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Site-selective C-H hydroxylation of pentacyclic
triterpenoids directed by transient chiral pyridine-
imino groups
Tong Mu1, Bingcheng Wei1, Dapeng Zhu1 & Biao Yu 1,2✉

Pentacyclic triterpenoids (PTs) constitute one of the biggest families of natural products,

many with higher oxidation state at the D/E rings possess a wide spectrum of biological

activties but are poorly accessible. Here we report a site-selective C-H hydroxylation at the

D/E rings of PTs paving a way toward these important natural products. We find that

Schönecker and Baran’s Cu-mediated aerobic oxidation can be applied and become site-

selective on PT skeletons, as being effected unexpectedly by the chirality of the transient

pyridine-imino directing groups. To prove the applicability, starting from the most abundant

triterpenoid feedstock oleanane, three representative saponins bearing hydroxyl groups at

C16 or C22 are expeditiously synthesized, and barringtogenol C which bears hydroxyl groups

at C16, C21, and C22 is synthesized via a sequential hydroxylation as the key steps.
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Pentacyclic triterpenoids (PTs) constitute a vast family of
natural products, which have attracted great attention
because of their significant biological and pharmacological

activities, such as the antitumor, anti-inflammatory, and antiviral
activities1–4. However, in-depth studies on the drugability of these
complex molecules have been hampered by their poor accessibility.
PTs occur usually in a heterogeneous manner in nature, with the
structural diversity being greatly augmented by post-modifications
on the basic pentacyclic skeletons, including especially the enzy-
matic C–H bond oxidation and O-glycosylation5,6. With
the emergence of new C-H bond oxidation methodologies7–11,
a new stage is to set for chemical diversification of the naturally
abundant PT feedstocks12,13, such as oleanolic acid, which are
always at low oxidation states.

Major types of the PTs include oleananes, ursanes, lupanes,
and friedelanes, in that the hydroxyl groups are commonly pre-
sent at C2, C3, C12, C16, C21, C22, and C23 (Fig. 1). Exploiting
the biogenetic 3-OH, Baldwin et al. pioneered the directed C-H
oxidation on PTs to introduce the 23-OH via a C3-oxime-
mediated cyclopalladation procedure14–16. Baran et al. system-
atically explored C-H oxidation on the lupane skeleton; iodina-
tion could take place at C12 directed by a hydroxyl radical at C20
or C28, and remarkably, non-directed oxidation at C16 was
realized with methyl(trifluoromethyl) dioxirane17. We have tried
utilizing the innate C28-carboxylic acid group in oleanolic acid as
a handle to derivatize the proximal CH2 units; a palladium pro-
moted dehydrogenation at C15–C16 or C21–C22 was achieved
with 8-aminoquinoline amide or 2-aminomethylpyridine amide
as the directing group18. Unfortunately, subsequent removal/
transformation of the C28-amide auxiliaries was not successful.
Indeed, practically useful oxidation/functionalization of the CH2

units in the D/E rings of PTs remains a challenge19. Herein, we
report an effective method to address this problem and its
application to the successful synthesis of four structurally repre-
sentative and biologically active high-oxidation-state PTs, these
include PT glycosides (1–3)20–24 bearing hydroxyl group at C16
or C22 and barringtogenol C (4)25,26 bearing hydroxyl groups at
C16, C21, and C22.

Results
Site-selective C–H hydroxylation of PTs. Starting with oleanolic
acid, the most abundant natural PT, we prepared a series of
derivatives to explore the C–H oxidations directed by the C28
functional residues (Supplementary Fig. 1). Various protocols
have been tried, including those developed by the research
groups of Sanford15, White27, Yu28,29, Dong30,31, Suarez32,33, and
Baran19, but met little success (Supplementary Fig. 2 and Sup-
plementary Table 1). To our delight, applying Schönecker-Baran’s
Cu-mediated aerobic C–H hydroxylation34–39, with pyridin-2-
ylmethanamine (D1) as a transient directing group, to C28-
aldehyde 5 led to 16β-ol derivative 5-a in 51% yield (Fig. 2, entry
1a). The instable nature of the imine intermediate might account
for the moderate yield, we thus decided to replace primary amine
D1 with a bulkier secondary amine40, i.e., (pyridin-2-yl) ethan-1-
amine D2, as the directing group.

