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Abstract

Since the rise of the COVID-19 pandemic, peer-reviewed biomedical repositories have 

experienced a surge in chemical and disease related queries. These queries have a wide 

variety of naming conventions and nomenclatures from trademark and generic, to chemical 

composition mentions. Normalizing or disambiguating these mentions within texts provides 

researchers and data-curators with more relevant articles returned by their search query. Named 

entity normalization aims to automate this disambiguation process by linking entity mentions 

onto their appropriate candidate concepts within a biomedical knowledge base or ontology. We 

explore several term embedding aggregation techniques in addition to how the term’s context 

affects evaluation performance. We also evaluate our embedding approaches for normalizing term 

instances containing one or many relations within unstructured texts.
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1 INTRODUCTION

Chemical and disease-related search queries are among the most frequently searched 

terms within publicly available biomedical repositories. PubMed is such a repository, 

housing more than 33 million citations from biomedical articles and 5,600 life science 

journals. Despite the recent advancements in computing technology over the last decade, 

the expectation of investing significant time and resources to retrieve relevant query-based 

articles still remains with the researcher. Additionally, chemical and disease terms have 

multiple naming nomenclatures which exacerbates the laborious task of retrieving relevant 

articles based on a specific query. Since the rise of the COVID-19 pandemic, PubMed has 

experienced a surge in chemical and disease-related search queries in addition to the number 
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of researchers submitting theses queries. This surge in traffic combined with the rate of 

accepted peer-reviewed publications increasing by 4% since last year, further intensifies the 

difficulty in retrieving relevant articles. As the rate of accepted or cited articles and journals 

is expected to increase, the difficulty, time and resources utilized to manually retrieve related 

articles to a query also increases warranting a viable solution.

Information extraction (IE) is a fundamental Natural Language Processing (NLP) 

component which aims to automatically identify and retrieve specific or structured 

information within unstructured texts. This information ranges from identifying entities 

within text such as persons, places, chemical, treatments, drugs or diseases, also known as 

Named Entity Recognition (NER), to identifying semantic relationships between entities. 

This secondary task is known as relationship extraction (RE).

While NER classifies specific entity mentions within unstructured texts to one of many 

pre-defined categories, a closely related task known as Named Entity Normalization (NEN) 

aims to link entity mentions onto an appropriate candidate concept within a knowledge base 

or ontology. This task has many names including Named Entity Linking, Named Entity 

Disambiguation, Entity Linking and Concept Linking. NEN aids in many NLP tasks such as 

information retrieval, content analysis, semantic search and recommender systems.

Linking entities onto a knowledge base is important for scientific researchers and data 

curators. As previously mentioned, entities such as chemicals have multiple naming 

nomenclatures which require significant time and resources to manually identify, determine 

and categorize the minute differences between synonymous or similar chemicals. While 

chemicals can be referred to by their trademark or generic names, utilization of their 

chemical composition is often noted within biomedical text. This does not include mis-

spellings and non-standard nomenclatures which can also have detrimental effects for 

relevant article retrieval. NEN aims to normalize these mentions by linking them to related 

concepts within an ontology. This has an effect of disambiguating multiple forms of 

synonymous terms or naming variations. This simplifies searching criteria and expedites 

the laborious task of sorting through irrelevant articles.

In this study, we evaluate several approaches to linking chemical and disease mentions 

within abstracts and full-text articles onto ontologies within the biomedical domain. We 

utilize the BioBERT [9] model as our base term encoder. We extract term representations 

as embeddings in one of three ways: 1) averaged sub-word token representation of a term, 

2) first sub-word token representation of the term and 3) last sub-word token representation 

of the term. To generate high quality term embedding representations, we include term 

context in one of three ways: 1) we utilize the sequence containing the term, 2) we utilize 

the sequences before and after in addition to the sequence containing the term and 3) we 

maximize context of the surrounding term by filling the encoder buffer with all surrounding 

sequences.

In addition to these approaches, we evaluate model performance while capturing one-to-one 

and one-to-many relations, between terms and their candidate concepts. Our one-to-one 

approach links a term to a single concept. Likewise, our one-to-many approach links a 
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term to multiple candidate concepts. We found minute differences between the quality of 

term embeddings with respect to variations of the term’s context used to generate the 

embeddings for one-to-one relations. In comparison, differences in evaluation performance 

were noted when classifying one-to-many relations. Each of these approaches captures 

different but important aspects of how term embeddings are represented for mapping to 

candidate concepts within biomedical ontologies. We provide a comprehensive listing of 

results among our approaches and a detailed analysis of our findings.

