. The validity of this approach
is based on the observation that the brain is in part the source of BDNF in peripheral tissues
[12, 13]. Clinical studies show that peripheral BDNF concentrations increase following treat-
ment with ECT, as evidenced by a recent a meta-analysis (Hedge’s g = 0.38, 11 studies, 221 sub-
jects) [14]. In contrast to some individual preclinical (e.g., Li et al. [15]) and clinical studies
(e.g., Hu et al. [16]), this meta-analysis did not find evidence for the notion that changes in
BDNF concentrations over treatment are related to the clinical efficacy of ECT. This omission
may be due to a limited number of trials and patients and the use of group-level statistics [17].
An additional factor explaining the lack of association may be that serum and plasma BDNF
measurement were merged in the analyses. Plasma levels are likely to reflect momentary BDNF
protein expression, while serum levels reflect accumulated (over a period of about 10 days)
BDNF [18–20]. The combination of plasma and serum measurement in a single meta-analysis,
as was done by Brunoni et al. [14], therefore may not be biologically plausible.

Notwithstanding some contradictory findings, the data above suggest a relation between
ECT treatment and BDNF expression. The goal of this study, then, was to evaluate, through
systematic review and meta-analyses, the preclinical (i.e., rodent) and clinical (i.e., human) lit-
erature on changes in BDNF concentrations and behavior over the course of ECS and ECT
respectively. To fulfill this translational aim, we first will pool the preclinical literature on the
relationships between ECS, BDNF and depression-like behavior. Next, we will aggregate effect-
sizes of ECT treatment on BDNF concentrations and clinical improvement as they are reported
in the human literature. This will be done partially using meta-analysis on individual data
because this better suits the questions at hand given a limited number of trials and patients that
are available [17].

Materials and Methods
We adhered to the guidelines that are recommended by the preferred reporting items for sys-
tematic reviews and meta-analyses statement [21].

Search Strategy
We searched PUBMED, Embase, and PsychInfo through December 1st 2014 to identify eligible
studies on changes in peripheral and central BDNF concentrations as a function of treatment
with ECT. The following keywords were used: ‘electroconvulsive’ or ‘ECT’ or ‘ECS’ in combi-
nation with ‘BDNF’ or ‘brain derived neurotrophic factor’. This was supplemented by
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backward searches in which the references to the seminal papers of interest were screened for
preclinical and clinical studies and by examining the reference sections of the retrieved papers.
The literature search, decisions on inclusion, data extraction, and quality control were per-
formed independently by two of the authors (MP and MM).

Inclusion and Exclusion Criteria
We included peer-reviewed preclinical and clinical studies that reported data on BDNF con-
centrations as a function of ECS/ECT (i.e., ECS/ECT versus sham and pre versus post treat-
ment). Inclusion was independent of ECS/ECT characteristics (e.g., number of sessions) and
methodological characteristics of the study (e.g., tissue in which BDNF was sampled). For the
clinical studies diagnosis of major- or bipolar depression had to be based on international
classifications.

Non-empirical studies such as reviews were excluded according to review protocol, as were
case studies, studies that were not peer reviewed, and studies that were not written in Dutch,
English, French, German or Spanish. Where study samples overlapped we excluded the study
that reported on the fewest number of subjects.

Data Extraction
From each paper we extracted, as primary outcomes, mean BDNF concentrations (and Stan-
dard Deviation [SD]) in treatment conditions versus sham and/or before and after ECS/ECT or
indices on this change (e.g., the standardized mean difference). We also extracted data on
mean age, gender distribution, specifics of the ECS/ECT treatment, and the method that was
applied to quantify the amount of BDNF (e.g., RT-PCR).

From the preclinical studies we further extracted data on the strain of animal that was used,
the weight and age of the animals, the brain-region in which BDNF was measured, and the
amount of time between ECS treatment and decapitation. Data on behavioral changes due to
ECS were extracted where provided.

From the clinical studies we in addition extracted data on depression severity pre- and post
ECT, whether participants exhibited a clinical response to ECT, the antidepressant that were
used, and the amount of time between the last ECT session and blood draw for BDNF determi-
nation. In order to perform subgroup comparisons according to treatment response we con-
tacted the authors of the clinical studies and asked them to provide anonymised Individual
Patients Data (IPD) [17]. In those cases where non-significant results were reported (e.g.,
P>.05) and authors did not reply to our request for exact outcome data, we set the association
at P = .50, indicating no association.

