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ABSTRACT: In this study, several machine learning models were used to
analyze the process variables of electric-field-enhanced pyrolusite leaching
and predict the leaching rate of manganese, and the applicability of those
models in the leaching process of hydrometallurgy was compared. It showed
that there was no correlation between the six leaching conditions; in addition
to the leaching time, the concentrations of sulfuric acid and ferrous sulfate
had great influences on the leaching of pyrolusite. The results of the
prediction models showed that the support vector regression model has the
best prediction performance, with regression index (R*) = 0.92 and mean
square error = 25.04, followed by the gradient boosting regression model (R*
> 0.85). In this research, machine learning models were applied to the
optimization of the manganese leaching process, and the research process
and methods were also applicable to other hydrometallurgical processes for
majorization and result prediction.
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1. INTRODUCTION

Manganese (Mn) and manganese compounds, as important
industrial materials, play a signification role in various industrial
fields, but due to the large demand for extensive use, the storage
of high-grade manganese ore resources has declined,"” while the
low-grade pyrolusite still retains huge storage capacity.’ In order
to meet the demand of industrial production, it is necessary to
efficiently utilize low-grade pyrolusites.

In order to improve the leaching rate of pyrolusite and utilize
various materials efficiently, many eflicient leaching methods
were proposed, such as electric-field-enhanced leaching, micro-
wave leaching, biological leaching, etc. By studying the leaching
mechanism of pyrolusite with an electric field,”” it has been
found that both the consumption of ferrous sulfate and the acid
leaching reagent sulfuric acid could be reduced under electric
field enhancement. Luo et al.’ combined ball milling and an
electric field to make the optimal leaching rate of pyrolusite
reach 97.79%. Chen et al.” used pyrite as a reducing agent to
leaching pyrolusite under microwave conditions, and the
leaching rate reached 93.03%. Lan et al.” applied bioleaching
pyrolusite, which proved that the leaching rate can be as high as
98%.

In recent years, with the advancement of computing power,
big data, and algorithms, artificial intelligence technology has
been used in various areas, such as molecular and material
chemistry prediction,””"" the discovery and synthesis of new
materials,’”'” and environmental pollution removal predic-
tion.'* In the field of hydrometallurgy, machine learning
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techniques have also been applied industrially. Hoseinian et
al."® used an artificial neural network combined with a genetic
algorithm to predict the leaching rate of copper oxide ore pillars
and investigated the effect of various conditions in the leaching
process on the copper recovery rate. The coefficient of
determination of the model and the predicted mean square
error were 0.96 and 0.02, respectively, and the model was
combined with the leaching process to optimize the leaching
effect. Xie et al.'"® used a radial basis function neural network
with a self-adjusting structure to effectively predict the iron ion
concentration at the output of the hydrometallurgical zinc
industry, and the root-mean-square error of the model
prediction was 0.215 g/L, which compensated for the
information delay caused by the inability to detect the iron
ion concentration online in real time. In addition, random
forests, decision trees, SVM, and extreme gradient boosting were
also used in metallurgy and metal recycling.'” ="

Machine learning for mineral extraction prediction in the
metallurgical industry is little studied for different machine
learning models with the analysis of leaching process conditions
for minerals such as manganese. In this paper, the correlation
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between each leaching condition and the importance of leaching
conditions on the leaching rate were investigated by the Pearson
correlation coefficient and multiple linear regression models,
which were used to guide leaching optimization and condition
selection. Several machine learning models driven by electrically
enhanced pyrolusite leaching data predicted the leaching rate
and analyzed the applicability of different machine learning
models. The effects and trends of single leaching conditions and
combined leaching conditions on leaching rates were analyzed
visually to improve the understanding of the leaching process by
the prediction models.

2. DATA PROCESSING AND MACHINE LEARNING
MODELS

2.1. Data Processing. 2.1.1. Dataset. The experimental
data of electric-field-enhanced pyrolusite leaching were from the
published papers in 2015 and 2017,” with 304 sets of data
samples. The liquid—solid ratio (mL/g), current density (A/
m?), leaching temperature (°C), and leaching time (min) are the
same conditions in both datasets, while the remaining
conditions in the 2015 dataset, which are the mass ratio of
ferrous sulfate heptahydrate to pyrolusite and the mass ratio of
sulfuric acid to pyrolusite, were different from those of the 2017
dataset, so they should be converted into ferrous sulfate
concentration and sulfuric acid concentration by the liquid—
solid ratio to keep consistent with the 2017 dataset.