2 RELATED WORKS

Typically, NEN can be categorized as four main approaches: rule-based, learning-based, 

multilingual-based and joint learning-based. For the learning-based approaches, they can 

be further classified as machine learning versus deep learning methods. This classification 

sometimes creates an overlap between deep learning-based and joint-learning based works. 

In this section, we describe related works that are closely associated with our approach.

Early attempts at NEN were all rule-based methods which leveraged synonym, acronym, and 

abbreviation dictionaries to map terms found in biomedical text to ontologies such as MeSH 

and MedDRA [2, 12]. Rule-based methods remain popular for production usage because 

of their configurability and ease of interpretation [21], but they are unable to compete 

with learning-based methods in terms of accuracy or F-measure [11]. For this reason, 

machine learning and deep learning approaches dominate recent work in the field. Leaman, 

et al [8] pioneered the first machine learning NEN system with DNorm, which utilized a 

pairwise learning to rank method to learn mappings from term frequency-inverse document 

frequency (TF-IDF) representations of mentions to representations of concept names. Unlike 

the early systems, which simultaneously extracted and normalized entities as they processed 

documents in their entirety, DNorm considered only the mentions themselves when scoring 

their vector representations. DNorm (using BANNER [7] to extract mentions) demonstrated 

a 20+ point improvement over MetaMap[2] in terms of F-measure on the NCBI disease 

corpus [4].

Later systems improved on the DNorm baseline by representing mentions with static 

word embeddings (rather than TF-IDF vectors) and feeding them through convolutional 

neural network (CNN) and recurrent neural network models [19] to perform the prediction. 

Tutubalina, et al demonstrated that these higher quality embeddings coupled with more 

powerful models could outperform DNorm by up to 12 points in terms of accuracy on the 

AskAPatient dataset [6]. Mondal, et al [14] also used static word embeddings and a CNN 

classifier, but split the prediction process into two stages. In the first stage, they used cosine 

similarity and Jaccard overlap to identify a small set of candidate concepts for each mention. 

Then, in the latter stage, they used a CNN, which had been trained to differentiate between 

correct and incorrect concept mappings, to predict which candidate concept mapped to 

each mention. Sung, et al. [17] employed a similar two step paradigm in their BioSYN 

system, trading static vector representations of mentions for BioBERT encodings. Liu, et al. 

[11], built on the prediction stage with their SAPBERT system and trained BERT models 

to differentiate correct mention-concept mappings from incorrect ones where the incorrect 

concept was very similar to the mention. Finally, Angell, et al [1] addressed a key weakness 
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of the BioSYN system, namely that if the correct concept was not identified in the candidate 

generation phase, it was a priori excluded from being correctly identified during the final 

prediction. This is especially problematic for mentions that are ambiguous on their own, but 

which are referenced more explicitly elsewhere in the document. Their system generated 

candidates for each mention and then used a clustering algorithm on all mentions and 

candidates in a given document which created groups of at most one concept mapped to 

any number of mentions. Their state of the art performance demonstrated the importance of 

locally contextualizing mentions for proper linking.

3 DATA

We utilize the BioCreative V CDR [10], BioCreative VII Track II CDR [5], Biocreative 

VII Track II NLMChem [5] and NCBI disease [4] datasets. These datasets contain PubMed 

titles (T), abstracts (A) and full-text articles (F) which map chemical and disease mentions 

to Medical Subject Headings (MeSH) [12] or concept unique identifiers (CUIs). These 

CUIs refer to a concept within the UMLS ontology 1. Each dataset also contains two types 

of mappings for NEN: 1) one-to-one relations and 2) one-to-many relations. One-to-one 

relations, maps a term to a single concept while one-to-many maps a term to multiple 

concepts. One-to-one relations comprises the majority of NEN instances within each dataset. 