We assessed the methodological quality of the preclinical and clinical studies using the
ARRIVE guidelines[22] and the Newcastle-Ottawa Scale (NOS) [23] respectively. In addition
we used the risk of bias assessment tool for the longitudinal studies [24]. We refer to the Sup-
plement for detailed information on quality assessment (S1 Text, S1 Table, S2 Table, S3 Table).

Statistical Analysis
Analyses were performed using Comprehensive Meta-Analyses 2.0 [25] and SPSS version 21.0
[26].Random effects models (i.e., models that include sampling- and study level error) were
applied to calculate pooled effect-sizes on changes in central and peripheral BDNF concentra-
tions as a function of ECS/ECT. As effect-size measure we chose to use Hedges’ g, a standard-
ized metric that corrects for bias related to small sample sizes [27]. All outcomes were weighted
using inverse variance methods [25]. Statistical significance was assessed using a Z-statistic at a
Confidence Interval (CI) of 95%. The amount of between-study heterogeneity in outcomes was
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quantified using the I2 measure [28] and assessed for statistical significance using the Q-statis-
tic[25].

The stability of our results was evaluated through meta-analyses that were run in specific
subgroups: (I) by brain region in which BDNF was assessed (clustered as follows: Dentate
Gyrus [DG], hippocampus not DG, cortex, other brain regions, and in serum [S4 Table], (II)
single versusmultiple ECT sessions, and (III) the type of BDNF that was measured (i.e., BDNF
mRNA versus protein and BDNF in serum versus in plasma). The possible moderating effects
of between-study differences on outcomes were evaluated by calculating correlation coeffi-
cients between the values for the moderator and the outcome of the studies.

For the analyses on preclinical data, the animal strain that was used, duration of treatment,
the amount of time between the last ECT session and decapitation for BDNF measurements,
and the quality score were considered as potential moderators. For clinical data analysis,
obtained IPD were combined with the aggregated data using a two-step approach. In a first
step summary statistics were calculated for each subgroup from single studies. In the second
step summary statistics from the IPD were combined in meta-analysis as described above.
Treatment response was considered as reduction of depression severity scores by�50%. Dura-
tion of treatment and the quality score were considered as potential moderators of the effect-
sizes retrieved from clinical studies.

Visual inspection of funnel plots and the Egger test were used to assess publication bias
[29]. In case of publication bias we used trim-and-fill procedures to estimate effect-sizes after
bias has been taken into account [30].

Results

Preclinical Studies
Our search generated 97 papers of which 23 [10–11,15,33–51] fulfilled the inclusion criteria
(see Fig 1 for a flow-chart). From these we could extract 280 effect-size estimates (k) on a total
of 4,670 animals (mean n = 17 per effect-size, range 8–30) on changes in BDNF concentrations
in animals that were subjected to ECS as compared to sham treatment or, in one case, to base-
line.[31] Mean number of ECS sessions was 5 (range: 1–14). Mean time that passed between
last ECS session and decapitation was 40 hours (range: 1–504 hours). We refer to Table 1 for
the included studies and general information on them. S5 Table and S6 Table provide addi-
tional information on the animals that were used and the methods that were applied.

Meta-analysis over preclinical findings
ECS was associated with increased BDNF concentrations in comparison to sham treatment
(g = 0.40, 95% CI = 0.35−0.44, P< .0001; 280 effect-sizes, N = 4,284). Meta-analyses by specific
brain region showed a larger effect-size (P< .05) when BDNF was assessed in the DG
(g = 0.54) as compared to assessments in the hippocampus and the cortex (g: 0.38−0.41 respec-
tively). Yet, effect-sizes were significant regardless in which brain area BDNF was sampled (see
Table 2). Interestingly, the observed gradient of ECS induced increases in BDNF protein corre-
sponds to the gradient of BDNF gene expression across the whole brain in mice and humans as
assessed in the genome wide atlas of the Allen Institute for Brain Sciences (Seattle, WA, USA,
see www.brain-map.org) [52]. Results of this analysis are illustrated in Fig 2 with highest gene
expression in DG, followed by hippocampus and other brain regions.