Surprisingly, when racemic D2 was used in the reaction, the
yield of 5-a dropped to 40%, while 22α-ol derivative 5-b was
newly isolated in 20% yield (entry 1b). The structures of these
isomers were determined unambiguously by X-ray diffraction
analysis on their derivatives (S20 and S21, Supplementary Fig. 3).
This outcome implied that the chiral methyl group could
influence the orientation of the corresponding imine-pyridine-
complexed copper intermediate toward either the 16β-H or 22α-
H, which are both at the proximal γ position to the imino
nitrogen34–39. Indeed, when enantiopure D2(R) was used, the
yield of 5-b was increased to 40%, whereas the yield of 5-a
decreased to 25% (entry 1c). In contrast, the use of D2(S) gave
rise to 5-a exclusively in 70% yield (entry 1d). With the larger D3
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barringtogenol C (4) from oleanolic acid.

Conditions: 1. TsOH (0.1 eq), DG, toluene, 80 oC;
                   2. Cu(OTf)2 (1.3 eq), O2, Na ascorbate              
(2.0 eq), MeOH, acetone, 50 oC, 90 min;
                   3. Na4EDTA, work up
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(R) as directing group, the site-selectivity of 5-b was further
enhanced, in that its yield was increased to 49% while the yield of
5-a decreased to 15% (entry 1e). The use of the S enantiomer D3
(S) reversed the selectivity, leading to 5-a as the only C–H
hydroxylated product (58%; entry 1f).

Next, we examined the substrate scope and functional group
tolerance of this tunable transformation on PT derivatives

employing Baran’s standard conditions (Fig. 3)37, which involved
imine formation (0.1 equiv. TsOH, toluene, 80 oC), Cu-mediated
C–H hydroxylation (1.3 equiv. Cu(OTf)2, 2.0 equiv. Na ascorbate,
O2, 50 oC), and removal of the imine auxiliary (work up with
Na4EDTA, or in some cases, followed with 1N HCl). Remarkably,
hydroxylation of oleanane C28-aldehyde derivative 6, which
remains the innate C12–C13 double bond, was completely
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site-selective, furnishing exclusively 22α-ol 6-b (47%; 43%
recovered 6) in the presence of D2(R) or 16β-ol 6-a (65%) in
the presence of D2(S) (entries 1a and 1b). With the bulkier D3(R)
and D3(S) as directing groups, the yield of 6-b was slightly
increased (53%), while the yield of 6-a was dramatically increased
to 92% (entries 1c and 1d). Similar results were obtained with
oleanane C28-aldehydes 7–9 as the substrates, in which the
C12–C13 double bond (in 6) had been converted into C12-
hydroxy, acetyloxy, and ketone, respectively. The site-selectivity
was lost only when the C12-acetyloxy derivative 8 was used as
substrate and D2(R) as directing group, leading to a mixture of 8-
a (34%) and 8-b (45%; entry 3a); nevertheless, replacing D2(R)
with D3(R) led to 8-b (66%) exclusively (entry 3c). Ursane
derivative 10 showed similar site-selectivity upon hydroxylation,
nevertheless, in comparison to the reactions of its oleanane
counterpart 9, the yields of the 22α-ol product (10-b) were greatly
increased (65% and 94%) in the presence of the R-configured
directing groups (entries 5a and 5c).

Bearing a similar skeleton of oleananes but the aldehyde
function at C30, glycyrrhetinic acid derivatives 11 and 12 were
subjected to the present hydroxylation procedure. The R-
configured directing groups, i.e., D2(R) and D3(R), led to site-
selective hydroxylation at C19, giving 19β-ol 11-b/12-b exclu-
sively (42~67%; entries 6a/7a and 6c/7c). The S-configured
directing groups, i.e., D2(S) and D3(S), resulted in hydroxylation
only at C21, giving 21β-ol 11-a/12-a in higher yields (62~89%;
entries 6b/7b and 6d/7d).

Celastrol derivative 13, which bears a disparate C/D ring
conjunction and the aldehyde function at the α-oriented C29, was
examined as a substrate. The hydroxylation took place only at
C21, irrelevant to the chirality of the directing groups, providing
21α-ol 13-a in good yields (47~80%; entries 8a–d). The chirality
of the directing group indeed influenced the yields of 13-a, with
the S-configured directing groups being more favorable for the
hydroxylation.

