
TYPE Methods

PUBLISHED 30 September 2022

DOI 10.3389/fdata.2022.978857

OPEN ACCESS

EDITED BY

Andrey Ustyuzhanin,

National Research University Higher

School of Economics, Russia

REVIEWED BY

Jonathan Andrew Miller,

Onto Innovation, United States

Stefano Belforte,

National Institute of Nuclear Physics

of Trieste, Italy

*CORRESPONDENCE

Blair Jamieson

bl.jamieson@uwinnipeg.ca

SPECIALTY SECTION

This article was submitted to

Big Data and AI in High Energy Physics,

a section of the journal

Frontiers in Big Data

RECEIVED 26 June 2022

ACCEPTED 29 August 2022

PUBLISHED 30 September 2022

CITATION

Jamieson B, Stubbs M, Ramanna S,

Walker J, Prouse N, Akutsu R, de

Perio P and Fedorko W (2022) Using

machine learning to improve neutron

identification in water Cherenkov

detectors. Front. Big Data 5:978857.

doi: 10.3389/fdata.2022.978857

COPYRIGHT

© 2022 Jamieson, Stubbs, Ramanna,

Walker, Prouse, Akutsu, de Perio and

Fedorko. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Using machine learning to
improve neutron identification
in water Cherenkov detectors

Blair Jamieson1*, Matt Stubbs2, Sheela Ramanna2,

John Walker1,3, Nick Prouse3, Ryosuke Akutsu3,

Patrick de Perio3,4 and Wojciech Fedorko3

1Physics Department, University of Winnipeg, Winnipeg, MB, Canada, 2Applied Computer Science

Department, University of Winnipeg, Winnipeg, MB, Canada, 3Science Division, TRIUMF, Vancouver,

BC, Canada, 4Kavli IPMU (WPI), UTIAS, The University of Tokyo, Tokyo, Japan

Water Cherenkov detectors like Super-Kamiokande, and the next generation

Hyper-Kamiokande are adding gadolinium to their water to improve the

detection of neutrons. By detecting neutrons in addition to the leptons

in neutrino interactions, an improved separation between neutrino and

anti-neutrinos, and reduced backgrounds for proton decay searches can be

expected. The neutron signal itself is still small and can be confused with

muon spallation and other background sources. In this paper,machine learning

techniques are employed to optimize the neutron capture detection capability

in the new intermediate water Cherenkov detector (IWCD) for Hyper-K. In

particular, boosted decision tree (XGBoost), graph convolutional network

(GCN), and dynamic graph convolutional neural network (DGCNN) models are

developed and benchmarked against a statistical likelihood-based approach,

achieving up to a 10% increase in classification accuracy. Characteristic

features are also engineered from the datasets and analyzed using SHAP

(SHapley Additive exPlanations) to provide insight into the pivotal factors

influencing event type outcomes. The dataset used in this research consisted

of roughly 1.6 million simulated particle gun events, divided nearly evenly

between neutron capture and a background electron source. The current

samples used for training are representative only, and more realistic samples

will need to be made for the analyses of real data. The current class split is

50/50, but there is expected to be a di�erence between the classes in the real

experiment, and one might consider using resampling techniques to address

the issue of serious imbalances in the class distribution in real data if necessary.

KEYWORDS

machine learning, graph neural networks, water Cherenkov detector, particle physics,

neutrino physics

1. Introduction

One exciting frontier within experimental neutrino physics is the improved

identification of neutrons from inverse beta decay reactions (νe + p+ → e+ + n). This

task, referred to as “neutron tagging,” is particularly challenging due to the low energy

scale and faint signals involved. Progress in this field could lead to a host of advancements

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.978857
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.978857&domain=pdf&date_stamp=2022-09-30
mailto:bl.jamieson@uwinnipeg.ca
https://doi.org/10.3389/fdata.2022.978857
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2022.978857/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

in particle physics, including a first detection of diffuse

supernova background neutrinos (Fernández, 2016), and

improved understanding of the neutrino mass hierarchy and the

CP violating phase (Irvine, 2014). However, Water Cherenkov

(WC) detectors have historically been limited in their detection

capability of these low energy neutron capture events.

Neutrons are commonly liberated in water due to the inverse

beta decay (IBD) process, in which an electron antineutrino

collides with a proton to yield a positron and a free neutron.

From there, the free neutron undergoes thermalization, colliding

with neighboring molecules and gradually losing energy until

it reaches water temperature. Approximately 200 µs after

thermalization, the free neutron is captured by a proton or

oxygen nucleus, releasing a gamma particle γ at 2.2 MeV (n +

p → d + γ) (Watanabe et al., 2009) where d is deuterium (or

“heavy hydrogen”), the isotope of hydrogen with a proton and

neutron in the nucleus. The capture cross-section of this neutron

capture on a hydrogen nucleus (proton) is only 0.33 barns, and

the resulting 2.2 MeV gamma produces such a faint light signal

that it is very difficult to identify by the Photomultiplier Tubes

(PMTs) in a WC detector. The detection of the signal gamma-

ray produced by the neutron capture relies on the detection of

Cherenkov photons produced by Compton scattered electrons

produced by the gamma-ray. Many traditional WC detectors

actually have thresholds of 5 MeV, high enough that none of

these signals would be recorded at all.

To address this problem, the addition of gadolinium

chloride (GdCl3; a light, water soluble-compound) to the SK

detector water was proposed in 2003 (Beacom and Vagins,

2004). Gadolinium is known for having the “largest capture

cross-section for thermal neutrons among all stable elements”

(Ankowski et al., 2012). At ∼49,700 barns, the gadolinium

capture cross-section is over six orders of magnitude larger than

for free protons, leading to faster captures. Neutron capture on

gadolinium also leads to an 8 MeV cascade of gammas (7.9 MeV

cascade 80.5% of the time and an 8.5 MeV cascade 19.3% of

the time; Watanabe et al., 2009), a signal which is far easier to

detect due to its relatively higher energy. Beacom and Vagins

showed that only a 0.1% addition of gadolinium by mass leads

to at least a 90% probability of neutron capture on gadolinium

(the other 10% or less of neutron captures are still by hydrogen

nuclei). In addition, the neutron capture by gadolinium after

thermalization occurs in roughly 20 µs, nearly 10 times more

quickly than capture on protons.

This paper presents the implementation of several machine

learning methods that attempt to improve the efficiency

of neutron tagging for simulations of neutron capture and

background radiative neutrino events within the gadolinium-

doped intermediate WC detector (IWCD) for Hyper-K (Proto-

Collaboration et al., 2018). Since the machine learning methods

are fast once the training is completed, they can be used for the

semi-offline analysis soon after data is taken to monitor neutron

detection rates. This could be important to monitor event rates

and understand if there are any backgrounds that are changing

in the detector when it is running. The methods may also get

used in later stages of the off-line analysis, particularly if they

outperform more traditional cut-based methods.

The structure of the paper is as follows. Section 2

discusses related works in the intersecting fields of particle

physics, neutron tagging and machine learning. Section 3

then introduces the relevant machine learning theories and

algorithms used in this research, including boosted decision

trees (XGBoost), SHAP (SHapley Additive exPlanations), and

graph neural networks (GNNs). In Section 4, the data and

data simulation process are explored. Also in this section, a

likelihood analysis benchmark is shown based on event hit

totals and charge sums. Section 5 illustrates the process of

engineering characteristic features from the data and covers the

implementation and tuning of the XGBoost model. Afterward,

an analysis of relative feature importances is applied using

SHAP. Section 6 presents the results of the GCN and DGCNN

graph neural network models and discusses various methods

of graph network construction. One of the main goals of this

research is to investigate the applicability, performance and

feasibility of GNNs on the IWCD particle data, in particular for

the low energy regime where the number of event hits is small

and CNNs tend to struggle. Finally, Section 7 concludes on the

findings of the previous chapters.

2. Related work

2.1. Machine learning in particle physics

The uses of machine learning and its historical development

in the field of particle physics is discussed in Bourilkov (2019).

Traditional means of event selection in particle physics are

discussed in both Bourilkov (2019) and Guest et al. (2018).

These methods often involved a series of boolean “cuts”

(decisions) on single variables at a time, followed by statistical

analyses on the remaining data. However, over the past several

decades, physicists have developed algorithms that employ

machine learning to study multiple variables simultaneously in

multivariate analysis (MVA). Guest et al. (2018) describes the use

of an assortment of machine learning techniques for MVA in the

physics context, include support vector machines, kernel density

estimation, random forests, boosted decision trees, etc. Carleo

et al. (2019) provides an overview of applications of machine

learning within the physical sciences, including applications to

quantum computing, chemistry, and cosmology. Carleo et al.