Evidence for increases in serum BDNF concentrations (i.e., in blood serum) following ECS
was not found in the preclinical data (g = 0.06, 95% CI = -0.05−0.17). In fact, the pooled effect-
size on serum measurement was smaller as compared to the ones calculated on central BDNF
(P-values all< .001). Studies that subjected animals to multiple ECS’s yielded larger effect-size
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as compared to studies that applied single ECS (P< .0001). Yet, also a single ECS session was
associated with an increase in BDNF (see Table 2). The pooled effect size that was derived
from studies that measured BDNF mRNA was larger as the one from studies that measured
BDNF protein (P< .0001) although the latter also was statistically significant (see Table 2).

Between-study heterogeneity in outcomes was identified (I2 = 51%, Q = 572.13, P< .00001).
The number of ECS sessions that was applied and the time that passed between the last ECS ses-
sion and measurement appeared to be sources of the observed heterogeneity. A larger number of
treatment sessions, in general was associated with larger effect size estimates (r = 0.36, R2 = 0.13,
P< .0001) and a longer gap in time between the last ECS session and decapitation with smaller
effect-size-estimates (r = -0.27, R2 = 0.07, P< .0001). The correlation between the number of
ECS and ECS induced increase in BDNF was also present within the multiple treated animals
(r = 0.35, R2 = 0.13, [202 data points], P< .0001). The methodological quality of a study was
unrelated to outcome.

Fig 1. Prisma flow diagram of the search strategy and its results.

doi:10.1371/journal.pone.0141564.g001
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The funnel plot and the Egger’s test suggested evidence for publication bias in the overall
analysis (t[278] = 10.41, P< .0001). Imputation of 15, presumed missing, effect-size estimates
resulted in a symmetric funnel-plot. The pooled effect-size estimate that was recalculated after
imputation was only slightly smaller as compared to the one derived in the original analysis
(g = 0.38, 95% CI = 0.35−0.41). Between-study heterogeneity, correlations between outcomes
and moderators, and publication bias in outcomes were rather similar in analyses that were
run separately in the subgroups (see Table 3).

ECS, BDNF and changes in behaviour. There was too little comparable data on behav-
ioral tests (e.g., the open-field test) to perform meta-analysis on. In case similar behavioral par-
adigms were applied, often the outcome measures over studies were different. This was for

Table 1. Basic information on the preclinical studies included in the meta-analysis.

Study Animal A ECT n B

Lindefors et al.[32] Sprague-Dawley rats Single: 1 p/d for 1 d 6

Nibuya et al.[10] Sprague-Dawley rats Single: 1 p/d for 1 d and Multiple: 1 p/ for 10 d 8

Zetterström et al.[33] Sprague-Dawley rats Single: 1 p/d for 1 d and Multiple: 5 over 10 d 5

Chen et al.[34] Sprague-Dawley rats Multiple: 1 p/d for 10 d 6

Altar et al. [11] Wistar rats Single: 1 p/d for1, 2 and 3 d and Multiple: 1 p/d
for 4, 6, 10 d

7–9

Angelucci et al.[35] FRL and FSL rats Multiple: 1 p/d for 10 d 7

Dias et al.[36] Sprague-Dawley rats Single: 1 p/d for1, 2 and 3 d, and Multiple: 1 p/d
for 10 d

5

Newton et al. [37] Sprague-Dawley rats Single: 1 p/d for1 d and Multiple: 1 p/d for 10 d 5

Jacobsen et al.[38] Wistar rats Multiple: 1 p/d for 10 d 8

Li et al.[39] Wistar rats Multiple: 6 or 14 for 6 or 14 d 15

Ploski et al. [40] Sprague-Dawley rats Multiple: 1 p/d for 14 d 8

Conti et al. [41] Sprague-Dawley rats Multiple: 8 for 2 d 8

Li et al. [15] Wistar rats Multiple: 14 for 14 d 7–8

Sartorius et al.[31] Sprague-Dawley rats Single: 1 p/d for1 d and Multiple: 1 p/d for 5 d 8

Gersneret al. [42] Sprague-Dawley rats Multiple: 1 p/d for 6–14 d 10

Kyeremanteng et al.
[43]