We next examined a lupane derivative, i.e., C28-aldehyde 14, as
a substrate, which has a trans-fused five-membered E ring. The
hydroxylation took place only at C16 to provide 14-a.
Remarkably, 14-a was obtained in nearly quantitative yields with
the S-configured amines D2(S) and D3(S) as the directing groups
(~97%; entries 9b and 9d), whereas it was obtained in lower yields
with the R-configured amines D2(R) and D3(R) (53% and 75%;
entries 9b and 9d).

Finally, we investigated steroidal Δ6-i-diene 17-ketone 15,
which was reported to be an inferior substrate for the
hydroxylation37; under conditions here adopted, 12β-ol 15-a
was obtained in only 2% yield, or in 40% yield upon replacing Cu
(OTf)2 with Cu(MeCN)4PF6, with the achiral (pyridin-2-yl)
methane-1-amine (D1) as directing group. Applying the present
chiral amines in the reaction, compound 15 was converted into
15-a cleanly, with the best isolated yield being 66% (34%
recovered 15) in the presence of D2(S) (entry 10b).

An eminent feature of the above transformations is the
compatibility with various functional groups on the polycyclic
skeletons, including hydroxyl, silyl ether, acetyl, olefin, ketone,
and enone groups. Thus, a variety of PT intermediates can be
readily prepared and utilized for further elaboration into complex
natural PTs and their derivatives. Herein, three representative
natural oleanane glycosides (1–3) bearing hydroxyl group at C16
or C22 and barringtogenol C (4) bearing hydroxyl groups at C16,
C21, and C22 were successfully synthesized.

Synthesis of representative PT saponins 1–3. Oleanane 3-O-
glycosides 1–3 are minor components from traditional Chinese
medicinal plants, each contains an additional hydroxyl group on

oleanane skeleton, i.e., the 16β-OH, 16α-OH, and 22α-OH,
respectively. Saikosaponin E (1), showing antitumor and antiviral
activities, is a biomarker of Chaihu (the roots of Bupleurum
species), which is a commonly used traditional Chinese
medicine20,21. Saponin 2 has been isolated from Albizia inundata
and A. anthelmintica, which showed potent antitumor
activities22,23. Kochianoside I (3) was isolated from the fruits of
Kochia scoparia, which are mainly used as an antipruritogenic
agent24. The synthesis of these natural PT glycosides commenced
with scaling up the site-selective hydroxylation of 6, which was
readily prepared from oleanolic acid in two steps (86% yield)
(Fig. 4). Without optimization of the previous conditions, the
gram-scale hydroxylation of 6 in the presence of D2(S) gave 16β-
ol 6-a as the only isomer in 60% yield; the use of D2(R) provided
22α-ol 6-b in 45% yield, again as the only isomer. The easy
availability of 6-a and 6-b secured the subsequent transforma-
tions. Thus, reduction of aldehyde 6-a with LiAlH4 followed by
NBS induced intramolecular etherification delivered the corre-
sponding 12-bromide-13,28-ether, which underwent elimination
under the action of DBU, providing olefin 16 (93% over three
steps)41. Acetylation of the 16-OH followed by removal of the 3-
O-silyl group gave the desired aglycone 17 (72%). Condensation
of 17 with the readily available disaccharide imidate 18 (Sup-
plementary Fig. 4) proceeded smoothly under the promotion of
TBSOTf42; the resulting glycoside was then subjected to global
removal of the acyl groups with KOH in MeOH, furnishing
Saikosaponin E (1) in 73% yield over two steps (Supplementary
Table 2).

Alternatively, aldehyde 6-a was subjected to Pinnick oxidation
and subsequent benzylation, providing ester 19 (84%). Exposure
of 19, which bears a β-OH at C16, to Dess-Martin periodinane
gave the corresponding C16-ketone, which was subjected to
reduction with NaBH4 in ethanol to furnish the requisite 16α-ol
20 as the major product (74%), along with 16β-ol isomer 19
(14%)43. Masking the hydroxyl group as an acetyl ester followed
by removal of the 3-O-silyl group gave rise to aglycone 21 (61%).
Glycosylation of 21 with disaccharide imidate 22 (Supplementary
Fig. 5) under the catalysis of triflic acid provided the coupled
disaccharide 23 (81%)44. The N-phthaloyl group in 23 was
dismantled and the resulting amine acetylated to give 24 (86%
yield over two steps). Finally, successive hydrogenolysis of the
benzyl ester and cleavage of the acetate (NaOMe, MeOH/THF)
led to albizia saponin 2 (84% over two steps) (Supplementary
Table 3).

