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Effective treatment of osteoarthritis (OA) remains a huge clinical challenge despite major
research efforts. Different tissues and cell-types within the joint contribute to disease
pathogenesis, and there is great heterogeneity between patients in terms of clinical
features, genetic characteristics and responses to treatment. Inflammation and the most
abundant immune cell type within the joint, macrophages, have now been recognised as
possible players in disease development and progression. Here we discuss recent
findings on the involvement of synovial inflammation and particularly the role of synovial
macrophages in OA pathogenesis. Understanding macrophage involvement may hold the
key for improved OA treatments.
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INTRODUCTION

Osteoarthritis (OA) is the most common form of arthritis, characterised by pain, swelling and
stiffness of the joint. It is also multifactorial in nature, with associated risk factors such as age, sex,
ethnicity and obesity. Primary locations affected are synovial joints, including the knee, hip and
hands, with knee OA being most frequently observed. OA affects 7% of the global population and it
is estimated that one third of people over the age of 65 suffer with the disease. This equates to
approximately 500 million individuals, a figure which has risen by 48% from 1990-2019 (1–3). Even
though OA is a leading cause of disability, the 15th highest cause of years lived with disability
globally, no cure or disease modifying treatments are available (1). Symptoms are typically managed
through a combination of non-pharmacological methods and non-steroidal anti-inflammatory
drugs (NSAIDS). Surgical intervention through joint replacement still remains the only option for
end-stage disease, emphasising the need for better treatment strategies. Here, we provide a short
overview of the role of inflammation in OA pathogenesis, with a specific focus on the involvement
of synovial macrophages. Unravelling the role of these cells may lead to improved stratification of
OA patients for anti-inflammatory treatments and/or the identification of novel therapeutic targets.
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OA PATHOGENESIS: CARTILAGE AND
SUBCHONDRAL BONE

OA can affect the entire joint, including cartilage, synovial tissue,
subchondral bone and the joint capsule, as well as ligaments and
periarticular muscles (4). Cartilage degeneration is probably the
most well-known hallmark of OA, and many studies have
focused on understanding and preventing its destruction (5).
The cartilage provides an important lubricated covering to the
bone surfaces where the femur, tibia and patella articulate with
each other. This absorbs stress created during movement and
importantly, creates a smooth platform to allow for efficient joint
motions. It comprises an extracellular matrix (ECM), composed
mostly of type II collagen and aggrecan proteoglycans, which
bring strength and flexibility to the tissue respectively (6, 7).

Chondrocytes constitute the cellular component (7) and
maintain homeostasis through synthesis and degradation of
the cartilage proteins. In OA, this equilibrium shifts to
catabolism and chondrocytes adopt an activated state
characterised by increased cell proliferation, molecular
alterations and production of ECM degrading enzymes. This
leads to cartilage damage (8–10). MMP family proteins and
aggrecanases, the most widely studied ECM degrading enzymes,
are both able to degrade native collagen and aggrecan (11–13).
This breakdown of the ECM leads to fibrillation and subsequent
fissure development within the cartilage layers and as a result, the
subchondral bone (SB), situated directly beneath, is exposed to
the articular cavity. The joint therefore becomes unable to
function normally with regards to gliding movements and is
incapable of effectively absorbing mechanical stress. Composed
of the SB plate and underlying trabecular and subarticular bone,
the SB functions as a shock absorber and helps distribute the
mechanical load of the joint. Structural changes to SB can also be
seen in OA, and include increased bone turnover, the
development of microfractures and increased angiogenesis.
Bone sclerosis, osteophytes, bone cysts and bone marrow
lesions, detected via MRI can also be seen.