Wistar-Kyoto rats,
Wistar rats

Multiple: 5 p/d for 5 d 10

Luo et al.[44] Wistar rats Multiple: 1 p/d for 6–14 d 10

O'Donovan et al.[45] Sprague-Dawley rats Multiple: 10 sessions over 3–4 weeks 8

Ryan et al.[46] Sprague-Dawley rats Single: 1 p/d for 1 d and Multiple: 10 sessions
over 21–28 d

8

Segawa et al. [47] Sprague-Dawley rats Single: 1 p/d for1 d and Multiple: 1 p/d for 10 d 8

Segi-Nishida et al.
[48]

C57BL/6N mice Single: 1 p/d for 1 d and Multiple: 1 p/d for 6 and
for 14 d

4

Dyrvig et al. [49] Sprague-Dawley rats Single: 1 p/d for 1 d 6

Kyeremanteng et al.
[50]

Wistar-Kyoto rats,
Wistar rats

Multiple: 5 p/d for 5 d 9–
10

A all studies assessed male animals. Sartorius et al.[31] and Gersner et al.[51] did not specify the sex of the

animals they used.
B n is given per group and, in general can be doubled for the experimental vs sham comparison.

All studies applied sham ECT as the control condition, except for the study by Sartorius et al.[31] in which

baseline was considered as the control condition.

In the S5 Table we present additional information on the included preclinical studies (e.g., age and weight

of the animals).

doi:10.1371/journal.pone.0141564.t001
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instance so for swimming time in the FST for which we could extract 48 effect-size estimates
(910 animals, range: 11−30 per effect-size) on total swimming time in the FST. Together,
these showed that ECS, over sham, increased swimming time (g = 0.26, 95% CI = 0.19−0.32,
P< .0001). The increase in swimming time correlated positively with the increase in BDNF
(r = 0.37, R2 = 0.14, P< .001). Note though that these effect sizes came from only four studies
that widely differed in for instance in time of sacrifice after ECS and other variables that poten-
tially can confound the observed relation. The association, thus, should be interpreted with
caution.

Sensitivity analyses. None of the study findings was unduly driven by the effect of a par-
ticular study (data not shown). Furthermore, effect-size estimates were not related (P = .49) to
whether or a particular study used a stress paradigm (e.g., chronic unpredictable mild stress).
Method of BDNF measurement was not associated with the amount of change in detectable
BDNF (P = .17; see S6 Table for the methods of measurement by study). Animal strain was
tested as a potential effect modifier (see S6 Table for the animal strain that was used in each
individual study). Analyses showed that there were no differences in ECS induced increases in
BDNF as a function of strain of animal that was used in the experiment (P = .18).

Clinical Studies
Our search for clinical studies generated 111 publications of which 14 fulfilled the inclusion cri-
teria (see Fig 1 for a flow-chart). From these papers we obtained 23 effect-size estimates on
changes in BDNF concentrations over the course of ECT (N = 250 subjects a [mean n = 13 per

Table 2. Pooled effect-size estimates, heterogeneity and publication bias for the animal studies by sub-groupmeta-analyses indicated in the row.

k N Hedges’ g (95% CI) Heterogeneity Publication bias

I2 Q Egger’s t

BDNF sampled in: A

DG 25 384 0.54 (0.42–0.67) *** 23.6% 31.4 3.1 *

Hippocampus 124 2,032 0.38 (0.32–0.45) *** 49.3% 242.8 *** 5.2 ***

Cortex 57 982 0.41 (0.32–0.51) *** 51.5% 115.6 *** 3.3 **

Other 61 976 0.44 (0.34–0.54) *** 56.8% 138.9 *** 6.9 **

Serum 13 296 0.06 (-0.05–0.17) 0.1% 6.7 0.3

Number of sessions: B

Single treatment 78 1,282 0.22 (0.12–0.29) *** 44.3% 138.3 *** 5.5 **

Multiple treatment 202 3,388 0.46 (0.38–0.48) *** 49.6% 398.9 *** 8.8 **

BDNF type: C

BDNF protein 147 2,795 0.35 (0.29–0.41) *** 49.0% 286.5 *** 8.2 **

BDNF mRNA D 133 1,875 0.46 (0.39–0.53) *** 51.0% 224.8 *** 7.5 **

A Effect-size estimates were of a larger magnitude in studies that measured central- as compared to serum BDNF (all P-values < .001). Furthermore,

larger effect-size estimates were found in the DG as compared to those found in the hippocampus and the cortex (P-values < .05). There were no

statistically significant differences in pooled effect-size estimates derived from the hippocampus, the cortex and other brain regions (all P-values > .5).
B Chronic ECS yielded larger effect-size estimates as compared to single ECS (P < .0001).
C Studies that sampled BDNF mRNA yielded larger effect-size estimates as compared to studies that sampled BDNF protein (P < .01).
D Among the studies that are characterized as measuring BDNF mRNA were 3 effect-sizes on BDNF RNA and 9 on the precursor protein pro-BDNF.