One-to-many instances have two types of mentions: 1) individual mention, and 2) composite 
mention. Composite mentions map a term to multiple concepts while individual mentions 

map the distinct term words within a composite mention to their individual concepts. We 

show this difference in the Figure 2 of the appendix section. We list several statistical 

categories including document type, number of documents, number of unique terms and 

number of unique concept identifiers. In addition to listing the number of individual and 

composite mentions, we list the number of composite mentions which have not been labeled 

within each dataset. We provide these statistics for each dataset in Table 1 below.

4 METHODS

In the section, we discuss our methods. First, we discuss the base language model utilized in 

our approach. Second, how data is represented and how context is provided to generate our 

term embeddings. Third, how our term embeddings are generated and differing types of term 

embeddings. Finally, we discuss our methods to quantify one-to-one versus one-to-many 

relations found within the data.

4.1 Base Language Model

We use the cased implementation of DMIS Lab’s Bidirectional Encoder Representations 
from Transformers for Biomedical Text Mining (BioBert) [9] language model as our base 

encoder. This is a transformer-based [20] language model which has been pre-trained on 

biomedical data including Pub-Med abstracts and Pub-Med Central full-text articles. This 

language model is also fine-tuned using three biomedical text mining NLP tasks which 

includes: 1) NER, 2) Question Answering, and 3) RE [9]. We propose a single output 

classification layer stacked on-top of the BioBERT encoder for the task of NEN. This 

1 https://www.nlm.nih.gov/research/umls/index.html 
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classification layer accepts a term representation as input and provides a prediction in one of 

two ways: 1) as a probability distribution over all candidate concepts within the vocabulary; 

or 2) a probability score for each candidate concept within the vocabulary i.e. softmax 

vs sigmoid. The vocabulary of candidate concepts consists of the unique MeSH or CUI 

concepts existing within the training, development and testing sub-sets for each dataset.

4.2 Term Context and Representation

As each dataset is comprised of abstracts and full-text articles, our data pre-processing 

steps include identifying the specific sequences containing chemical or disease mentions. 

After these sequences have been identified, we generate contextual sub-word embeddings by 

including the chemical or disease term’s context using one of three approaches: 1) only the 

sequence containing the chemical or disease mention is utilized; 2) we utilize the sequence 

containing the chemical or disease mention, in addition to the sequences before and after; 

and 3) we maximize context by using BioBERT’s 512 token limit, storing the sequence 

containing the chemical or disease mention and its surrounding sequences until the token 

limit has been reached. We provide an example of these approaches in Figure 3 of the 

appendix section.

We tokenize these text sequences using the BioBERT tokenizer, which splits certain words 

within the sequence into sub-word tokens based on the existing vocabulary within its 

word-piece tokenization strategy. We mask these chemical and disease term sub-word 

tokens for use within our term embedding extraction layer, which identifies and extracts 

the respective sub-word embeddings in one of three ways: 1) providing an average 

embedding representation of the chemical or disease mention; 2) extracting the first sub-

word embedding of the chemical or disease mention; or 3) extracting the last sub-word 

embedding of the chemical or disease mention. Each embedding type produces a single 768 

length representation which is fed into the subsequent classification layer for mapping over 

the distribution of unique candidate concepts.

4.3 One-to-One vs One-to-Many Relations

Each of the datasets contains two types of term-to-concept mappings: 1) one-to-one and 

2) one-to-many. These refer to the nature of the relationship between a term and candidate 

concept. While one-to-one maps a term to a single candidate concept, one-to-many maps 

a term to multiple candidate concepts. However, one-to-many instances have two types of 

mentions: 1) individual mention, and 2) composite mention. Composite mentions map a 

term to multiple concepts while individual mentions map the distinct term words within a 

composite mention to their individual concepts. We show this difference in the Figure 2 of 

the appendix section. Typical neural network-based NEN approaches focus on mapping a 

term to a single concept, however we compare both one-to-one and one-to-many mappings 

using standard categorical cross-entropy and binary cross-entropy losses.

For our one-to-one approach, we use categorical cross-entropy loss with softmax activation 

within the classification layer. This provides a normalized distribution over our candidate 

concept labels which sum to ‘1’ i.e. multi-class classification. For each term-to-concept 

classification instance, we designate the concept identifier with the highest probability score 
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as the assigned candidate concept to the term. For our one-to-many approach, we use binary 

cross-entropy loss with sigmoid activation within the classification layer. This provides an 

independent probability score for each concept identifier label i.e. multi-label classification. 