Inflammatory mediators have long been known to play a role in
the breakdown of the cartilage ECM. In particular, OA patients
have increased levels of IL-1b, TNF-a and IL-6. IL-1b is an
essential mediator of joint inflammation and its overexpression
by chondrocytes can be seen in early osteoarthritic cartilage (14,
15). Such levels cause an abnormal chondrocyte phenotype, which
directly interferes with the synthesis of ECM collagen and aggrecan
proteins. An associated increased release of MMP and aggracanase
enzymes such as MMP-1, MMP-3 and MMP-13 is also seen, with
destructive effects on cartilage components (16, 17). Functioning in
an autocrine manner, IL-1b can induce its own secretion and
stimulate the synthesis of other inflammatory mediators, again
such as TNF-a and IL-6. Often found working in synergy with IL-
1b, TNF-a binding to its receptors induces a similar NF-kB
signalling cascade to increase inflammation and catabolism
through enhancing adhesion molecule expression, the synthesis
of further cytokines, and promoting the expression of more MMP
family enzymes able to degrade the ECM (18, 19). Other cytokines
such as IL-8, IL-18, IL-17 and IL-22 are increased when comparing
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human inflamed and non-inflamed synovial tissue (20). In
particular such cytokines are associated with Th17 and NK22
cells, along with the recruitment of neutrophils into the tissue, all of
which are capable of further promoting synovitis (20). IL-6,
produced by cells such as chondrocytes, osteoblasts, fibroblasts,
macrophages and adipocytes can also synergise with other
cytokines to affect the ECM. However, evidence indicates IL-6 is
the key cytokine to affect the SB layer of the joint by promoting the
formation of osteoclasts to increase bone absorption within the
joint (21, 22). Also associated with the bone itself, high TGF-b has
been reported via in vitro and in vivo studies to promote the
production of osteophytes, as well as increasing chondrocyte
hypertrophy via alternative signalling pathways (23). Further
descriptions of cytokines involved in OA are beyond the scope of
this mini review, but such information has been discussed
elsewhere (24).
OA PATHOGENESIS: SYNOVIAL TISSUE

The synovium lines the joint cavity. Its main function is to
produce synovial fluid to equip the joint for efficient movement.
Concentrations of synovial fluid components (lubrican and
hyaluronic acid) are often altered in OA, influencing cartilage
integrity. The synovium is composed of two main regions: the
lining and sublining layers. Synovial lining consists mainly of
macrophage and fibroblast cell types. The sublining contains
additional fibroblasts, macrophages, adipose cells and blood
vessels, with low numbers of lymphocytes also detectable (25).

Low-grade synovial inflammation has been observed in over
half of OA patients at both early and late stages of disease
(26–33) which has led to the notion that OA is not simply caused
by an age-related wear and tear of the joint. Unlike more typical
inflammatory arthritides [e.g., rheumatoid arthritis (RA)] OA
synovitis is usually not accompanied by overt systemic
inflammation. In RA, the inflamed synovium is characterised
by vasculitis and a mixed immune cell infiltrate. This infiltrate
predominantly consists of lymphocytes but also includes myeloid
cells such as macrophages. Inflammation and angiogenesis in RA
are further exacerbated due to antigen presentation and cytokine
release. Subsequently, cartilage degradation and bone erosion
arises over time in response to protease (e.g. MMPs) and
cytokine release (e.g. TNF-a and IL-6) (34). A role for
macrophages, with their associated inflammatory cytokines
(IL-6 and TNF-a), has also been recognised in RA (35).

In OA, synovial inflammation is less pronounced, but there is
ample evidence to support its pathogenic role (26, 30, 36).
Histopathological studies since the 1980s have identified
inflammatory signatures (cellular hyperproliferation, increased
angiogenesis and lymphocyte aggregate appearance) within OA
synovium (37–39). The degree of inflammation is highly
heterogenous between patients, but nevertheless, has been
associated with pain and disease progression. As highlighted in
the previous section, inflammatory molecules, including IL-1b and
TNF-a, are able to induce protease secretion by chondrocytes,
highlighting possible crosstalk between the synovium and other
June 2021 | Volume 12 | Article 678757

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Thomson and Hilkens Synovial Macrophages in Osteoarthritis
joint tissues (40). It has also been reported that the quantity of
activated macrophages within patient OA synovium correlates
with disease severity and progression (41). Synovitis confers a 9-
fold greater risk of individuals presenting with painful knee OA
(30). Elevated inflammatory markers have been detected in the
serum and synovial fluid of OA patients and levels of serum TNF-
a correlate with OA kellgren-lawrence X-ray grades (42). However,
whilst treatments to dampen inflammation in RA have shown
success (43), trials with anti-inflammatory drugs in OA have been
disappointing thus far. A possible reason may be that the
inflammatory players and processes differ greatly between
patients; a notion that is supported by heterogeneity of the
immune cell infiltrate in the OA synovium. For example, bi-
compartmental OA is characterised by higher infiltration of
CD4+ T cells into the synovium than uni-compartmental disease
(44) and we recently demonstrated highly variable numbers of
macrophages as well as other immune cell subsets in the OA
synovium (45). Therefore, we argue that a better understanding of
the inflammatory players in OA would benefit the development of
improved therapeutic strategies; either through stratification of OA
patients for the most suitable disease-modifying treatments and/or
the identification of novel targets.
SYNOVIAL MACROPHAGES