(2019) also discusses applications to particle physics, including

jet physics and neutrino signal classification. Machine learning

applications are discussed for a variety of neutrino experiments,

including the MicroBooNE collaboration, Deep Underground

Neutrino Experiment (DUNE) and the IceCube Observatory at

the South Pole.

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

2.2. Boosted decision trees

Boosted decision trees (BDTs) are a commonly applied

machine learning method in modern particle physics analysis.

For example, Roe et al. (2005) details the improved performance

of particle classification in the MiniBooNE experiment, which

searches for neutrino oscillations, using BDTs compared to

artificial neural networks. Radovic et al. (2018) discusses

multiple use cases of BDTs at the Large Hadron Collider (LHC)

at CERN, including the application of BDTs to improve the

energy reconstruction (mass resolution) of the CMS (Compact

Muon Solenoid) calorimeter, as well as the implementation

of BDTs to improve the sensitivity of the ATLAS detector to

various Higgs boson decay modes. For the latter, the sensitivity

of diphoton decay (H → γ γ) and antitau-tau pair decay (H

→ τ+τ−) were improved by an amount equivalent to adding

50 and 85% more data to the detector, respectively. Beyond

learning tasks, BDTs can also be used at the early stages of the

machine learning lifecycle. For example, Gligorov and Williams

(2013) modifies the standard boosted decision tree algorithm

to improve high-level triggering in detector data acquisition

systems. A general BDT usage guidebook is presented in Cornell

et al. (2022) for the hypothetical identification of the smuon

particle and performance is compared to the classic “cut-and-

count” approach.

2.3. Deep learning and graph neural
networks

The computer vision approach to particle classification,

which consists of reconstructing particle events as images

and applying convolutional neural networks (CNNs), has been

applied in various detector experiments (Macaluso and Shih,

2018; ATLAS Collaboration, 2019; Andrews et al., 2020).

However, the conversion of data from irregular detector

geometries into a two-dimensional grid for images inherently

causes loss of information. For events with few hits, the

sparsity of the resulting image is also difficult for CNNs

to learn from (e.g., Shlomi et al., 2021). Alternately, deep

learning sequence models, inspired by tasks in natural language

processing, have also been adapted to the particle physics

domain by modeling particles and measurement objects in a

sequential order. Instances of this approach include tagging of

jets containing b-hadrons in the ATLAS experiment (ATLAS

Collaboration, 2017) and classifying energetic hadronic decays

in the CMS experiment (Sirunyan et al., 2020). However, the

imposed ordering of objects in the sequence constrains the

learning of the model. The limitations of both computer vision

and sequence deep learning approaches are discussed in Shlomi

et al. (2021).

Graph neural networks (GNNs) represent an emerging

architectural class of deep learning which undertakes to learn

from data structured in a graph format, for which particle events

find a natural representation. Shlomi et al. (2021) surveys the

theory and applications of GNNs in particle physics. The graph

classification task is partitioned into jet classification and event

classification. While jets represent a part of a particle collision

occurrence, an event references the full history of the particular

physics process. In Qu and Gouskos (2020), the jet is viewed as

an unordered structure of particles, analogous to the point cloud

representation of shapes in 3D space. The authors propose the

“ParticleNet” method, which uses the “EdgeConv” block as an

analog for CNN convolution on 3D point clouds and updates

the graph representation dynamically, and report state-of-the-

art performance on jet tagging tasks. For event classification, one

example is the deployment of GNNs in the IceCube neutrino

observatory (Choma et al., 2018). In this case, the irregular

hexagonal geometry of the detector is itself modeled as a graph,

where the sensors are the graph nodes and the edges represent

their connections. Given the sparsity of activated sensors in an

event, every event is considered as a different graph composed

only of the active sensors in the event. Although learning

occurs over relatively small sample sizes, the authors report an

approximate 3x improvement in signal-to-noise ratio compared

to the physics baseline and the CNN approach.

3. Machine learning methods studied

3.1. XGBoost

Over the last several years, the machine learning model

“XGBoost” has gained popularity for its performance in

classification or regression tasks involving tabular data over a

variety of domains, including vehicle accident detection (Parsa

et al., 2020), cancer diagnostics (Tahmassebi et al., 2019),

network intrusion detection (Bhattacharya et al., 2020) and

Higgs boson identification (Chen and He, 2015). XGBoost

stands for “eXtreme Gradient Boosting.” In general, gradient

boosting refers to the process of beginning with a single

weak learner and iteratively constructing superior learners that

improve on the errors of their predecessors. The new learners

attempt to optimize an overall loss function over the problem

space by each following the negative gradient of the loss

function.

XGBoost was introduced by Chen and Guestrin (2016) in

their paper, which considered the case of decision trees as

the individual learners in the function ensemble. In general, a

decision tree applies classification or regression to an example

by partitioning the example through a series of splits (decisions)

from the root node to a leaf of the tree. The given tree splits

are themselves computed by calculating which partition leads to

maximum information gain. For any specific training example,

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

the overall output is the additive sum of the outputs from every

individual tree. To apply gradient boosting in the context of

decision trees, an appropriate objective function (loss) must

be defined. Chen and Guestrin define the overall objective

function as the sum of a regular loss and a regularization

term. Practically, when constructing a given decision tree in

the XGBoost ensemble, it is too computationally expensive

to iterate through all possible tree structures and compute

the objective function for each possibility. Instead, a greedy

approach is applied where, starting at the tree node, branches

are successively added by finding the particular split which leads

to maximum gain.

3.2. SHAP

The Shapley value (which SHAP derives from) traces back to

Lloyd Shapley’s paper “stochastic games,” published in Princeton

in 1953 (Shapley, 1953). At the time, Shapley was studying the

field of cooperative game theory and searching for a mapping

from a coalition single game to a numeric payoff vector.

Shapley found an intuitive solution to the seemingly intractable

problem by searching for a set of “reasonable axioms” (efficiency,

symmetry, dummy, and additivity; Shapley, 1953). His resulting

“Shapley value” can be viewed as an “index for measuring the

power of players in a game” (Winter, 2002). In the context of

physical event classification, the player is analogous to the event

feature, the game is analogous to the event and the label is the

analogous to the numeric payoff output.

Winter’s paper (Winter, 2002) reviews the theoretical

framework for the derivation of the Shapley values. Lundberg

and Lee (2017) extend this definition, introducing the “SHAP”

values as the Shapley values of a “conditional expectation

function of the original model.” They also present the concept

of the “explanation model” in which the output prediction of the

ML model may be viewed as a model itself. Their definition of

an “Additive Feature Attribution Method” is one in which the

explanation model may be represented as a linear function of

binary variables. This makes it possible to view the marginal

contributions of individual features for any given event.

3.3. Graph neural network (GNN)

While traditional machine learning algorithms have proven

effective at learning from tabular data, they have historically

struggled to learn well from natural data, including images,

natural language or audio. While deep learning architectures

like convolutional neural networks (CNN; Krizhevsky et al.,

2017) and recurrent neural networks (RNN;Mikolov et al., 2010)

have proven effective at learning from image or sequence data,

geometric deep learning, the umbrella term for the task of deep

learning on graph data, is an emerging area of research. Where a

given graph G may be denoted by its set of vertices and edges

G = {V ,E}, the nodes represent objects or concepts and the

edges represent their relationships. A variety of situations may

be modeled by graphs, including social networks, molecules,

Internet traffic, etc. (Zhou et al., 2020). The GNN is designed to

operate directly on data input as a graph. Low energy neutrino-

induced events in the IWCD may be naturally represented by

a graph, where the PMTs constitute the nodes and the edges

represent the connections between the PMTs.

The origin of deep learning on graphs traces back to the

late 1990s, when RNNs were applied to directed, acyclic graphs

(directional edges, no loops formed by a collection of edges;

Zhou et al., 2020). Using this approach, node feature states

are updated in successive layers until equilibrium is reached.

This technique was later generalized to cyclic graphs as well in

2008 (Scarselli et al., 2008). Soon after, following the widespread

success of CNNs, significant interest grew in generalizing some

concepts from CNNs to learning on graphs. The first successful

adaption of the convolution operation to graphs was developed

by Bruna et al. (2013) in 2013 using Laplacian eigenvectors.