We perform thresholding using the inflection point of the sigmoid function i.e. 0.5, such that 

all probability scores 0.5 or greater are set to ‘1’ and scores less than 0.5 are set to ‘0’. We 

use this thresholding method to assign one or more candidate concepts to a term. For each 

composite mention, their respective individual mentions are provided within each dataset. 

Training on both types of composite mention instances can produce conflicts during model 

training and reduce model generalizability. Both relation approaches train using one-to-one 

relations existing within the data. However, we omit composite mentions for our one-to-one 

models and individual mentions for our one-to-many models.

4.4 Evaluation

After each model has been trained, we run inference over all test set instances and measure 

the performance of our approaches using strict and approximate mention-level precision, 

recall and f1-score metrics, used by the BioCreative VII Track 2 challenge and described 

by Tsataronis, et. al [18]. Instead of aggregating counts for all term-to-concept predictions 

given a passage, this method evaluates the unique set of term-to-concept predictions within 

a passage i.e. identical instances of term-to-concept predictions are skipped within a 

passage and only the unique term-to-concept pair counts are aggregated. While the strict 

method evaluates predicted term concept identifiers against their ground truth labels, the 

approximate method evaluates performance by linking predicted term and ground truth 

concept identifiers to their parents concepts within the ontology and generates precision (P), 

recall (R) and f1-scores (F1) using the lowest common ancestor algorithm.

5 EXPERIMENTAL DETAILS

We utilize the PyTorch [15] implementation of the DMIS Lab BioBERT v1.2 [9] as our 

base encoder among all experiments. We chose this due to the PyTorch implementation’s 

increased maximum token length of 512 in comparison to Tensorflow’s 128. Data pre-

processing steps include converting several Unicode characters to their ASCII equivalents 

i.e. soft-hyphen, thin white-space, non-breaking and no-break spaces. We remove other 

special unicode characters including trademark, service mark, registered and copyright 

symbols in addition to separating all periods from the final word within a sentence by 

inserting a single white-space.

To extract the first, last or mean pooling of sub-word embeddings for a term, we implement 

a custom Keras [3] layer which forward propagates this fixed 768 length term embedding to 

a classification layer. This classification layer provides probability scores over the concept 

identifier vocabulary as output of the model.

We train our models on NVIDIA Tesla V100 PCIe 32 GB GPUs by freezing the BERT layer 

parameters and using the ADAM optimizer with a learning rate of 2e-4, batch size of 10, 

standard learning rate decay values and beta parameters. We train our one-to-one models 

for 20 epochs and use early stopping while monitoring loss with a persistence value of 2. 

Similarly, we train our one-to-many models for 50 epochs and use early stopping while 
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monitoring loss with a persistence value of 2. We perform class weighting by setting the 

concept-less class to 0.125 and leave all remaining candidate concept classes as 1.

6 RESULTS AND DISCUSSION

In this section, we present all our results over all data-sources for our approaches and 

discussion of our findings. We present and discuss our term embedding type approaches. 

We then present our results for the various approaches to contextualize term embeddings. 

Finally, we compare our approaches for capturing one-to-one and one-to-many relations. We 

also compare our results to previous work. We list these results in Tables 2, 3 and 5.

6.1 Term Embedding Types

We perform three types of embedding generation approaches for NEN. Of the three types 

of approaches: averaging, first and last, our results show that averaging all sub-word 

embeddings within a given term consistently performed the best when compared to using 

the term’s first or last sub-word embedding. Using the term’s first sub-word embedding 

followed averaging while using the term’s last sub-word embedding performed the least 

favorable among the three approaches. Our results show this trend holds true among 

all datasets and embedding context types for both one-to-one and one-to-many relations 

experiments.

6.2 Term Context

In addition to the embedding type approaches utilized to provide the high quality term 

embeddings, we explore how a term’s context used to generate these embeddings affects 

evaluation performance. The three context type approaches include: 1) only using the 

term sequence; 2) using the sequences occurring before and after the term sequence in 

addition to the term sequence; and 3) maximizing term context by including all possible 

sequences surrounding the term sequence. We found that only using the term sequence 

to generate an averaged term embedding performed the best with the BC5CDR, BC7T2-

CDR and BC7T2-NLMChem datasets for one-to-one relations. Conversely, including the 

sequences immediately before and after the term sequence, and averaging the term’s sub-

word embeddings performed the best with the NCBI dataset for one-to-one relations.