Excluding these effect-sizes did not change the results.

* Statistical significant at P < .05

** Statistical significance at P < .01

*** Statistical significance at P < .001.

doi:10.1371/journal.pone.0141564.t002
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Fig 2. Gene expression of BDNF across the whole brain as assessed in Allen Brain Atlas (Seattle, WA, USA). In mice, gene expression was the
highest in the DG/hippocampus as investigated by In Situ Hybridization (ISH), where warm colors indicate high expression. Note that contrast and brightness
were enhanced in original images to increase visibility of the effects here. Black bars correspond to 2 mm. Gene expression in humans is shown as
individually normalized gene expression (Z-scores normalized to whole human brain expression). The heat map shows scores across the whole human brain
and for each of the six subjects contained in the database beside each other, where red indicates high and green indicates low expression. Bars represent
mean normalized gene expression and standard deviation across one female and five male subjects included. Search conducted on 17th October 2014 for
human and on 9th October 2014 for mice data. *** P < 0.001; ** P < 0.01; * P < 0.05, two-tailed Student’s t-test against 0. For details on the methods we
refer to Mueller et al.[53]

doi:10.1371/journal.pone.0141564.g002

Table 3. Pearson’s correlation coefficients on the relation between study characteristics and study effect size (by meta-analysis indicated in the
columns).

All DG Hippocampus Cortex Other

BDNF mRNA and protein k = 267, n = 4,374 k = 25, n = 384 k = 124, n = 2,032 k = 57, n = 982 k = 61, n = 976

Number of treatments A 0.36*** 0.10 0.43*** 0.46*** 0.28*

Time of measurement after last ECT -0.22*** -0.38 -0.17 -0.30* -0.35**

BDNF mRNA k = 133, n = 1,489 k = 25, n = 384 k = 65, n = 933 k = 17, n = 222 k = 26, n = 336

Number of treatments 0.29** 0.10 0.29* 0.41 0.20

Time of measurement after last ECT -0.39** -0.38 -0.24 -0.29 -0.38

BDNF protein k = 147, n = 2,795 k = 0, n = 0 k = 59, n = 1,099 k = 40, n = 744 k = 35, n = 640

Number of treatments 0.48*** NA 0.61*** 0.54*** 0.25

Time of measurement after last ECT -0.21* NA -0.10 -0.32* -0.33*

A The correlation between number of treatments and outcome was also present in studies that applied multiple treatments (r = .35 (202 data points) P <

.0001).

Abbreviation. NA; Not Applicable.

* Statistically significant at P < .05

** statistically significant at P < .01

*** statistically significant at P < .001.

NOTE. There was no evidence for between-study heterogeneity in the meta-analyses on serum BDNF levels. Correlational analyses therefore were not

performed in this sub-group.

doi:10.1371/journal.pone.0141564.t003
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effect-size, range 3–48]). Ten studies [16, 54–62] reported on serum BDNF alternations (16
effect sizes) and 4 studies [63–66] (7 effect sizes) on plasma BDNF alterations. Table 4 and S7
Table provide details of the included studies.

Meta-analysis over clinical findings. Overall peripheral BDNF was significantly increased
after ECT as compared to baseline (g = 0.35, 95% CI = 0.034–0.67, P = 0.03; 23 effect sizes,
n = 281). BDNF levels increased in plasma (g = 0.72, 95% CI = 0.22–1.23, P = 0.004; 7 effect
sizes, n = 108) but not in serum (g = 0.14, 95% CI = -0.29–0.56, P = 0.67; 16 effect sizes,
n = 173). However, the difference between serum and plasma subgroups did not rich the signif-
icance threshold (P = 0.10; Table 5). When subdivided into responders and non-responders
subgroups, BDNF increased non-significantly in both the responders- (g = 0.40 95% CI = 0.02–
0.82, P = 0.06; 13 effect sizes, n = 214) and non-responders subgroups (g = 0.22 95% CI =
-0.38–0.82, P = 0.48; 9 effect sizes, n = 47). There was no different pattern of results when com-
paring the pooled effect sizes from studies that measured BDNF in serum versus plasma
(Table 5). However, significant differences could be observed between plasma and serum
BDNF in the non-responders subgroups (P = 0.05).