The computational complexity of this procedure was later

greatly reduced by applying polynomial spectral filters instead

of Laplacian eigenvectors (Michael et al., 2016; Kipf andWelling,

2017). Approaches have also been developed which apply spatial,

and not spectral, filters for the convolutional operation (Monti

et al., 2017). In general, GNNs apply a series of filtering and

activation layers to update the feature representation of every

node. Once the network has passed all the hidden layers, the

output node labels may be used directly in node-focused tasks,

or the node outputs may be pooled together to obtain an overall

coarsened representation for graph classification.

3.3.1. Graph convolutional network

Kipf and Welling demonstrated the successful approach of

using a convolutional architecture to learn on graphs in their

paper “Semi-supervised classification with graph convolutional

networks” (Kipf and Welling, 2017). This approach applies

an approximation of spectral graph convolution. The spectral

decomposition of a graph denotes the breakdown of the graph’s

Laplacian matrix L into its elementary orthogonal components,

i.e., the eigendecomposition of L. The graph Laplacian L

represents a graph in matrix format and is a graphical analog to

the familiar Laplacian operator for multivariate and continuous

functions. For a graphG = {V ,E},L(G) is equal to the difference

between the degree matrix D (diagonal matrix where every

element represents the degree, i.e., number of connections of

the corresponding vertex) and adjacency matrix A (matrix with

vertices labeled by rows and columns where 0 and 1 s represent

nonadjacent and adjacent pairs of vertices) of G. However,

the computation of L is computationally expensive and can

be a procedural bottleneck. Hammond et al. (2011) proposed

a computation of L using the first K Chebyshev polynomials

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

that avoids diagonalization. By taking the first-order Chebyshev

approximation K = 1 and further constraining other parameters,

the multi-layer GCN propagation rule is reached,

Hl+1 = σ (D̃− 1
2 ÃD̃− 1

2 Hl Wl), (1)

where Hl and Hl+1 denote the node feature matrices at layers

l and l + 1, Ã = A (adjacency matrix of graph) + IN (identity

matrix), D̃ii =
∑

jÃij, W
l denotes the matrix of weights at layer

l and σ is an activation function such as the rectified linear

activation unit (ReLU).

3.3.2. Dynamic graph convolutional neural
network

The dynamic graph convolution neural network (DGCNN),

introduced by Wang et al. (2019), was designed specifically

to learn from point cloud graphs for segmentation or

classification tasks. Point clouds are collections of three-

dimensional coordinates (points) in Euclidean space. However,

the DGCNNmodel also allows the graph nodes to include other

features in addition to the spatial coordinates. The main feature

of the DGCNN model is the introduction of the “EdgeConv”

convolutional operator. EdgeConv is designed to learn edge

features between node pairs, i.e., a node and its neighboring

connections. The DGCNN model is dynamic because, for every

EdgeConv block, the graph representation is updated. This

departs from the action of operating on a fixed graph like most

other GNN architectures.

In the DGCNN model, a series of EdgeConv layers are

applied to the graph. For a given layer in the network, the

EdgeConv operation is applied for every node and its k

nearest neighbors in semantic space, where k is a tunable

hyperparameter. For two neighboring nodes xi and xj, a fully

connected layer h2() with learnable weights2 and an adjustable

number of compute units is applied to learn the pairwise edge

features eij. The node representations are then updated by

aggregating these edge features over the node neighborhood.

The EdgeConv filter h2(xi, xj) = h(xi, xj − xi) operates over

individual nodes and local node neighborhoods, thus allowing

the model to learn both local neighborhood structure and global

graph structure. In addition, the dynamic recomputation of the

graph for every EdgeConv layer allows for groupings of nodes

in semantic space compared to the fixed spatial input space,

allowing for a diffusion of information throughout the entire

graph.

4. Data analysis

4.1. Data simulation

The data used in this research was simulated using WCSim

software to generate neutron and background electron events

FIGURE 1

Unrolled cylinder event displays showing the charged deposit in

units of photoelectrons as the colored points for a sample

electron background event. Multi PMT modules without any

charge are shown in yellow.

for the IWCD detector. WCSim, designed to recreate physics

events within large WC detectors (O’Sullivan, 2021), is based

on Geant4 (Agostinelli, 2003) and also depends on ROOT (Brun

and Rademakers, 1997). The simulations used a cylindrical tank

with a height of 6 m and a diameter of 8 m, and with 525

multi-PMT (mPMT) modules of 19 Hamamatsu PMTs each

lining the walls of the simulated detector. With a PMT dark

noise rate of 1 kHz and gadolinium doping of 0.1% by mass

in the water to generate an approximate 90% thermal neutron

capture on gadolinium nuclei, the simulations procured datasets

of about 1.6million events in total divided nearly evenly between

neutron capture and background electron events. The current

samples used for training are representative only, and more

realistic samples will need to be made for the analyses of real

data. The current class split is 50/50, but there is expected to

be a difference between the classes in the real experiment, and

one might consider using resampling techniques to address the

issue of serious imbalances in the class distribution in real data

if necessary.

The data was saved in a three-dimensional format of (event,

hit, features) where the eight feature values stored were the

charge, time, 3D position (x, y, z) measured relative to the center

of the cylindrical shape of the detector and 3D orientation

(dx, dy, dz) of each hit PMT. The z is along the direction of the

beam, y is vertical, and x is chosen to maintain a right-handed

coordinate system. The detector studied is cylindrical, and an

event display mapping the PMT locations on the cylinder to a

flat image are shown in Figure 1. In this simulation, the detectors

consist of modules of 19 PMTs, and therefore several modules

may have multiple photoelectrons, but this is a summary display

showing the total over the 19 PMTs in each module.

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

Other features may be engineered from these base eight, a

topic which is explored in Section 5.

Multiple datasets were tested with electron background

distributions of different uniform energy levels (i.e., a uniform 8

or 20 MeV energy distribution). Comparisons with the different

background distributions can be found in the thesis of Stubbs

(2021). However, to generate a more realistic approximation

of the background in the IWCD, an electron (beta decay)

background was simulated following the energy spectrum of

decays of isotopes produced by cosmic ray muon spallation.

Only this more realistic background is used in this paper. In

her presentation on muon spallation background in the Super-

Kamiokande experiment, Bernard notes that at lower energy

scales (tens of MeVs), muon spallation is a dominant source of

background (Bernard, 2019). Due to the high muon flux at sea

level of 6.0×105 m−2 hr−1 (Li and Beacom, 2014), SK was built

under 1,000 m of rock. The muons lose energy as they travel

through the rock, leading to a far reduced flux rate of 9.6 m−2

hr−1 at the detector. The IWCD, however, is to be deployed

in only a 50 m deep pit. Therefore, the spallation flux will be

greater for IWCD, and it is even more important to reduce this

background for identifying neutron captures at low energies.

The combinedmuon spallation energy spectra fromBernardwas

used as an input to WCSim, replicating the SK spallation energy

distribution for the simulation of electron background radiation

events in the IWCD detector. The resulting electron background

energy distribution follows a right-skewed distribution from∼0

to 16 MeV. This background, along with the regular neutron

capture events generated by WCSim, constituted the dataset

used in this research.

4.2. Likelihood baseline analysis

As shown in Figures 2A,B, the difference in the total number

of hits and charge sums between neutron and background

electron events is the most obvious source of separability

between these event types (the rest of the distributions in

Figure 2 will be discussed in the following sections). For

the low energy events being considered, there is close to a

100% correlation between these variables, since each PMT

hit is most likely a single photon hit, and only occasionally

two photons. A statistical likelihood analysis based on these

features was implemented to determine a baseline classification

accuracy, defined as the number of correct predictions divided

by the total number of predictions, for later comparison

against other machine learning approaches. The likelihood

baseline classification accuracy was calculated by estimating the

probability density function (PDF) of the neutron and electron

events based on their nhit distributions and then classifying the

events based on highest likelihood. The kernel density estimate

(KDE) was used as an estimate of the underlying PDF for the

corresponding distribution. The density of the KDE instance,

once fit over a distribution of data, was then used to evaluate

the event likelihood at a given point.

Univariate KDEs were calculated for the neutron and

electron events based on their “nhits” distributions on training

events. The final evaluation type, “nhits,” involved calculation of

KDEs for neutron and electron events on the training set for the

distribution of number of hits. All events in the test set were

then classified based on the highest density of the neutron and

electron multivariate KDEs.

The likelihood classification approach using univariate

KDEs yielded a classification accuracy of 62.4%. The runtime

cost of classifying events from highest KDE likelihood was ∼1

h and 20 min on average for the testing set, while fitting the

univariate KDEs to the training dataset only took a few minutes.