While using the term sequence generally performs best with averaging for one-to-one 

relations, including the sequences before and after the term sequence, and averaging 

performed the best with the BC5CDR, BC7T2-NLMChem and NCBI datasets for one-to-

many relations. For the BC7T2-CDR, we found maximizing the context to generate an 

average term representation provided the best performance for one-to-many relations.

6.3 One-to-One vs. One-to-Many Relations

We have shown that averaging performs best between embedding types and the context 

utilized to provide the highest quality term embeddings are dependent on the dataset. When 

examining our approaches to quantify one-to-one and one-to-many relations, we found 

that our one-to-many approach provides greater evaluation performance than capturing 

one-to-one relations for all embedding types over the BC5CDR, BC7T2-CDR and BC7T2-
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NLMChem datasets. When examining our model’s ability to differentiate between one-

to-one and one-to-many relations within the NCBI dataset, our results did not show a 

noticeable change in F1 performance.

6.4 Strict vs. Approximate Comparison

Given our best approach of generating high quality embeddings over each dataset, we 

compare strict versus approximate evaluation methods for both one-to-one and one-to-many 

relations. The approximate evaluation method measures model performance using the lowest 

common ancestor algorithm. This method links predicted and gold child candidate concepts 

to their parent concepts within the UMLS ontology. In comparison, the strict evaluation 

method computes evaluation metrics based on the exact matching of candidate concepts 

between the predicted and gold data.

Results show that the approximate evaluation method improves one-to-one relation 

evaluation performance across all reported datasets. For our one-to-many relation 

approaches, we found the approximate evaluation method improves performance for the 

BC7T2-CDR and NCBI datasets. Interestingly, this method decreased performance for one-

to-many relations across the BC5CDR and NCBI datasets when compared to their strict 

counterparts. We provide these results in Table 4.

6.5 Indirect Comparison with Previous Works

Given our best approach of generating high quality embeddings to classify one-to-one 

relations for the BC5CDR dataset (i.e. averaged embedding type only using the term 

sequence to generate context) we perform an indirect comparison of our approach to 

previous work. Of all recent NEN publications, we found Wiatrack, et. al [22] utilizes 

similar term context aggregation and embedding generation approaches in addition to 

evaluating similar candidate concept types and reporting metrics. Their approaches include 

both joint-learning and hierarchical BERT-based models for the tasks of NER, entity typing 

and NEN for one-to-one relations. They evaluate performance for classifying both chemical 

and disease mentions within the BC5CDR dataset using mention-level precision (P), recall 

(R) and f1-score (F1) metrics as described by Mohan, et. al [13]. We note their single task 

model for NEN achieves the best performance among all approaches. We report these results 

in Table 5.

Their model utilizes the sequence containing a given NEN term in addition to its immediate 

surrounding sequences as context to generate term embeddings for one-to-one relation 

linking to candidate concepts. In comparison to this approach, our model evaluates 

performance using two additional types of context aggregation techniques: 1) only using 

the sequence containing the NEN term, and 2) maximizing the encoder token buffer by 

including all context surrounding the NEN term sequence. While both models classify 

one-to-one NEN instances for chemicals and diseases, we also incorporate classifying 

one-to-many relations and evaluate performance between the two types of NEN relation 

classification approaches.

Analysis between these two methods demonstrate that their model makes predictions 

of slightly higher relevance for one-to-one relations, but offers a lower rate of correct 
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classification for its predictions. Our model makes slightly less relevant predictions while 

achieving a higher rate of correct prediction classification. We attribute this to our model 

incorrectly classifying instances as conceptless. Overall, performance between the two 

approaches show our one-to-one approach achieves comparable F1 performance. Given the 

approach of embedding generation for the listed one-to-one relations in Table 5, we list our 

comparable one-to-many relation approach to demonstrate the effect of integrating one-to-

many relationships during model training. This resulted in a sizeable increase in precision, 

exceeding both one-to-one approaches, while demonstrating similar recall performance to 

the Wiatrak model.

7 ERROR ANALYSIS

During an analysis of the data, we found many NEN instances containing one-to-many 

relations which were not labeled as composite mentions within the BC5CDR, BC7T2-CDR 

and NCBI datasets. Furthermore, the BC7T2-NLMChem dataset does not label any of 

its one-to-many relation instances as composite mentions. (see Table 1). We provide an 

example of an unlabeled composite NEN instance in Figure 4 of the appendix section.