The conversion equations are

(mFeSO4-7HZO: mMDO) X 1000

FeSQ,) =
o(FeS0) Mreso, 71,0 X (1/8) (1)

(msto4‘ Mypo) X 1000

(H,S0,) =
A n,s0, X (1/8) )

The test and training sets of the data were randomly divided
into a ratio of 8:2, and the optimal model selection was
determined using 10-fold cross-validation on the overall dataset.
The distribution of each feature and the results of 10-fold cross-
validation are plotted in the Supporting Information.

2.1.2. Standardization of Dataset Features. The data were
centered and scaled to standardize by the mean (u) and standard
deviation (s) of each condition to eliminate the influence of the
unit magnitude between the leaching conditions on the machine
model and improve the machine learning models.

Data normalization equation:

(xi - “)

s (3)

New_x; =

where x; represents the sample of different leaching conditions
and i is the sequence number of the observation, such as 1, 2, 3,
oy .

2.2. Machine Learning Models. 2.2.1. Multiple Linear
Regression Models. Multiple linear regression”' ™" is a
statistical tool for fitting linear relationships between independ-
ent and dependent variables and can be used to identify linear
relationships between single or multiple variables. Simple linear
regression consists of a single element input, and multiple linear
regression consists of multiple inputs.

1 b0
1 b®
Xh=
0=©0,+6,++6) =& xx,)'X)y (s)

where X is the feature matrix, b{™ is the feature m of the nth data
sample in the data sample, @ is the coeflicient vector, and y is the
actual value. The prediction results can be calculated by the
following equation.

ypred =X 0 (6)
Namely,
y =06y + Ox, + Ox, + - + Ox, (7)

y represents the output of the model, x; (i = 1,2, ...n) represents
the input features, and 6 is the coeflicient term of the input
features of the equation. The optimization objective of multiple
linear regression is to obtain the optimal coeflicient @ vector set
corresponding to the minimum value of the sum of distances of
the equation to all input data. In this study, a multiple linear
regression model containing a constant term was developed for
the importance analysis of leaching conditions based on the
electric-field-enhanced leaching data.

2.2.2. Support Vector Machine Regression Model. A
support vector machine (SVM)**** is a supervised machine
learning model that can handle classification and regression
problems. The processing method of the SVM is to use
nonlinear kernel functions to map input features into a high-
dimensional space to linear separability to solve linear
inseparability problems in a low-dimensional space. The
application of the SVM in regression is called support vector
regression (SVR).

SVR trained by train = {(¥,, 1), (%5, ¥2), (%, 7)}(i=1,2, ..,
N) compares the difference between the model’s output f(%;) = y;
and the true value y; with the given parameter e. If [f(x,) =yl > ¢,
the loss calculation will be performed; otherwise, the prediction
is correct.

. N

min

3 Il + CY LGG) - 1)

w, b2 i=1 (8)
where C is the penalty term hyperparameter given before the
model is built (C > 0) and L, is the loss function.

The optimization of SVR can be performed by introducing
relaxation variables &; and &; with the “soft boundary” to control
and constrain the model, and the optimized expression is

. N
jz Sz ~19lB + € X (G -5) o
st f(8) -5 <e+¢ (10)
§-fGE)<e+§ (11)
£>0,E>0,i=1,2,.,N (12)

SVR is a nonlinear machine learning model, where it is easier
to fit the nonlinear relationship between features and predicted
values in the small samples than other machine learning models,
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and has a strong generalization ability and can solve high-
dimensional data problems. In this study, the penalty term C =
100 and the radial basis function (rbf) is determined by grid
search to train the data for prediction.

2.2.3. Decision Tree Model. A decision tree (DT)***" is a
supervised learning machine that makes decisions based on
some logical rules, which does not depend on the predefined
relationship between input features and predicted output results,
ignoring the magnitude of input features. The decision tree is
divided by searching features to pursue the effect of uniform
output distribution, and the output of the decision tree is
optimized by parameters. For example, grid search and Bayesian
optimization”® of the minimum leaf size are used to obtain good
prediction results, and dropping nodes are used to prevent
overfitting of the decision tree.