5. Feature engineering

In machine learning, feature engineering is the process of

applying domain knowledge to extract useful features from

the original dataset. These features are often more useful than

the raw data itself for predictive or analytic tasks. However,

the features must be carefully selected to extract as much

information from the data as possible. Thus, a search was

conducted for useful features in the domain of neutron capture

in WC detectors. Relevant features were selected to aggregate

information from each event, reducing the complexity of the

dataset and extracting it into a more useful format. It was

found that the classification performance of the XGBoostmodels

significantly improved upon application to the aggregated

features compared to the original dataset.

5.1. Beta parameters

One way to quantify event topology is by the amount of

anisotropy within the event with respect to the event vertex

(the vertex position denotes the Cartesian coordinates of the

start of the event). For comparison of neutron capture to

background events, isotropy may be a discriminating factor

due to the backgrounds being single electron events, while the

neutron signal is multiple gammas from a neutron capture.

Several isotropy parameters were considered for use in this

study, including 2ij, “the average of the angles between each

pair of PMT hits in an event with respect to the fitted vertex

position,” the correlation function ring inner product (CFRIP),

which compares the angular correlation of the event to that of

a perfect ring, and the beta parameters β(l), defined similarly to

2ij but whichmake use of Legendre polynomials (Wilson, 2015).

Both Wilson (2015) and Dunmore (2004) found the beta

parameters to yield the most powerful discrimination based

on event isotropy between different types of subatomic particle

events. Following this result, the beta parameters were chosen as

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

FIGURE 2

(A–L) Comparison of 12 engineered features separated by neutron capture and spallation electron background events. The data consists of

nearly 1.6 million events, generated by WCSim for the IWCD detector geometry.

the measure of isotropy in this project. The definition for the l-th

beta parameter β(l) is

β(l) = 〈P(l)(cos θik)〉i 6=k, (2)

where β(l) is equal to the average of the l-th Legendre

polynomial P(l) of the cosine of the angle θik between every pair

of hit PMTs in the event (i 6= k) with respect to the event vertex.

For any of the beta parameters, a value of 0 indicates perfects

isotropy, while higher absolute values indicate directionality

and lower isotropy. The beta parameter distributions for the

datasets in this paper are shown in Figures 2C–G for β1 through

β5, respectively. In practice, an event vertex would need to be

calculated using an existing vertex reconstruction method. For

the purpose of this study, the truth information is used for the

exact event vertex position.

5.2. Time of flight

The root-mean-square (RMS) time of flight was selected as

an engineered feature to extract timing difference information

from the data. The RMS time was calculated for a given event

as the square root of the sum of the squared differences of every

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

hit time from the average hit time per event, averaged over the

number of hits for that event:

tRMS(x) =

√

√

√

√

∑N(x)
i=1 (ti(x)− tµ(x))

2

N(x)
, (3)

where i is an individual hit within the event x,N(x) is the number

of hits in event x, ti is the recorded time of hit i, and tµ(x) is the

average hit time for the event.

The RMS time of flight, shown in Figure 2I, has greater

resistance to dark noise fluctuations (random hits before or after

an event) and was found to show greater discrimination between

signal and background compared to the overall time of flight.

5.3. Distance to wall

The distribution of event vertex distance to the IWCD

cylindrical tank wall, inspired by Irvine (2014), was also explored

as a potential discriminating feature between neutron capture

and background events. For an underground WC detector

such as Super-Kamiokande, which is located approximately one

kilometer underground, a greater number of background events

may originate at positions nearer the detector walls due to

radiation from the surrounding rock. In the simulated IWCD

data, there is a slightly greater occurrence of neutron capture

events in the region of 50–300 cm from the tank wall, as seen

in Figure 2H.

5.4. Mean opening angle

The Cherenkov emission from relativistic photons in

water is emitted on a cone with respect to the origin of

radiation. The angle of emission is dependent on the kinematic

properties of the incident charged particles. The mean opening

angle from the event vertex varies on average for different

types of particle interactions, making this metric another

possible discriminant to improve neutron tagging performance.

Following the definition in Irvine (2014), this mean opening

angle is calculated as the mean value of the angles between every

hit PMT vector and the true vertex position within the given

event:

2µ(x) =

∑N(x)
i=1 2(Epi, Ep0)

N(x)
=

∑N(x)
i=1 arccos (

Epi· Ep0
| Epi|·| Ep0|

)

N(x)
, (4)

where 2µ(x) is the mean opening angle for the event x, N(x) is

the number of hits, Epi is the (x, y, z) position of the i-th hit, Ep0 is

the (x, y, z) position of the event vertex and 2(Epi, Ep0) is the angle

between Epi and Ep0, computed as the quotient of the dot product

by the product of their magnitudes.

The mean opening angle metric is largely influenced by

the event energy. Discrimination is observed between the

distributions seen in Figure 2J due to a combination between the

event energy and topological distribution of the hits throughout

the event. The electron events in the background dataset have

lower energies, but the hits are more sparsely distributed.

Evidently, the net effect is that the neutrons end up with a higher

peak mean opening angle than the background events in the

dataset, on average.

5.5. Consecutive hit angular RMS

Another potential neutron tagging feature discriminant,

again inspired by Irvine (2014), is the root-mean-squared

consecutive angle of an event. True background hits, for

example from radioactive background sources, often contain

spatially compact clusters of hits. On the other hand, Cherenkov

photons from neutron capture events would be expected to

propagate more uniformly within the average opening angle

of the radiation emission cone. The RMS difference of angle

between temporally consecutive hits can extract information

on these angular differences between event types. The RMS

angle is calculated by first sorting all PMT hits chronologically

within a given event, then computing the sum of the squared

differences of the angles between consecutive events from the

mean consecutive angular difference, averaged over the number

of hits for the event and square rooted, as

2RMS(x) =

√

∑N(x)−1
i=1 (2(Epi, Epi+1)− 2µ)2

N(x)
=

√

√

√

√

∑N(x)−1
i=1 (arccos (

Epi· Epi+1

| Epi|·|| Epi+1|
)− 2µ)2

N(x)
, (5)

where 2RMS(x) is the RMS consecutive angle for the event x,

N(x) is the number of hits, Epi is the (x, y, z) position of the i-th

hit, Epi+1 is the (x, y, z) position of next consecutive hit in time

order i+1, 2µ is the average angle between consecutive hits in

the event and 2(Epi, Epi+1) is the angle between Epi and Epi+1.

For events with more scattering, clustering and reflections,

the distributions of RMS consecutive angles will be higher on

average, and vice versa. Figure 2K shows that there is little

difference between neutron and background signals, which is

expected since our simulation uses a uniform distribution of

background events. For a background source more inclusive of

clustering, the discrimination extent is expected to be greater for

the RMS angular metric.

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

5.6. Consecutive hit distance

In studying the event displays of the neutron capture

and background events, it was observed that the positional

distributions of hits tended to be more widespread in neutron

capture events. Given two events of different type with

similar numbers of hits, the neutron capture event could be

reasonably well-differentiated by eye by selecting the event with

greater average distance between hits. To compute the average

consecutive hit distance, the hits within a given event were first

sorted chronologically in time, then the Euclidean distances

between consecutive hits were summed and averaged over the

number of hits within the event as

hdµ(x) =

∑N(x)−1
i=1 dist(Epi, Epi+1)

N(x)
=

∑N(x)−1
i=1

√

(px(i) − px(i+1))2 + (py(i) − py(i+1))2 + (pz(i) − pz(i+1))2

N(x)
, (6)

where hdµ(x) is the average consecutive hit distance for the

event x, N(x) is the number of hits, Epi is the (x, y, z) position of

the i-th hit, Epi+1 is the (x, y, z) position of the next consecutive

hit in time order i+1 and dist(Epi, Epi+1) is the Euclidean distance

between consecutive hits.

The difference of consecutive hit distance was a good

discriminator, as seen in Figure 2L. This difference in

consecutive hit distance is likely due to the differing nature of

the particle interactions, in which the cascade of gammas from

the neutron capture leads to greater spatial separation of hits

throughout the detector, on average, when compared to the

electron background hits.

5.7. XGBoost results

The XGBoost gradient boosting decision tree model

was applied to the task of learning from the features

engineered in Section 5. A grid search was applied to tune

the model hyperparameters, including the maximum tree depth

max_depth, the minimum tree node weight min_child_weight,

the training data subsampling ratio subsample, the tree column

subsampling ratio colsample_bytree, and the learning rate eta.