If we rely on the composite mention labels to be present within the data while foregoing 

proper data analysis and data-processing practices, this will negatively affect model 

generalizability and evaluation performance of one-to-one models. This is due to a term 

having multiple linked candidate concepts. During training, the model will backpropagate 

the respective error for each candidate concept linked to a given term independently. This 

also decreases evaluation performance as the model is more likely to choose the linked 

concept identifier that occurs more frequently with the term for one-to-one relations. 

Moreover, if only one candidate concept is chosen among the set linking to a term, this 

will also negatively affect evaluation performance as we cannot be certain which candidate 

concept holds more importance among the set nor which will be used for strict evaluation.

We also found instances within the NCBI dataset labeled as composite mentions, which only 

contained a single linked candidate concept. These instances are omitted from one-to-one 

model training since they are assumed to contain multiple linked concepts to a term. Since 

these instances do not contain multiple candidate concepts, they provide no benefit to model 

generalization utilizing their composite mention label.

Further analysis of the NCBI data, shows that the individual mentions for each identified 

composite mention are not labeled. This indicates that our one-to-many models are training 

on both the unlabeled individual mention and labeled composite mention for each term 

containing both types of mentions; if the individual mention exists within the data. This can 

also affect model generalizability and reduce overall evaluation performance. Additionally, 

if we combine this with the number of existing unlabeled composite mentions noted within 

the dataset and number of single-concept composite mentions, we believe these factors 

demonstrate the lack of noticeable change in performance while capturing these one-to-

many relations versus their one-to-one counterparts using this dataset.
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While the BC5CDR, BC7T2-CDR and NCBI datasets contain many unlabeled composite 

mention instances, the BC7T2-NLMChem contains no labeled composite mention instances. 

However, one-to-many NEN instances exist within the dataset. Despite this finding, we 

noted an increase in performance within our one-to-many approaches for all embedding 

types when compared to the one-to-one approaches. Similar to our previous findings, 

performance when identifying one-to-one relations will be negatively affected due to the 

model treating each linked candidate concept to the same term as a separate instance. i.e. 

backpropagation will occur for each linked candidate concept to a term independently. 

This prevents the model from achieving an optimal one-to-one mapping solution, often 

assigning the concept identifier with the highest frequency to the term. We believe the 

one-to-many model performance increase relates to fewer unlabeled individual mentions 

within the dataset when compared our NCBI findings.

Further analysis our models show that the concept-less label is incorrectly assigned more 

frequently than any other class. However, this depends on the dataset evaluated. We noted 

this trend holds true with and without class weighting the concept-less label lower than all 

other concept identifier labels.

8 CONCLUSIONS

Within this study, we examine multiple approaches for generating term embeddings used for 

NEN and how each term’s context affects evaluation performance. Additionally, we provide 

a comparison of our approaches for mapping one-to-one and one-to-many relations. While 

we found averaging provides the best evaluation performance for classifying both one-to-one 

and one-to-many relations, it is important to note our findings are task dependant and a 

comprehensive analysis of all embedding types should be considered when generating term 

embeddings for each data-source.

Our approaches for including context while generating high quality embeddings 

demonstrates that using the term’s sequence provides the highest quality embeddings 

when classifying one-to-one relations among all datasets. Conversely we found that term 

context affects evaluation performance when classifying one-to-many relations. Results 

show that including more context when classifying one-to-many relations improved 

evaluation performance in comparison to only utilizing the term’s sequence. This further 

emphasizes that all approaches should be considered when generating high quality term 

embeddings. Despite our findings, context should always be provided when generating term 

representations as these representations are contextualized given the co-occurring words 

within the containing sequence. This provides the model with greater semantic information 

content given the term’s surrounding context which is further utilized as a means of term 

disambiguation for linking onto an ontology.

Between our one-to-one and one-to-many relations, we found our one-to-many relations 

consistently performed better than our one-to-one relation models. While this trend 

shows promise in quantifying these relationships, we also noted several concerns within 

each dataset which we believe has detrimental effects on model generalizability thereby 
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evaluation performance. Proper data-analysis and processing techniques will aid in 

mitigating concerns such as these.