The most abundant immune cell type in the OA synovium is the
macrophage. Macrophages are often described as displaying an M1
or M2 phenotype. Activated by environmental factors such as
IFN-g, TNF-a and LPS, M1 macrophages secrete pro-
inflammatory cytokines and low levels of IL-10. M2 macrophages
display an anti-inflammatory profile and possess tissue-repair
Frontiers in Immunology | www.frontiersin.org 3
functions (46). However, such M1/M2 descriptions are now
regarded as extreme poles of a spectrum in many fields, with
macrophage phenotype varying greatly depending on the tissue
environment. High macrophage numbers are detected in OA
patients compared to healthy controls and quantities of activated
macrophages correlate with clinical symptoms (41, 47).
Furthermore, increases in macrophage associated molecules
(sCD163 and sCD14) and chemoattractants such as CCL2 and
CX3CL1 in OA patient synovial fluid are linked with clinical
outcome in OA (48, 49). It is thought that synovial macrophages
respond to danger-associated molecular associated patterns,
including cartilage fragments and intracellular proteins from
necrotic cells, consequently contributing to cartilage damage and
bone alterations through the release of cytokines such as IL-1b,
TNF-a and TGF-b (Figure 1). In support of this, in vitro studies
have highlighted that depletion of CD14+ macrophages from
synovial cell cultures results in a reduction of IL-1b, TNF-a,
MMPs and aggrecanase enzymes which are able to degrade joint
cartilage (50). Latest research investigating joint macrophages under
normal and disease conditions (RA and OA) has led to the
identification of multiple synovial macrophage subsets in the
same joint. In a setting were inflammation aids disease, it’s
probable that the abundance of distinct macrophage subsets could
perpetuate or indeed help to resolve OA.
NOVEL SYNOVIAL MACROPHAGE
SUBSETS IN INFLAMMATORY ARTHRITIS

To carry out comprehensive investigations of joint macrophages
Culemann and colleagues utilised transgenic mice and models of
inflammatory arthritis (51). Exploring the origin of increased
FIGURE 1 | Knee osteoarthritis pathology and macrophage involvement. Common features of OA including cartilage loss, narrowing of the joint space, synovitis and
the development of subchondral bone cysts and sclerosis are shown. Macrophages in the synovium can contribute to OA via the release of inflammatory molecules
which are able to stimulate resident fibroblast populations to produce cartilage extracellular matrix degrading enzymes. Inflammatory molecules are also able to
activate chondrocytes, promoting an abnormal molecular and cellular phenotype, again promoting cartilage loss. We suggest that the same or similar macrophage
populations newly identified in inflammatory arthritis studies will be found in OA tissues, may differ between clinical states and could provide therapeutic targets for
subgroups of patients. The identification and impact of such populations in OA development is yet to be determined.
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macrophage numbers during arthritis, the authors identified a
CX3CR1+ macrophage subset in direct proximity with collagen
VI expressing synovial fibroblast cells. This subset expressed
tight junctional protein markers usually associated with that of
endothelial cells (F11r, ZO-1 and claudin-5), was maintained by
a distinct Ki67+ CX3CR1- interstitial macrophage population
and formed a dense barrier between the synovial capillary
network and the intra-articular space. At the onset of arthritis
CX3CR1+ macrophages underwent altered morphology, and
their cell-to-cell contacts were abrogated. Consequently, there
was a breakdown of the “macrophage barrier” and CX3CR1-
macrophage populations were found to rapidly proliferate in
response. Coincidingly blood-derived macrophages infiltrated
the tissue. The CX3CR1+ macrophage subset may therefore
promote an important synovial regulatory function to seclude
and protect intra-articular structures. Work to identify
macrophage populations capable of promoting a “macrophage
barrier” and the downstream implications of this in human OA
could prove to be highly advantageous. Comparing RNA
sequencing of mouse macrophage populations the authors also
showed that CX3CR1+ macrophages expressed immune related
genes (TREM2 and VSIG4) and that additional heterogeneity
existed within CX3CR1- macrophages (51). This is a significant
observation as mouse macrophage expression profiles correlate
with recent sc-RNA sequencing data sets from human RA
patients. Exploring human synovial macrophages within RA,
and using OA tissue as a comparison, Zhang and colleagues
identified four transcriptionally distinct subsets (SCM1-M4)
(52). In particular, the presence of IL-1b+ pro-inflammatory
macrophages (SCM1 subset) were upregulated in “leukocyte-
rich” RA tissue compared to OA samples. Conversely, a SCM2
subset, which express VSIG4 similar to mouse CX3CR1+
macrophages, were upregulated in OA, suggesting they too are
a resident synovial population.