The grid search sequentially iterated over relating parameters

pairs and applied four-fold cross-validation to improve

outcome reliability. The relating pairs were max_depth and

min_child_weight, followed by subsample and colsample_bytree.

The learning rate was adjusted independently. For each

hyperparameter combination, XGBoost’s native cross-validation

function was used to train the model over a maximum of

1,250 boosting rounds, and early stopping was used to cancel

model training if performance did not improve over twenty

consecutive rounds.

FIGURE 3

Confusion matrix for the XGBoost model trained on the dataset

of neutron capture and spallation background electron events.

Applying this technique, the optimal tree complexity was

found with max_depth of 11 and a min_child_weight of 1, the

optimal sampling ratios were found with a subsample ratio of

0.7 and a colsample_bytree ratio of 1.0, and the learning rate

was tuned to 0.007. The optimized XGBoost model was then

trained on a consistent 80% training dataset, optimized against

an independent 10% validation dataset and tested against a

10% holdout test set. The model obtained train, validation and

test accuracies of 73.0, 71.5, and 71.4%, respectively, and an

ROC AUC score of 0.784. Although the training accuracies

are generally slightly higher than the test accuracy, the extent

of overfitting was not too severe and may be decreased by

using a smaller number for early stopping. The XGBoost model

construction for any of the 80% training sets was found to take

∼45–60 min, depending on the number of trees constructed

before early stopping. Figure 3 displays the confusion matrix,

which shows that the true positive rate (neutron sensitivity)

is significantly lower than the true negative rate (neutron

specificity).

SHAPwas used to understand the relative importances of the

dozen features contributing to the XGBoost model. The SHAP

values are applicable both locally, to a single event, and globally,

to a conglomerate of events. While various visualizations using

SHAP are possible, the beeswarm plot, in particular, is useful in

showing the range and density of SHAP values for individual

features.

In the beeswarm plot, it is hard to see the distribution as

it has a density of points as a color for the value. The main

reason for introducing it here is to see the reveals a notable

difference between the lower order (β1, β2, β3) and higher order

(β4, β5) isotropy parameters. Figure 4 shows the beeswarm plot

over all events in the neutron capture and spallation electron

background dataset. For this plot, the SHAP value for each

feature in every event is plotted as a single dot. Bulges in

a row indicate areas of larger density. Higher SHAP values

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

FIGURE 4

Beeswarm plot of SHAP values for the neutron capture and

spallation background dataset, simulated using WCSim for the

IWCD tank geometry. The SHAP value for each feature in every

event is plotted as a dot in the plot, where the x-axis position

corresponds to the SHAP value and the colorbar shows the

feature value (blue is low, red is high). High SHAP values

influence the model output toward 1 (electron-like event) and

low SHAP values (negative) influence the model outputs toward

0 (neutron-like event).

influence the model output toward 1 (electron-like event) and

low SHAP values (negative) influence the model outputs toward

0 (neutron-like event). The features are arranged on the vertical

axis by feature importance, with the most important features (by

average absolute SHAP value) on the top and the least important

features on the bottom. Each feature value is plotted with a color

corresponding to its position within its numeric range.

Several distinctive patterns from Figure 4 are discernible.

For a high number of hits, the SHAP value is uniformly negative.

Correspondingly, in Figure 2A, it is clear that events with more

than approximately 100 hits are uniformly neutron events (top-

left plot). For the wall distance, it is clear from Figure 2H that

there are is a slight over-representation of background events at

distances close to the wall. The XGBoost model clearly notices

this difference, as events with lower wall distances mostly have

higher SHAP values, meaning the model output value is pushed

higher to 1 (electron-like event).

The beeswarm Figure 4 also reveals a notable difference

between the lower order (β1, β2, β3) and higher-order (β4,

β5) isotropy parameters. β1, β2, and β3 both have single

mode representations in the beeswarm plot, in which there is a

single bulge. Higher values for these parameters also attribute

the output toward a neutron classification, on average. This

correspondence may be seen by the feature differences of

Figures 2C–G. Alternately, β4 and β5 have two main modes

(bulges) in the SHAP value beeswarm plot, indicating two main

regions with SHAP values of a similar range. For β5, a clear

distinction is seen between lower values of β5, attributed toward

neutron events, and higher values of β5, attributed toward

electron events. While this difference is clear, the SHAP values

themselves are lower, showing a smaller output impact. This

small difference is observable in Figure 2G for β5.

The β4 parameter has a similar double-moded pattern in the

beeswarm plot, but the attributed difference is smaller for lower

and higher values of the parameter. However, β4 still has the

greatest average absolute SHAP value, and therefore the greatest

average impact on the model output. In general, β4, mean

consecutive hit distance, β2, β5, and number of hits, respectively

were the top five most important features in determining event

outcomes.

6. Graph neural network application

In this study, the PyTorch Geometric (PyG) library was

used to apply graph neural network models to the IWCD

dataset (Fey and Lenssen, 2019). This particular library was

chosen for its ease of use, breadth of graph network models

available, data loading tools and GPU support. During training,

at regular intervals, the model was applied to the validation

dataset to check for under fitting or overfitting. After the

model was trained, it was applied on the test dataset and

evaluation metrics were computed. Model parameters were

updated using Adam optimization (Kingma and Ba, 2014)

with cross-entropy loss. Training was carried out on a Quadro

P2000 GPU.

6.1. Graph convolutional network (GCN)

For a neutron capture or background event, the hit

PMTs may be represented as graph nodes, with each node

containing the features of hit time, deposited charge and

the three-dimensional position and orientation of the hit

PMT. Since the number of hits varies for every event,

the graphs could either vary in size (non-padded graph)

or zero padding could be added. Graph padding, along

with edge weighting and node connectivity, were three

hyperparameters of graph construction investigated in this

research. Within the GCN framework, model performance

was compared against padded vs. non-padded graphs,

edge weighted (inversely proportional to distance) vs.

uniform weights, and the fully connected vs. k nearest

neighbor graph.

To begin, the GCN model was tested on graphs constructed

using a padded, fully connected (every node connected to

every other node) representation with all edge weightings set

to a value of one. This setting was used to adjust parameters

of the GCN architecture, leading to the configuration of

two alternating layers of GCN convolutional filtering and

activation computation, with 24 and 8 compute nodes in

the first and second hidden layers, respectively. This was

followed by max pooling and the log softmax output from a

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

fully connected layer with two neurons in the output layer.

GCN results were obtained by training with a batch size

of 32, learning rate of 0.0003 and learning rate decay of

0.001%.

The first graph construction comparison tested whether

the GCN model learned better on padded graphs or variable-

size graphs without padding. The results of training the GCN

model for padded and non-padded, fully connected graphs with

uniform edge weightings are shown in the first two rows of

Table 1. The performance was higher with for padded graphs,

with an average test accuracy improvement of 3.2%.

While accuracy was higher for the padded graphs, the

runtime was also considerably longer due to the significantly

greater number of connections and message passing operations

in the padded graphs. Run times were recorded per epoch, where

an epoch is one entire transit of the training data through the

algorithm. Per epoch, the padded graphs took 6 h to train,

while the non-padded graphs took only 14min. The non-padded

graph GCN model was trained over 75 epochs and ∼17 h,

while the padded GCN model was trained over 5 epochs and

∼30 h. A higher number of epochs was not found to improve

the performance for either model. A summary of runtimes is

presented in Table 1.

Next, edge weighting was tested for the GCN model to

see if edge values related to physical distance could provide a

learning advantage over uniform edge weightings set to a tensor

of ones. The results of training the GCN on fully connected,

padded, inverse-distance edge weighted graphs is shown in the

last row of Table 1. Runtimes are nearly identical to the same

model with fixed edge weights. With distance weighted edges,

the test accuracy was 1.7% lower than the corresponding result

for graphs with uniform edge weights. The edge weightings

possibly overcomplicate the GCNmodel on the scale of the∼105

node connections for a given event.

Overall, the GCN model was found to perform best

on static, fully connected, uniform edge weighted graphs.

The results are shown in Table 1. This GCN configuration

has comparable metrics to the highest likelihood baseline,

with 0.6% higher accuracy on the spallation set. Moreover,

training results were nearly identical whether the model was

fed only the hits (and charges) data, or if the position

and orientation data was included along with the hits

and charges. Therefore, it appears that the GCN model

was largely learning to classify events based on the trivial

number of hits, and that it failed to significantly learn from

the geometric differences of neutron capture to electron

background hit patterns. Adding any additional network layers

to the GCN models was also found to worsen performance,

presumably as the extra filtering step oversmoothes the node

representations.