Following similar transformations used in the above synthesis,
aldehyde 6-b was converted into ester 25 (81%) via Pinnick
oxidation and subsequent benzylation. Acetylation of the 22α-OH
and removal of the 3-O-silyl group in 25 gave the requisite
aglycone 26 (79% over two steps). Condensation of 26 with
thioglycoside 27 under the promotion of NIS and TMSOTf led to
glycoside 28 (89%). The glucose residue in 28 was then
transformed into a glucuronate unit in three steps (59%), i.e.,
regioselective opening of the 4,6-O-benzylidene group with BH3/
Cu(OTf)245, oxidation of the resulting 6-OH with TEMPO/BAIB,
and ester formation with BnBr. Finally, cleavage of the benzyl
groups via hydrogenolysis over Pd/C followed by removal of the
acyl groups with NaOMe in MeOH furnished kochianoside I (3)
(79% over two steps) (Supplementary Table 4).

Synthesis of barringtogenol C (4). Barringtogenol C (4) was
isolated from Hydrocotyle ranunculoides25 and showed potent
anti-inflammatory, anti-tumor, and anti-microbial activities26.
Representing a typical PT bearing hydroxy groups at both D and
E rings, barringtogenol C (4) became a target for examining the
present methodology in sequential introduction of hydroxy
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groups onto the D/E rings. Thus, the 22α-OH in 6-b, which was
introducted by the present hydroxylation in the presence of D2
(R), was eliminated to give Δ21,22 derivative 30 (72%) (Fig. 5).
Compound 30 was subjected to reduction of the 28-aldehyde and
subsequent epoxidation to provide β-epoxide 31 (87% over two
steps). Then, the 28-hydroxyl group was converted to aldehyde to
give 32 as a substrate for the second site-selective hydroxylation.
Gratifyingly, subjection of 32 to the standard conditions with D2
(S) as the directing group led to the desired 16β-ol 33 in a
satisfactory 68% yield, with the epoxide remaining intact. The
successful introduction of the 16-OH set a stage for further
transformations into the natural product. Indeed, conversion of
the 28-aldehyde into ester, inversion of the configuration of the
16β-OH, and acetylation of the resultant 16α-OH afforded 36
(75% over five steps). Under the action of BF3·OEt2 in aqueous
toluene, the 21,22-β-epoxide in 36 was selectively opened to
furnish 21β,22α-diol 37 (84%), through probably a 6-exo-trig
hydrolysis mediated by the 16α-O-acetyl group46. Finally,
removal of the 3-O-TBS group and reduction of the 28-ester into
alcohol and simultaneously cleavage of the 16-O-acetyl group
furnished barringtogenol C (4) (92%) (Supplementary Tables 5
and 6).

Discussion
The site-selective C–H hydroxylations at the D/E rings of PTs
have been achieved by Schönecker and Baran’s Cu-mediated
aerobic oxidation procedure, with the site-selectivities being
controlled by the chirality of the transient pyridine-imino
directing group. Thus, introduction of the 16β-ol/22α-ol or
19β-ol/21β-ol onto the oleanane/ursane skeletons has become a
convenient practice from the corresponding C28- or C30-
aldehydes (i.e., 5-12), which are readily accessible from the
abundant feedstocks, such as oleanolic acid, ursanic acid, and
glycyrrhetinic acid. The impact of the chirality of the directing
group is also obvious in the hydroxylation of friedelane-type C29-