In line with this, Alivernini and colleagues recently identified
that clinically distinct states of RA can be characterised by
relative proportions of particular macrophage populations.
Firstly, healthy donor macrophages and those from patients in
remission phenotypically were MerTK+ and CD206+. Patients
with active RA had higher amounts of MerTK- CD206- and
fewer MerTK+ CD206+ macrophages (53). Delving further to
unravel the heterogeneity of these two populations, sc-RNA
sequencing revealed nine distinct synovial macrophage clusters
that could be classified into again four subpopulations: TREM2+,
FOLR2high, HLA+ and CD48+. Comparing relative gene
ontology pathways of the nine macrophage clusters with
clinical state revealed that MerTK+ TREM2+ and MerTK+
FOLR2+ macrophages were predominantly in healthy tissue.
They also showed gene expression (ALDH1A1 and VSIG4) that
would promote regulation of adaptive immunity through
inhibition of T effector cells. Patients with sustained remission
showed an increase in MerTK+ FOLR2high LYVE1+
macrophages which link this subset to tissue remodelling and
homeostasis. In comparison, treatment naïve and active RA had
increased proportions of MerTK- CD48- SPP1+ and MerTK-
CD48- S100A12+ clusters which showed a pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 4
transcriptome phenotype. The authors further showed that the
MerTK- CD206- and MerTK+ CD206+ macrophage clusters
were able to induce proinflammatory responses and repair
synovial fibroblasts phenotypes, respectively. An overview of all
novel synovial macrophages can be seen in Table 1.
SYNOVIAL MACROPHAGE
SUBSETS IN OA

Macrophages in OA are not completely understood and most
studies to date refer to macrophages as M1/M2, as
comprehensively reviewed by Fernandes and colleagues (54).
M1 macrophages in OA are linked with destructive processes:
down regulation of collagen type II and aggrecan synthesis, and
upregulation of enzymes such as MMP-1, -3, -9 and -13 (55). In
comparison, there is murine evidence that “tissue repairing” M2
macrophage associated cytokines IL-4 and IL-10 are induced
with moderate physical activity within the OA synovium,
potentially promoting a protective environment (56).
Macrophage-related chemokine CCL2, produced in response to
inflammatory stimuli by chondrocytes, and its receptor CCR2
has also been noted. Depletion of CCL2/CCR2 is associated with
decreased pain severity and older knockout mice show reduced
structural disease after joint de-stabilisation (57). The upstream
inducer of CCL2, TGF-a has been identified as a possible gene
candidate for determining human OA risk and cartilage
thickness. TGF-a inhibition in models also shows reduced
structural disease, making this an interesting macrophage-
related therapeutic target (58). In other mouse studies,
contradictory results are reported. Macrophage depletion has
been shown to reduce OA symptoms such as osteophyte
formation in some cases, but in others increased synovitis can
be seen due to CD3+ T cell and neutrophil infiltration (59, 60).
Discrepancies of macrophage manipulation in mouse models
however could relate to the mechanism of disease onset used e.g.,
obesity, surgical etc., something which may suggest the presence
of possible OA phenotypes.

With new knowledge of RA synovial macrophage subsets
emerging that goes beyond the classical M1/M2 concept, there is
further potential to generate new therapeutic strategies to
promote the resolution of synovitis in OA, specifically
targeting patients that would likely benefit most. Whether the
same cellular populations and mechanisms exist in OA remains
unclear and is currently under investigation. Nevertheless, the
first study to explore and characterise the cellular and
transcriptional heterogeneity on a single cell level in matched
synovial and cartilage from OA patients was recently published
by the Kraus laboratory (61). Here the authors identify twelve
synovial cellular populations, including two distinct macrophage
populations, and show that key OA mediators (TNF, IL-6 and
IL-1b) are released into the joint space via HLA-DRA+
macrophages and DCs. Cytokine expression was 25-fold higher
within the synovium compared to damaged cartilage areas and
no cytokine was exclusively expressed by chondrocytes
themselves. This emphasises the possible crosstalk between
June 2021 | Volume 12 | Article 678757
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TABLE 1 | Recently Identified novel macrophage subsets.