Sensitivity analysis showed that the results were not substantially affected by a single study.
We observed overall high heterogeneity in outcomes between the studies (Q = 63.11[22]
P<0.001, I2 = 65.14%). This appeared to be driven by the responder subgroups in both serum

Table 4. Basic information on the clinical studies included in the meta-analysis.

Study Diagnosis Source Response N (f/m) BDNF levels

Pre-treatment Post-treatment Unit

mean SD mean SD

Bocchio-Chiavetto et al.[54] MDD serum Yes 20 (14/6) 27.10 9.31 27.95 8.03 ng/ml

No 3 (2/1) 31.2 8.42 31.2 8.3 pg/ml

Marano et al.[63] MDD, BD plasma Yes 13 (3/10) 83.1 63.0 202.5 179.1 pg/ml

No 2 (1/1) 119.5 33.3 265.5 236.6 pg/ml

Okamoto et al.[55] MDD, BD serum Yes 12 (6/6) 7.9 9.9 15.1 11.1 ng/ml

No 6 (3/3) 11.5 11.0 9.4 7.5 ng/ml

Fernandes et al.[56] MDD, BD serum Yes (73.33%) 15 (10/5) 0.3 0.1 0.3 0.1 pg/ml

Gronli et al.[57] MDD, BD serum Yes 10 (NA) 1242.5 187.0 1395.7 517.7 pg/ml

Piccinni et al. [64] MDD, BD plasma Yes 8 (5/3) 2.9 1.3 5 1.8 ng/ml

No 10 (4/6) 1.5 0.5 2.7 1.4 ng/ml

Hu et al.[16] MDD serum Yes 24 (20/4) 5.5 1.9 8.08 3.5 ng/ml

No 4 (3/1) 6.5 3.4 6.9 3.1 ng/ml

Gedge et al.[58] MDD serum Yes 5 (2/3) 13.3 6.7 12.4 4.3 ng/ml

No 6 (5/1) 7.2 5.2 12.2 3.1 ng/ml

Haghighi et al.[65] MDD plasma Yes (75%) 20 (5/15) 151.0 174.7 376.7 299.3 pg/ml

Lin et al.[66] MDD, BD plasma Yes 48 (38/10) 3652.8 2372.6 3512.6 2104.9 pg/ml

MDD, BD No 7 (6/1) 3085.3 2005.6 4190.7 1917.9 pg/ml

Stelzhammer et al.[59] MDD serum Yes 3 (3/0) 20.4 13.5 8.2 4.5 ng/ml

No 4 (2/2) 22.7 7.01 14.3 5.4 ng/ml

Bilgen et al.[60] MDD serum Yes 30 (19/11) 1990.5 510 2713.3 382.8 pg/ml

Bumb et al.[61] MDD serum 20 (10/10) 2596.7 1101.5 3001.8 1118.5 pg/ml

Kleimann et al.[62] MDD serum Yes 6 541.2 294.9 342.8 134.4 pg/ml

No 5 721.8 364.1 506.3 142.0 pg/ml

Abbreviations: MDD, major depressive disorder; BD, bipolar disorder

doi:10.1371/journal.pone.0141564.t004
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and plasma (see Table 5). In line with the rodent findings, the number of ECT treatments was
positively correlated with the effect sizes in combined serum and plasma subgroup (r = 0.55;
P = 0.05). The number of subjects and methodological quality of the study was not associated
with outcomes (data not shown).

Publication bias was detected in the serum subgroup and induced by the studies by Stelz-
hammer et al. [59] and Kleimann et al. [62], two negative studies with particularly low power.
Correction for publication bias by Trim-and-Fill procedure led to an increased effect size
(g = 0.57, 95% CI = 0.11−1.04; 11 effect sizes, n = 101). Overall, and in the plasma subgroup, no
publication bias was detected.