aldehyde (i.e., 13) or lupane C28-aldehyde (i.e., 14), where no
regioselectivity is involved; the yields of the corresponding 21α-ol
products (13-a) or 16β-ol (14-a) are significantly higher when the
matched amine enantiomers are used. Besides the transient nat-
ure of the directing group47,48, the excellent compatibility with
various functional groups enables application of the present
methodology to the preparation of advanced PTs derivatives
which are amenable to further transformations. In this regard,
three bioactive oleanane glycosides (1–3) from medicinal plants,
which bear 16β-OH, 16α-OH, or 22α-OH, respectively, are con-
viently synthesized from oleanane acid in a modicum of steps.
Moreover, sequential hydroxylations, directed by a pair of the
chiral amine, have been sucessfully performed, thus barringto-
genol C (4) bearing characteristic 16,21,22-OHs is synthesized. In
line with the already available methods for functionalization of
the A/B rings of PTs14–16,49, a way has now been paved toward
the highly diverse natural PTs from abundant feedstocks, thus in-
depth medicinal studies on PTs shall become feasible future
projects.

Methods
General. All reactions were carried out under argon with anhydrous solvents in
flame-dried glassware. Reactions were monitored by thin layer chromatography
(TLC) carried out on Millipore Sigma glass TLC plates (silica gel 60 coated with
F254, 250 μm) using UV light for visualization and aqueous ammonium cerium
nitrate/ammonium molybdate or basic aqueous potassium permanganate as
developing agent. SiliaFlash® P60 silica gel (particle size 40–63 μm, pore size 60 Å)
was used for flash column chromatography. NMR spectra were recorded on a
Bruker Avance III 400MHz or an Agilent DD2 500MHz NMR spectrometer. IR
spectra were recorded on a Thermo Scientific Nicolet 380 FT-IR spectrometer.
Melting points are uncorrected and were recorded on an SGW X-4 apparatus.
High-resolution mass spectra (HRMS) were recorded on a Bruker Apex III 7.0
Tesla FT-ICR, an IonSpec 4.7 Tesla FT-ICR, or a Waters Micromass GCT Premier
mass spectrometer.

Standard procedure for imine formation. To a solution of the aldehyde or ketone
substrate and p-toluenesulfonic acid monohydrate (0.10 equiv.) in toluene (0.10 M)
in a flame-dried flask, was added amine D2(S) (3.0 equiv.). The mixture was heated
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to 80 °C until imine formation was complete as monitored by 1H NMR (normally
ca. 2 h for aldehyde and 10 h for ketone). The mixture was cooled to 25 oC and
diluted with EtOAc (30 mL). The organic layer was washed sequentially with
saturated aqueous NH4Cl (2 × 20 mL), saturated NaHCO3 (1 × 20 mL), and brine
(1 × 20 mL), and was then dried over anhydrous Na2SO4, filtered, and concentrated
under vacuum. The crude product was used directly in the next step without
further purification.

Standard procedure for Schönecker-Baran oxidation. The imine substrate (1.0
equiv), copper(II) triflate (1.3 equiv.), and sodium L-ascorbate (2.0 equiv.) were
added to a round-bottom flask. Acetone (0.05 M) and methanol (0.05M) were
added at 25 oC. The mixture was stirred for 5 min (the reaction mixture may turn
brown). O2 from a balloon was bubbled through the mixture for 5 min (resulting in
a blue/green solution), and then the mixture was heated to 50 °C under an O2

atmosphere for 1.5 h. The mixture was cooled to 25 oC, EtOAc (3 mL) and satu-
rated aqueous Na4EDTA (6.0 mL, pH ~10) were added and the stirring continued
for 0.5 h. The layers were separated. The aqueous layer was extracted with EtOAc
(3 × 10 mL). The combined organic phase was washed sequentially with saturated
NaHCO3 (1 × 20 mL) and brine (1 × 20 mL), and was then dried over anhydrous
Na2SO4, filtered, and concentrated under vacuum. The crude product was purified
by flash column chromatography to give the hydroxylated product.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its supplementary information files, including experimental details,
characterization data, and 1H and 13C NMR spectra of all new compounds
(Supplementary Figs. 6–156). The X-ray crystallographic coordinates for structures S20,
S21, 11-a, 11-b, 12-a, and 12-b have been deposited at the Cambridge Crystallographic
Data Centre (CCDC), under deposition numbers CCDC1868411, CCDC1885648,
CCDC1868416, CCDC1868439, CCDC1885629, and CCDC1885628, respectively. These
data can be obtained free of charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.
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