Reference Species Macrophage
subset

Sub-
populations

Clusters
identified

Associated
disease or

clinical state

Associated
surface marker or
gene expression

Location in
Synovium

Additional
information

(52) Human SC-M1:
IL-1bpos, NR4A2pos

HBEGFpos

PLAURpos

RGS2pos ATF3pos

– – ↑ leukocyte-rich
RA

Mass cytometry:
CD11C+ CD38+
RNA-seq: CD14+

CD11C+++ CD38+++

Not specified –

SC-M2:
MerTKpos

HTRA1pos

– – ↓ leukocyte-rich
RA
↑ OA

Mass cytometry:
CD11C-

RNA-seq: CD14+
CD11C+ CD38-

Not specified Possibly equivalent
to mouse resident

macrophage
populations.

SC-M3:
CD14pos C1QApos

MARCOpos

– – Marginally ↑ OA – Not specified Possibly equivalent to
mouse resident
macrophage
populations.

SC-M4:
LY6Epos IFITM3pos

IFI6pos SPP1pos

– – ↑ leukocyte-rich
RA

Mass cytometry:
CD11C+ CD38+

Not specified

(53) Human MerTKpos

CD206pos
TREM2pos

FOLR2pos
TREM2pos

TimD4pos

CD163high

↑ Healthy donors
↑ RA remission
↓ Active RA

↓Treatment naive

– MerTKpos TREM2pos cells
form a neat lining layer in
healthy and RA remission
synovium. The cells are
dispersed in active RA.
TREM2high macrophages
are homologs of mouse
TREM2pos CX3CR1pos

lining layer cells.

Gene expression
suggests a role for

microbe, apoptotic cell
and oxysterol

clearance as well as
restraining

inflammation.
TREM2high cells

express tight junctional
protein genes

suggesting barrier
functions.

TREM2low ↑ Healthy
↑ RA remission

↑ UPA
↓ Active RA

– –

FOLR2high

TREM2neg
D2pos Similar proportions

in healthy and RA
tissues.

– Not specified Possible equivalent to
mouse M-CSF-driven
in situ precursors of

resident
macrophages.

LYVE1pos ↑ Healthy
↑ RA remission
↓ Active RA

↓ Treatment naive

– Localised to lining layer
in healthy and remission
RA. Localised round
sublining layer blood
vessels in active RA.

Express genes related
to collagen turnover,
antiprotease enzymes,
coagulation factors and
regulators of VEGF.

ICAM1pos Similar proportions
in healthy and RA

tissues.

– Not specified High expression of
proinflammatory

cytokine genes e.g.,
TNF.

MerTKneg CD206neg HLAhigh

CD48pos
ISG15pos ↑ Active RA – Not specified –

CLEC10Apos Similar proportions
in healthy and RA
tissues identified by
SCRNA-seq, but
flow cytometry

suggests increases
in active RA.

– Exclusively located in
the sublining layer,
located adjacent to

TREM2pos macrophages
in all samples.

Enriched in antigen-
presentation pathway
genes, DC markers
and transcription

factors suggesting this
is a tissue-resident
antigen presenting
population. Has high

(Continued)
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joint tissues in OA development. Such cytokine upregulation in
the synovium may have synergistic effects on signalling pathways
within other joint tissues to increase inflammation and in turn
promote cartilage breakdown (62). This study again displays a
potential for tissue specific targeting of pathogenic molecules or
cells within the synovium itself in order to treat OA (61).