Discussion
Our systematic review and meta-analyses investigated changes in BDNF concentrations as a
function of ECS and ECT. Our main findings are: (A) in rodents, ECS increases BDNF mRNA
and protein concentration (or synthesis/release) in the brain, with largest effect sizes measured
in the DG, (B) the increase in BDNF is positively correlated with number of treatments and
negatively with the time between the last ECT and BDNF measurement, (C) BDNF concentra-
tions do not increase in the course of treatment in rodent and human serum, yet they increased
in human plasma, and (D) the increase in BDNF following ECT is also related to the number
of treatment sessions but not to clinical outcome in human studies.

In preclinical studies ECS increased BDNF secretion throughout the brain. Activation of
distinct promoters of the BDNF gene is responsible for a differently regulated BDNF expres-
sion over brain regions [67, 68]. Four out of nine possible BDNF transcripts are expressed in
the rat brain [69]. While in most brain regions one or two transcripts are produced, all four are
activated in the DG following ECT [36]. Interestingly, BDNF expression as elicited by ECS
appeared to be highest in the DG. This relates well to what the Allen brain atlas shows: BDNF
expression in the DG of mice and human brains is highest in this region. A constant supply of

Table 5. Pooled effect-size estimates, heterogeneity and publication bias for the clinical studies by sub-groupmeta-analyses indicated in the row.

k n Hedges’ g (95% CI) Heterogeneity Publication bias

BDNF in serum and plasma A I2 Q Egger’s t

Responders to ECT 13 214 0.40 (0.02–0.82) * 75.6% 44.8 *** 0.7

Non-responders to ECT 9 47 0.22 (-0.38–0.82) 40.5% 14.5 1.1

Overall 23 281 0.37 (0.034–0.67) * 65.1% 63.1 *** 1.1

BDNF in plasma A

Responders to ECT 4 89 0.66 (0.06–1.26) * 74.7% 11.9 ** 4.0

Non-responders to ECT 3 19 0.87 (-0.04–1.78) 0.0% 0.63 0.2

Overall 7 108 0.72 (0.22–1.23) ** 57.9% 14.3* 2.5

BDNF in serum A

Responders to ECT 9 125 0.22 (-0.36–0.80) 78.4% 37.0*** 2.7*

Non-responders to ECT 6 28 -0.13 (-0.94–0.68) 35.8% 7.8 0.7

Overall 16 173 0.14 (-0.29–0.56) 69.1% 48.6*** 3.1**

A Effect size estimates were medium and significant in studies that measured BDNF in responders subgroup and non-significant in non-responders

subgroup. However, there were no statistically significant differences in pooled effect-size estimates between the responders and non-responders

subgroups (all P-values > .5).

* Statistical significance at P < .05

** Statistical significance at P < .01

*** Statistical significance at P < .001

doi:10.1371/journal.pone.0141564.t005
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BDNF here is not restricted to effects of ECS. This may serve neurogenesis, as the DG is one of
the main sources of progenitor cells [70, 71].

The effect of single ECS on BDNF concentrations seems to be short-lived (6–8 hours [10,
49]) and does not involve a hard reset after which BDNF expression remains at a constant
higher level. The effect of multiple ECS lasted longer as compared to single treatment: up to 14
days post-ECS [15, 31, 39, 45]. On the meta-analytical level this was reflected by a positive cor-
relation between number of treatments and BDNF levels in rodents, and a trend towards such
an association (P = .06) in humans.

Interestingly, effect sizes were larger for BDNF mRNA as compared to protein concentra-
tions. Several posttranscriptional mechanisms can be responsible for this. First, protein synthe-
sis may be inhibited by a specific class of microRNA molecules, that bind target mRNA and
induce its degradation. Several microRNAs are associated with BDNF depletion [72, 73], one
of them, microRNA-212, was increased after ECS in rat’s DG [46]. Second, there is evidence of
activity-dependent mRNA trafficking of BDNF to dendrites, where it can be stored and trans-
lated on demand [74]. Third, an increased BDNF turnover after ECS was proposed[38] and
makes sense in light of findings of neurogenesis after ECT [71, 75].

Once BDNF is synthesized it can act locally, be transferred to neighboring brain areas
through axonal anterograde transport or secreted to the blood stream. The later property
allowed scientists to make inferences about central BDNF secretion from peripheral measure-
ments. However, initial findings of a high positive correlation between central and serum
BDNF [76] were not confirmed [77, 78] or at least depended on animal strain and brain region
[31]. Neither a correlation between CSF and serum BDNF in humans was demonstrated [79].
In rodents we demonstrated increments in brain but not in the serum BDNF levels.