6.2. Dynamic graph convolutional neural
network

The DGCNN model was the next graph network model

applied to the particle classification task. Described in Section

3.3.2, the DGCNN model was selected for its ability to learn

from point cloud data specifically. The network architecture

configuration was set to the default from the PyTorch Geometric

example documentation, which consisted of the following: two

dynamic edge convolution layers followed by a fully connected

layer, a global max pooling layer and a final MLP to yield

the output class probabilities. The first edge convolution layer

applied an MLP on input node features with three layers of 64

compute units each. The second edge convolution layer took

the output of the first as input and applied an MLP with 128

activation units. In both cases, the MLP was applied to every

node pair (n ∗ 2 pairs for n nodes in an event) over the k-

nn (k nearest neighbor) graph representation of each node,

and the representations were updated by pooling the learned

edge features. After the EdgeConv blocks, a fully connected

layer concatenated the 64 and 128 unit features from the

first two dynamic edge convolution layers and yielded 1,024

activations. Global max pooling was applied over the n nodes

to reduce the representation from n ∗ 1, 024 to only 1, 024.

The final MLP then passed this information into final layers of

512, 256, and 2 activation nodes, respectively and the softmax

of the output was applied to calculate the output the binary

classification probabilities. Note that for every fully connected

layer throughout the network, the activations were calculated

using the ReLU activation function and batch normalization

(Ioffe and Szegedy, 2015) to reduce overfitting. The model

description is represented by Figure 5.

With the fixed architecture as described above, the

number of nearest neighbors k in the DGCNN dynamic

edge convolution blocks were adjusted over multiple runs to

compare performance. Table 2 shows the results of applying the

DGCNNmodel on the spallation background dataset with the k

hyperparameter varying from 10 to 30 in increments of 5. The

resulting accuracies were largely the same for k = 15 to k = 30,

while k = 10 neighbors led to a slightly lower accuracy. Among

the range of k = 15 to k = 30, k = 25 yielded the highest ROC

AUC score of 0.797, although the 0.001 difference compared to

the other k values in the range was not necessarily statistically

significant.

Regarding the statistical sensitivity, for the 80,000 validation

events in each sample the statistical uncertainty is 0.4%. Since the

same datasets are being reused in changing the k values, there

is some cancelation of uncertainty due to correlation through

using the exact same data. A conservative estimate of 0.4%

uncertainty could be used here, since relying on correlation by

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

TABLE 1 GCNmodel applied to padded and non-padded, fully connected, uniformly edge weighted, and inverse square distance (1/d2) weighted

graphs for the simulated IWCD neutron capture and background datasets.

Type Train accuracy Validation accuracy Test accuracy ROC AUC

Padded 61.3 63.1 63.1 0.667

Non-padded 58.5 59.8 59.9 0.628

Padded (1/d2) 59.7 61.3 61.4 0.632

TABLE 2 DGCNNmodel classification accuracies for variations of the number of nearest neighbors k in the DGCNN dynamic edge convolution

blocks from 10 to 30 in increments of 5.

k neighbors Train accuracy Validation accuracy Test accuracy ROC AUC

10 70.9 72.0 71.9 0.792

15 71.8 72.2 72.3 0.796

20 71.7 72.3 72.3 0.796

25 71.8 72.4 72.4 0.797

30 71.4 72.4 72.4 0.796

FIGURE 5

Applied DGCNN architecture for neutron capture and electron background event discrimination. Two dynamic edge convolutional blocks were

applied, followed by a fully connected layer, global max pooling, and a final multi-layer perceptron layer.

not having generated enough data to compare themethods using

independent data may mean fitting to some peculiarity of the

dataset, rather than a generally useful difference.

While there was minimal performance difference for the

range of k = 15 to k = 30, there was however a difference in

the training times, as shown in Table 3. This was expected as, for

n f -dimensional input nodes, an n ∗ k ∗ an -dimensional tensor

is generated before pooling across the neighboring edge features

for every dynamic edge convolution block. Therefore, the total

number of training parameters increases significantly for every

increment of nearest neighbors k. There was a sharp increase in

training time after about k = 20 and more than a doubling in

overall training time from k = 10 to k = 30.

Given the results in Table 2 and the processing times

required, k = 15 is a good compromise between training time

and classification accuracy. However, when training time is not

a significant impediment, k = 25 might be used to optimize

results.

7. Discussion

For all models, consistent training, validation, and test

datasets were constructed in an 80, 10, and 10% ratio. Models

TABLE 3 Comparison of training times for the di�erent models

applied in this study, sorted in ascending order by training time per

epoch.

Model Epochs Total

runtime

(min)

Time per

epoch

(min)

XGBoost 1,450 50 0.036

DGCNN (k = 10) 25 1,980 1.32

DGCNN (k = 15) 25 2,100 1.4

DGCNN (k = 20) 25 2,700 1.8

DGCNN (k = 25) 25 3,420 2.28

DGCNN (k = 30) 25 3,960 2.64

GCN (non-padded) 75 1,020 13.6

Likelihood Ratio 1 80 80

GCN (padded) 5 1,800 360

were optimized against the validation data and metrics were

reported for the holdout test dataset, ensuring that differences

in model performance were not due to random distributions

of the data. Compared to the likelihood statistical baseline,

the DGCNN model results in Table 2 showed an accuracy

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

TABLE 4 Overall accuracies for neutron capture vs. electron background classification for the likelihood analysis (Likelihood), XGBoost, GCN, and

DGCNNmethods.

Dataset background source Likelihood XGBoost GCN DGCNN

Spallation 62.5 71.4 63.1 72.4

improvement of 9.9%. The ∼10% classification accuracy

improvement strongly indicates the capability of the DGCNN

model to learn from event topology and other, more subtle

factors than the number of hits and overall sum of charges within

the event. The dynamic method of graph construction with the

DGCNN model, which shuffles the groupings of every node

with its other nearest neighbor nodes in semantic space, allows

the diffusion of nonlocal information throughout the graph.

This ostensibly allows the DGCNN model to learn global event

topology in a way which the GCNmodel, restricted to operating

over fixed input graphs, was not able to.

Overall, the DGCNN also slightly outperformed the best

XGBoost model, representing an improvement in accuracy of

0.7% and ROC AUC score of 0.007. The test accuracy results for

all approaches undertaken in this study, including the likelihood

baseline analysis, XGBoost with feature engineering and the

GCN and DGCNN models are presented in Table 4. The best

accuracy for neutron vs. background separation was 72.4% using

DGCNN.

The receiver operating characteristic (ROC) curves, which

plots the true positive rate (sensitivity) against the false positive

rate (1—specificity) for a binary classification problem, are

shown in Figure 6 for the different machine learning methods

studied in this paper. The ROC AUC (area under the curve)

from XGBoost is 0.784, from GCN is 0.667, and from DGCNN

with k = 25 is 0.797, showing that consistent with the accuracies

presented earlier, the DGCNN had the best performance.

8. Conclusions

This paper has presented a search to improve the

classification performance of neutron capture vs. background

identification in WC detectors using techniques in machine

learning. To provide a performance baseline, a statistical model

was applied to classify events using maximum likelihood of

kernel density estimates of the main event type discriminants,

namely the number of hits and charge sums. The baseline

accuracy was found to be 62.4%.

Next, a series of features were engineered from the datasets.

Besides number of hits and charge sums, the beta parameters β1-

β5 were created to capture event isotropy. The mean opening

angle, event vertex distance to wall, RMS consecutive hit angle

and mean consecutive hit distance were also computed to

summarize event topology and the RMS event time was added

to capture timing discrimination. Gradient boosted decision

FIGURE 6

Comparison of the ROC curves for the XGBoost, GCN, and

DGCNN results presented in this paper.

trees were applied on these engineered features using the

XGBoost algorithm. The XGBoost model hyperparameters were

tuned using grid search, yielding a test accuracy of 71.4%

which represented an 8.9% improvement over the baseline

approach. SHAP analysis of these model outputs revealed useful

information. The β2, β4, β5, number of hits and consecutive hit

distance parameters were consistently rated most important, as

measured by the mean absolute SHAP value.

Drawbacks to the XGBoost and the feature engineering

approach include preprocessing time to calculate the feature

values and the fact that the calculation of several features relies

on the event vertex position. For this research, the true vertex

position was taken from the simulation information, but in

reality a vertex reconstruction algorithm would need to be

used, introducing some uncertainties into the equations. Future

studies could endeavor to reduce the bias in the engineered

features by smearing the true vertex positions over a range

of values.