A recent study from our own laboratory identified distinct
human knee OA endotypes (where insights of the pathogenic
mechanism of disease are given) based on gene expression
profiles of synovial macrophages. One of these endotypes
displayed increased numbers of synovial CD14+ macrophages
that closely aligned with synovial macrophages from
inflammatory arthritis patients and displayed a cell
proliferation signature and high Ki67 expression (45).
However, whether this finding is in any way comparable with
Ki67-expressing CX3CR1- macrophages in mice remains to be
answered. The discovery of multiple synovial macrophage
subsets may help to explain the contradicting results derived
from in vivo macrophage-depletion studies of OA, and it is
thought that macrophage subset identification could be used to
aid the stratification of patients for treatment. Understanding the
impact of specific synovial macrophage subsets is a research
priority, with fundamental questions remaining. Do the same
Frontiers in Immunology | www.frontiersin.org 6
macrophage subsets exist in OA as in RA? Do macrophage
subsets differ between OA disease stages? Do particular
macrophage subsets associate with clinical symptoms? And
importantly, what other cells within the synovial environment
do macrophage subsets communicate with or influence?
Unearthing such information could prove crucial for
understanding OA pathogenesis and importantly reveal new
therapeutic targets. Identification of several macrophage
subsets within joint tissue truly advocates for an alternative
assessment of how this cellular population is involved in OA.
FUTURE DIRECTIONS

New directions for OA research are imperative as clinical trials
for disease-modifying treatments thus far have been largely
disappointing. Disease heterogeneity often is suggested as a
possible explanation. In 2016 Dell’Isola and colleagues
provided evidence for the existence of six major OA clinical
phenotypes (where observable traits are used to define disease
clusters), reporting that 84% of subjects across twenty-four
studies could be classified in this manner (63). 12% of OA
patients could be classified into an “inflammatory” phenotype,
TABLE 1 | Continued

Reference Species Macrophage
subset

Sub-
populations

Clusters
identified

Associated
disease or

clinical state

Associated
surface marker or
gene expression

Location in
Synovium

Additional
information

HBEGF expression,
shown to promote

fibroblast invasiveness.

CD48pos S100A12pos ↑ Active RA
↑ Treatment naïve

– Located in
sublining layer

Abundance of
alarmins acting as
chemoattractants
for neutrophils and
monocyte/fibroblast
production of TNF

and IL-6.

SPP1pos ↑ Active RA
↑ Treatment naïve
↓RA remission

– Located in
sublining layer

Osteopontin is highly
expressed in this
cluster and has

proinflammatory and
bone reabsorbing

properties.

(51) Mouse CD45+ CD11b+
Ly6G+

CX3CR1pos

lining macrophages

– – Spatial location
and morphology

alter upon
inflammatory
arthritis onset

SC-RNA-seq:
TREM2pos

VSIG4pos

Sparcpos

Membrane-forming
lining macrophages
located between
synovial capillary
network and

intra-articular space.

Express tight junctional
proteins e.g., ZO-1,
claudin-5 and JAM-1.

CD45+ CD11b+
Ly6G+

CX3CR1neg

interstitial
macrophages

MHCIIpos – – SC-RNA-seq:
H2-EB1pos

H2-AB1pos

Located within
synovial interstitium

Proliferate to contribute
to the pool of

CX3CR1pos lining
macrophages.
Proliferation is

enhanced during
arthritis onset.

RELM-apos
– – SC-RNA-seq:

MRC1pos CD163pos

CCL8pos CCL7pos

AQP1pos – – SC-RNA-seq:
FXYD2pos LYVE1pos
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whilst the others were characterised into chronic pain, metabolic
syndrome, bone and cartilage metabolism, mechanical overload
and minimal disease phenotypes. Regardless of such
classifications, trials of anti-IL-1 agents that specifically focused
on patients with synovitis (the inflammatory phenotype) still
resulted in limited improvement in pain scores and synovial
inflammation (64). This implies factors other than IL-1 are at
play in this patient subgroup. The ability to further classify
patients more effectively could significantly transform and
enhance OA clinical trial efficiency. Such approaches have
already been applied in other settings such as in RA and
asthma, as a method for identifying “clinicopathobiologic
clusters” (65–67). By selecting patients based on particular OA
molecular features, such as signalling pathways or other distinct
molecular mechanisms as opposed to only by clinical phenotype,
such as the presence of synovitis, patient subgroups most likely
to benefit from particular therapies may be more easily
identified. Of course, revealing molecular endotypes of OA is
an extremely complex task. Advancements in imaging
Frontiers in Immunology | www.frontiersin.org 7
techniques, identification of novel OA biomarkers and
increased knowledge of cellular communications (like that of
macrophage subsets) within joint tissues will be of great
importance. Ultimately, this approach could facilitate the
development of better treatment strategies for OA patients.
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