In clinical studies, ECT increased peripheral BDNF levels with a small to moderate effect
size (g = 0.35). Compared to a previous meta-analysis on this topic [14], we included newly
published studies, obtained individual patient data and took the source of BDNF (i.e., plasma
versus serum) into account. This approach revealed significantly enhanced BDNF after ECT in
plasma and not in serum.

Although both plasma and serum BDNF levels are decreased in acute major and bipolar
depression [24, 80], they seem to restore differently following antidepressant treatment [24].
The difference between responders and non-responders that we observed in serum BDNF after
pharmacological antidepressant treatment was not demonstrated after ECT. Neither did we
observe an increase in serum BDNF after ECT. This differs for plasma measurements, where
ECT seems to lead to an increase of BDNF but antidepressant treatment did not [24]. Such dif-
ference may point to different mechanisms of action of ECT and antidepressants on BDNF
synthesis and release.

Limitations
Our study has a number of limitations. First, obviously we could not match the preclinical and
clinical studies according to depressive state, only (roughly) according to the treatment applied.
Most of the animal studies used healthy male animals and did not account for the effects of sex
and disease on BDNF. The clinical studies, in turn, included both sexes and were based on
treatment-resistant depression cases. Furthermore, none of these studies controlled for relevant
confounders in longitudinal studies assessing BDNF, such as seasonality [81]. Plasma BDNF
studies could be further confounded by measurement errors [24]. Secondly, due to limited data
we had to combine treatment effects on major- and bipolar depression even though imaging
studies show differential response to ECT for these two groups [82]. Thirdly, most of the clini-
cal studies included antidepressants and ECT premedication which may have affected BDNF
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concentrations. Fourthly, while meta-analysis of preclinical data had enough power and
showed small to medium heterogeneity, the meta-analysis of clinical data was underpowered
and showed signs of publication bias. Due to the limited power we could not control for the
impact of ELISA kit manufacturer on effect sizes. Finally, effect-size estimates for the preclini-
cal data may have been suboptimal in terms of precision because they were often estimated
based on P-value and N.

Conclusions
Despite the limitations, animal and human studies seem to complement each other with regard
to effects of ECT on BDNF: ECT increases brain BDNF in animals and plasma BDNF in
humans. In animals regional BDNF increments after ECT (i.e., the DG) corresponded to areas
with distinct expression shown in the Allen brain atlas. Besides, multiple treatments as com-
pared to single ECT were associated with a larger increase in BDNF in both animals and
humans, which is suggestive for a dose-response effect of ECS on BDNF.

Future Directions
The questions that remain unsolved are: (1) why plasma but not serum BDNF increased in
human studies, (2) what is the relationship between BDNF and behavior, and (3) are incre-
ments in BDNF after ECT/ECS related to neurogenesis?

The potential differences between serum and plasma may arise from several aspects. Firstly,
plasma BDNF levels reflect momentary BDNF content whereas serum levels reflect BDNF that
has been accumulated over several days or even weeks [18 – 20]. Secondly, plasma measure-
ments are very sensitive to the laboratory conditions and, thus, error prone [24]. Future studies
(following strict methodological recommendations) should clarify whether plasma increment
is not an artifact and further investigate the nature of plasma and serum BDNF.

A larger number of studies is needed to understand the relation of behavioral outcomes to
BDNF levels. For clinical studies such outcome measurement is well established: response to
treatment or clinical remission. Preclinical studies, however, reported rather different, in terms
of timeframe and behavioral assessment, data. Therefore, for the later at least partial overlap in
outcome variables with previous studies is needed.

Though the behavioral data is still mixed, neurogenesis is required to achieve antidepressive
effect of ECS [83]. Survival of newborn neurons is supported by BDNF [84]. The causality and
the dose-response relationships between ECS, BDNF, neurogenesis and behavior are the next
questions to adress. Moderators of BDNF functioning, most notably the common genetic vari-
ant val66met that has been associated with activity dependent BDNF expression [85], might be
considered. Relating variation at this locus to hippocampal morphology [86] and functioning
[87] however has thus far led to mixed results.
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