As an alternative approach, deep learning was implemented

via the GCN and DGCNN graph neural network models. The

GCN model was tested with a variety of graph construction

approaches, including static vs. non-static graphs, uniform

edge weighting vs. scaled edge weights, and fully connected

vs. partially connected graphs. Of all these cases, the best

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

test accuracy obtained was 63.1% using the fully connected,

zero padded, uniform edge weighted graphs, which was nearly

identical to the baseline likelihood accuracy.

The DGCNN model, however, was found to have

significantly improved neutron tagging performance above

the baseline accuracy. The DGCNN number of neighbors

hyperparameter k was tuned, and the reported accuracy

was found to be 72.4%, representing an improvement of

9.9% over the likelihood analysis. Thus, DGCNN slightly

outperformed XGBoost on the classification of neutron vs.

background. DGCNN also retains the advantage of not

requiring any preprocessing or prior knowledge. On the

other hand, XGBoost provides a much greater level of model

interpretability. Furthermore, once the engineered features

have been computed, the training time of XGBoost for the

datasets used in this study was within the range of only 45

min to 1 h, much faster than the DGCNN model which took

from 30 to over 60 h, depending on the value of k. However,

DGCNNwas trained over only a single GPU, and using multiple

GPUs could reduce the runtime significantly. Table 4 shows the

overall results of XGBoost, GCN, and DGCNN compared to the

likelihood baseline.

Overall, both XGBoost with feature engineering and

DGCNN show promise in improving neutron tagging efficiency

in WC detectors. In particular, the application of these methods

in the IWCD might help reduce systematic uncertainties for

the Hyper-Kamiokande detector, which it turn could advance

our understanding of neutrino physics and the Standard Model

itself. In future, the network architecture of the DGCNN model

could be further optimized.

For practical purposes, given that these models were

developed for data simulation, another reasonable next step

would include the deployment of these models for neutron

tagging in active WC detectors. This would test if the models

are transferable for real use cases. Also, these models could be

incorporated into a pipeline that tests for the coincidence of

neutron capture and positron rings within a timescale indicative

of neutrino inverse beta decay. While the development of

improved neutron tagging is desirable, the ultimate goal is to

trace back to the originating neutrino to probe deeper into the

unknowns of neutrino physics. An end-to-end network could

thus be deployed using the neutron tagging models developed

in this research to better identify the neutrinos themselves in the

overarching process of the neutrino inverse beta decay.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary materials, further

inquiries can be directed to the corresponding author

(bl.jamieson@uwinnipeg.ca).

Author contributions

This paper presents the research conducted by MS,

whose thesis this paper is based on Stubbs (2021).

BJ, SR, JW, NP, RA, PP, and WF contributed to

the development of the research at weekly meetings.

The initial implementation of the GNN code was

prepared by JW, and datasets were prepared by NP.

All authors contributed to the article and approved the

submitted version.

Funding

The funding for this research is from the Canadian National

Science and Engineering Council (NSERC). Production of the

simulation datasets was done with the support of Compute

Canada resources.

Acknowledgments

We acknowledge the WatChMaL, Super-Kamiokande, and

Hyper-Kamiokande collaborations, on whose shoulders we

stand in coming up with the idea for this study, and with

whom many of the authors are collaborators. This research

was enabled in part by support provided by Cedar Compute

Cluster (https://docs.alliancecan.ca/wiki/Cedar) and the Digital

Research Alliance of Canada (alliancecan.ca).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
mailto:bl.jamieson@uwinnipeg.ca
https://docs.alliancecan.ca/wiki/Cedar
http://alliancecan.ca/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

References

Agostinelli, S. (2003). Geant4-a simulation toolkit. Nucl. Instru. Method. Phys.
Res. Sec. A. 506, 250–303. doi: 10.1016/S0168-9002(03)01368-8

Andrews, M., Paulini, M., Gleyzer, S., and Poczos, B. (2020). End-to-end physics
event classification with CMS open data: applying image-based deep learning to
detector data for the direct classification of collision events at the LHC. Comput.
Softw. Big Sci. 4:6. doi: 10.1007/s41781-020-00038-8

Ankowski, A. M., Benhar, O., Mori, T., Yamaguchi, R., and Sakuda,
M. (2012). Analysis of γ -ray production in neutral-current neutrino-
oxygen interactions at energies above 200 MeV. Phys. Rev. Lett. 108:052505.
doi: 10.1103/PhysRevLett.108.052505

ATLAS Collaboration (2017). Identification of Jets Containing b-Hadrons With
Recurrent Neural Networks at the ATLAS Experiment. Technical report, CERN,
Geneva. Available online at: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/
PUBNOTES/ATL-PHYS-PUB-2017-003 (accessed January 26, 2022).

ATLAS Collaboration (2019). Convolutional Neural Networks With Event
Images for Pileup Mitigation with the ATLAS Detector. Technical report, CERN,
Geneva. Available online at: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/
PUBNOTES/ATL-PHYS-PUB-2019-028 (accessed January 26, 2022).

Beacom, J. F., and Vagins, M. R. (2004). Antineutrino spectroscopy
with large water Cerenkov detectors. Phys. Rev. Lett. 93:171101.
doi: 10.1103/PhysRevLett.93.171101

Bernard, L. (2019). “Spallation background in the Super-Kamiokande
experiment,” in Super-Kamiokande Collaboration ICHEP Conference, Neutrino
Session.

Bhattacharya, S., Maddikunta, P. K. R., Kaluri, R., Singh, S., Gadekallu, T.
R., Alazab, M., et al. (2020). A novel PCA-firefly based XGBoost classification
model for intrusion detection in networks using GPU. Electronics 9:219.
doi: 10.3390/electronics9020219

Bourilkov, D. (2019). Machine and deep learning applications in particle physics.
Int. J. Modern Phys. A 34:1930019. doi: 10.1142/S0217751X19300199

Brun, R., and Rademakers, F. (1997). R.O.O.T.-an object oriented data analysis
framework. NIM A 389, 81–86. doi: 10.1016/S0168-9002(97)00048-X

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks
and locally connected networks on graphs. arXiv [Preprint].arXiv: 1312.6203.
doi: 10.48550/ARXIV.1312.6203

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., et al.
(2019). Machine learning and the physical sciences. Rev. Mod. Phys. 91:045002.
doi: 10.1103/RevModPhys.91.045002

Chen, T., and Guestrin, C. (2016). “XGBoost: a scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16 (New York, NY: Association for Computing
Machinery), 785–794. doi: 10.1145/2939672.2939785

Chen, T., and He, T. (2015). “Higgs boson discovery with boosted trees,” in
Proceedings of the NIPS 2014 Workshop on High-Energy Physics and Machine
Learning, Vol. 42, eds G. Cowan, C. Germain, I. Guyon, B. Kégl, and D. Rousseau
(Montreal, QC: PMLR), 69–80.

Choma, N., Monti, F., Gerhardt, L., Palczewski, T., Ronaghi, Z., Prabhat, P., et
al. (2018). “Graph neural networks for icecube signal classification,” in 2018 17th
IEEE International Conference on Machine Learning and Applications (ICMLA).
(Orlando, FL), 386–391. doi: 10.1109/ICMLA.2018.00064

Cornell, A. S., Doorsamy, W., Fuks, B., Harmsen, G., and Mason, L. (2022).
Boosted decision trees in the era of new physics: a smuon analysis case study. J.
High Ener. Phys. 2022, 15. doi: 10.1007/JHEP04(2022)015

Dunmore, J. A. (2004). The separation of CC and NC events in the sudbury
neutrino observatory (Ph.D. thesis). Oxford.

Fernández, P. (2016). Status of GADZOOKS!: neutron tagging
in super-Kamiokande. Nucl. Part. Phys. Proc. 273–275, 353–360.
doi: 10.1016/j.nuclphysbps.2015.09.050

Fey, M., and Lenssen, J. E. (2019). Fast graph representation
learning with PyTorch geometric. arXiv [Preprint].arXiv: 1903.02428.
doi: 10.48550/ARXIV.1903.02428

Gligorov, V. V., and Williams, M. (2013). Efficient, reliable and fast high-
level triggering using a bonsai boosted decision tree. J. Instrumen. 8:P02013.
doi: 10.1088/1748-0221/8/02/P02013

Guest, D., Cranmer, K., and Whiteson, D. (2018). Deep learning and
its application to LHC physics. Annu. Rev. Nucl. Part. Sci. 68, 161–181.
doi: 10.1146/annurev-nucl-101917-021019

Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011). Wavelets
on graphs via spectral graph theory. Appl. Comput. Harm. Anal. 30, 129–150.
doi: 10.1016/j.acha.2010.04.005

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: accelerating deep
network training by reducing internal covariate shift,” in International Conference
on Machine Learning (Lille), 448–456.