9 FUTURE WORK

Further work includes refining the BioBERT encoder for each dataset while training 

our attached classification layer. We believe this will improve model performance while 

reducing the number of epochs necessary for model generalization. Other works include 

utilizing other BERT-based models such as BioMegatron [16]. This biomedical BERT-based 

model which contains up to 1.2 billion parameters and over 50,000 vocabulary elements. 

Compare this to BioBERT base model’s 110 million parameters and 30,522 element 

vocabulary, we believe a notable performance increase can be achieved. Furthermore, 

we propose improving performance by classifying unlabeled one-to-many relationships as 

composite mentions within each dataset. As our one-to-one models omit instances labeled 

as composite mentions and our one-to-many models include instances labeled as composite 

mentions, we theorize an improvement in evaluation performance for both relation types will 

be eminent.

Other future works include implementation of an end-to-end joint-learning system which 

incorporates related tasks such as NER and entity typing in addition to architectural 

design changes. These additions when combined with incorporating techniques to mitigate 

the issues noted within our data analysis and approach-specific discussion sections, 

we believe implicit information shared among these tasks will provide higher quality 

representations while achieving higher generalization performance. Additionally, as our 

proposed approaches depend on a fixed vocabulary of candidate concepts to evaluate 

prediction performance, architectural design choices such as learning the mappings between 

term and concept representations using a similarity loss function can further improve model 

performance for NEN while providing a more generalizable model.
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A COMPOSITE VS. INDIVIDUAL MENTION DATA

We provide an example of a composite mention instance extracted from the BC7T2-CDR 

dataset. This composite instance is shown with its corresponding individual mentions. Note 

that each individual mention instance is a subset of the composite mention. We train our 

one-to-one models to include individual mentions while omitting the composite relation. 

Similarly, we train our one-to-many models to include the composite relation while omitting 

individual mentions.
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Figure 2: 
Composite vs Individual Mention

B TERM CONTEXT EMBEDDING GENERATION

We provide an example extracted from the BC7T2-CDR dataset to demonstrate our term 

context aggregation approaches for generating term mention embeddings. Shown in Figure 

3, this passage contains three one-to-one NEN instances. To demonstrate our approach, we 

consider the second linking instance as the current classification example. This instance 

contains the mention acitretin which links to the concept MESH:D017255. We highlight the 

term sequence in green and NEN instance in blue.

Our approaches to generate context considers three context aggregation methods: 1) using 

the term sequence containing the mention, 2) using the term sequence in addition to the 

immediate surrounding sequences and 3) maximizing term context by including all possible 

sequences surrounding the term sequence.

Our first approach utilizes the term sequence, highlighted in green, when linking the term 

acitretin to its candidate concept. Our second approach includes the sequences highlighted in 

yellow, green and magenta when linking the term to it’s candidate concept. Lastly, our third 

approach incorporates all sequences within this passage when linking the term acitretin to its 

candidate concept (i.e MESH:D017255).
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Figure 3: 
Term Context Aggregation

C MISSING COMPOSITE MENTION LABEL

We provide an example extracted from the BC7T2-CDR dataset which demonstrates a 

missing CompositeRole (composite mention) label. Shown in Figure 4, this typically 

identifies instances containing composite and individual mentions. We’ve highlighted 

this instance in blue. If we compare this to the data shown in Figure 2, we note the 

instance containing multiple concepts (separated by the ‘∣’ character) is designated as a 

CompositeRole. Identifying composite roles is important when classifying one-to-one and 

one-to-many relations. Excluding them can significantly affect model generalizability, thus 

evaluation performance if proper data analysis and pre-processes steps are not employed.
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Figure 4: 
Missing CompositeRole (Composite Mention). We’ve removed the one-to-one relations for 

ease of viewing.
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CCS CONCEPTS

• Computing methodologies → Feature selection; Information extraction.
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Figure 1: 
Named Entity Normalization (NEN) Model. This depiction demonstrates embedding context 

as the term’s sequence. We also explore two more context aggregation methods which are 

not shown.
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Table 5:

Wiatrak, et al. (2020) - Entity-Level Single Task Results

BC5CDI

Description P R F1

Wiatrak, et al. 0.6498 0.6291 0.6393

One-to-One 0.6005 0.6728 0.6346

One-to-Many 0.7570 0.6225 0.6832
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