Irvine, T. J. (2014). Development of neutron-tagging techniques and application
to atmospheric neutrino oscillation analysis in Super-Kamiokande (Ph.D. thesis).
University of Tokyo, Tokyo, Japan.

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv [Preprint].arXiv: 1412.6980. doi: 10.48550/ARXIV.1412.6980

Kipf, T., and Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. Arxiv: abs/1609.02907.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet Classification
with Deep Convolutional Neural Networks. New York, NY: Association for
Computing Machinery. doi: 10.1145/3065386

Li, S. W., and Beacom, J. F. (2014). First calculation of cosmic-ray
MUON spallation backgrounds for MEV astrophysical neutrino signals in super-
Kamiokande. Phys. Rev. C 89:045801. doi: 10.1103/PhysRevC.89.045801

Lundberg, S. M., and Lee, S.-I. (2017). “A unified approach to interpreting
model predictions,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, (Red Hook, NY: Curran Associates Inc.),
4768–4777.

Macaluso, S. and Shih, D. (2018). Pulling out all the tops with computer vision
and deep learning. J. High Energ. Phys. 2018:121. doi: 10.1007/JHEP10(2018)121

Michael, D., Bresson, X., and Vandegheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering. arXiv [Preprint].arXiv:
1606.09375. doi: 10.48550/ARXIV.1606.09375

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and Khudanpur, S. (2010).
“Recurrent neural network based language model,” in Interspeech (Makuhari), 2,
1045–1048. doi: 10.21437/Interspeech.2010-343

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M.
(2017). “Geometric deep learning on graphs and manifolds using mixture model
CNNs,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 5115–5124. doi: 10.1109/CVPR.2017.576

O’Sullivan, E. (2021). Water Cherenkov detector simulation (WCSIM).
Available online at: https://github.com/WCSim/WCSim

Parsa, A. B., Movahedi, A., Taghipour, H., Derrible, S., and Mohammadian, A.
K. (2020). Toward safer highways, application of XGBoost and SHAP for real-
time accident detection and feature analysis. Accid. Anal. Prevent. 136:105405.
doi: 10.1016/j.aap.2019.105405

Proto-Collaboration, H.-K., Abe, K., Aihara, H., Aimi, A., Andreopoulos,
A. C., et al. (2018). Hyper-kamiokande design report. arXiv:1805.04163.
doi: 10.48550/arXiv.1805.04163

Qu, H., and Gouskos, L. (2020). Jet tagging via particle clouds. Phys. Rev. D
101:056019. doi: 10.1103/PhysRevD.101.056019

Radovic, A., Williams, M., Rousseau, D., Kagan, M., Bonacorsi, D., Himmel,
A., et al. (2018). Machine learning at the energy and intensity frontiers of particle
physics. Nature 560, 41–48. doi: 10.1038/s41586-018-0361-2

Roe, B. P., Yang, H.-J., Zhu, J., Liu, Y., Stancu, I., and McGregor, G. (2005).
Boosted decision trees, an alternative to artificial neural networks. Nucl. Instrum.
Methods A 543, 577–584. doi: 10.1016/j.nima.2004.12.018

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G.
(2008). The graph neural network model. IEEE Trans. Neural netw. 20, 61–80.
doi: 10.1109/TNN.2008.2005605

Shapley, L. S. (1953). Stochastic games. Proc. Natl. Acad. Sci. U.S.A. 39,
1095–1100. doi: 10.1073/pnas.39.10.1953

Shlomi, J., Battaglia, P., and Vlimant, J.-R. (2021). Graph neural networks in
particle physics.Mach. Learn. 2:021001. doi: 10.1088/2632-2153/abbf9a

Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Bergaur,T.,
Dragicevic, M., et al. (2020). Identification of heavy, energetic, hadronically
decaying particles using machine-learning techniques. J. Instrument. 15, P06005.
doi: 10.1088/1748-0221/15/06/p06005

Stubbs, M. (2021). Using machine learning to improve neutron tagging efficiency
in water Cherenkov detectors (Master’s thesis). University of Winnipeg, Winnipeg,
MB, Canada.

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1007/s41781-020-00038-8
https://doi.org/10.1103/PhysRevLett.108.052505
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-028
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-028
https://doi.org/10.1103/PhysRevLett.93.171101
https://doi.org/10.3390/electronics9020219
https://doi.org/10.1142/S0217751X19300199
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.48550/ARXIV.1312.6203
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/ICMLA.2018.00064
https://doi.org/10.1007/JHEP04(2022)015
https://doi.org/10.1016/j.nuclphysbps.2015.09.050
https://doi.org/10.48550/ARXIV.1903.02428
https://doi.org/10.1088/1748-0221/8/02/P02013
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1145/3065386
https://doi.org/10.1103/PhysRevC.89.045801
https://doi.org/10.1007/JHEP10(2018)121
https://doi.org/10.48550/ARXIV.1606.09375
https://doi.org/10.21437/Interspeech.2010-343
https://doi.org/10.1109/CVPR.2017.576
https://github.com/WCSim/WCSim
https://doi.org/10.1016/j.aap.2019.105405
https://doi.org/10.48550/arXiv.1805.04163
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1016/j.nima.2004.12.018
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1073/pnas.39.10.1953
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/1748-0221/15/06/p06005
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jamieson et al. 10.3389/fdata.2022.978857

Tahmassebi, A., Wengert, G. J., Helbich, T. H., Bago-Horvath, Z.,
Alaei, S., Bartsch, R., et al. (2019). Impact of machine learning with
multiparametric magnetic resonance imaging of the breast for early prediction
of response to neoadjuvant chemotherapy and survival outcomes in breast
cancer patients. Invest. Radiol. 54, 110–117. doi: 10.1097/RLI.000000000000
0518

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M.
(2019). Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38,
1–12. doi: 10.1145/3326362

Watanabe, H., Zhang, H., Abe, K., Hayato, Y., Iida, T., Ikeda, M.,
et al. (2009). First study of neutron tagging with a water Cherenkov

detector. Astropart. Phys. 31, 320–328. doi: 10.1016/j.astropartphys.2009.
03.002

Wilson, J. R. (2015). An experimental review of solar neutrinos. eds.
R. Aumann and S. Hart, North Holland. arXiv [Preprint].arXiv: 1504.04281.
doi: 10.48550/ARXIV.1504.04281

Winter, E. (2002). “The shapley value,” in Handbook of Game Theory with
Economic Applications, Vol. 3, eds R. Aumann and S. Hart (Amsterdam: Elsevier),
2025–2054. doi: 10.1016/S1574-0005(02)03016-3

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., et al. (2020). Graph
neural networks: a review of methods and applications. AI Open 1, 57–81.
doi: 10.1016/j.aiopen.2021.01.001

Frontiers in BigData 16 frontiersin.org

https://doi.org/10.3389/fdata.2022.978857
https://doi.org/10.1097/RLI.0000000000000518
https://doi.org/10.1145/3326362
https://doi.org/10.1016/j.astropartphys.2009.03.002
https://doi.org/10.48550/ARXIV.1504.04281
https://doi.org/10.1016/S1574-0005(02)03016-3
https://doi.org/10.1016/j.aiopen.2021.01.001
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Using machine learning to improve neutron identification in water Cherenkov detectors
	1. Introduction
	2. Related work
	2.1. Machine learning in particle physics
	2.2. Boosted decision trees
	2.3. Deep learning and graph neural networks

	3. Machine learning methods studied
	3.1. XGBoost
	3.2. SHAP
	3.3. Graph neural network (GNN)
	3.3.1. Graph convolutional network
	3.3.2. Dynamic graph convolutional neural network

	4. Data analysis
	4.1. Data simulation
	4.2. Likelihood baseline analysis

	5. Feature engineering
	5.1. Beta parameters
	5.2. Time of flight
	5.3. Distance to wall
	5.4. Mean opening angle
	5.5. Consecutive hit angular RMS
	5.6. Consecutive hit distance
	5.7. XGBoost results

	6. Graph neural network application
	6.1. Graph convolutional network (GCN)
	6.2. Dynamic graph convolutional neural network

	7. Discussion
	8. Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