Decision tree division criteria are based on the information
gain, gain rate, Gini index, etc. The division criterion has a great
impact on the size of leaf nodes and the depth of layers of
decision trees, but it has a limited impact on its generalization
ability.”” In this study, the parameters were determined by grid
search, and the quality of division was measured by mean
absolute error (MAE); the best splitting strategy was selected
using best, the depth of the tree was set to 20, and the minimum
number of samples of leaf nodes was set to 2.

2.2.4. Random Forest Model. A random forest®® (RF) is a
machine learning model, an ensemble of decision trees, which
handles classification and regression problems efficiently. In
contrast to the traditional decision tree, which selects the
optimal attributes from the current set of nodes as a division
standard, the random forest selects k attribute nodes randomly
from the current set of nodes and divides the optimal attributes
from the remaining subsets, in which the randomness is
determined by the parameter k. The random selection of the
subset of attributes without selecting from all attributes results in
a higher training efliciency.

When a random forest initially has only one base learner, itis a
decision tree model with random selection generating
perturbations, which is characterized by poor performance,
poor fitting, low generalization ability, etc. Multiple stochastic
decision tree models are integrated in parallel by Bagging,®" and
the results are predicted by voting or averaging between each
base learning model. In this study, random forest parameters
were determined by grid search, the number of base models was
100, the quality of attribute partitioning was measured using
mean square error (MSE), and the default values were used for
the remaining parameters.

2.2.5. Multilayer Perceptron Model. A multilayer perceptron
(MLP)**™ or deep feedforward network is a typical deep
artificial neural network (ANN), inspired by the human
neuronal system for processing information. The MLP is
approximated with a mapping function between input features
and output predictions.

The MLP contains a simple neuron interconnection system,
which is divided into at least three layers, which are input and
output layers, with one or more hidden layers in the middle. The
neurons in the input layer do not participate in the calculation,
just passing the input data to the hidden layer, and the neurons
in the other layers complete the nonlinear transformation by
activation functions (e.g., logistic, tanh, and relu) to complete
the resultant output of that layer.

The two consecutive layers of neurons are connected by the
weight 6 obtained during the training process, which
approximates the mapping function between input and output.

The MLP is supervised learning, and (%, 6) is approximated to
the actual value y; by training the approximation function f,
where the difference between f(%;, 8) and ), is the error value,
which is used for the training process to adjust the weights 6,
thereby reducing the overall network error.

The MPL network has the possibility of global non-
convergence, and the model is particularly sensitive to the
given parameters. The activation function, the number of hidden
layers, the number of neurons in each layer, the number of
iterations, and the overfitting prevention regularization between
the layers all have a great influence on the model. In order to
obtain a high prediction regression effect, this study uses grid
search to adjust the parameters and then determines logistics as
the activation function, with 4 hidden layers, the number of
neurons in each hidden layer is 80, and the learning rate is set to
adaptive to construct the prediction model.

2.2.6. Gradient Boosting Regression Model. The gradient
boosting regressor (GBR)***” is a model using the boosting
forward algorithm to train a base learning model with an initial
training set, and the subsequent model training combines the
performance of the base learning model to adjust the
distribution of training samples. During training, in order to
achieve the effect of paying more attention to wrong samples in
the basic learning model, the residual gradient of the previous
model is reduced according to the minimized loss function and
improves the prediction accuracy of the model step by step.

In this study, according to grid search, the number of decision
regression trees was 200, the learning rate was 0.1, the maximum
depth of each decision regression number was 5, and the
minimum number of samples in each internal node of the tree
was 4. The mean square error (MSE) was used to measure the
quality of attribute classification, the minimum absolute
deviation (lad) was used as the loss function, and the rest of
the parameters were set as default parameters.

2.3. Correlation Coefficient and Evaluation Criteria.
2.3.1. Pearson’s Correlation Coefficient. Pearson’s correlation
coefficient™ expresses the linear relationship between variables,
which contributes to observing the effect of leaching conditions
on the predicted results and provides guidance on the
optimization of the variables. Pearson’s correlation coefficient
was verified and compared with the leaching conditions
calculated in the machine learning model and played a role of
mutual corroboration.

Yo (X - X)(Y - 7)

VI (% - X)X (-7 (13)

where X; and Y represent the sample with different leaching
conditions and X and Y represent the mean of different leaching
conditions.

2.3.2. Evaluation Criteria. In the study, the coeflicient of
determination (R*) and mean square error (MSE) were selected
as the evaluation criteria to find out the excellent prediction
models among the machine learning models.

X0 -3)
20-n) (14)

where y; denotes the model output value, y; denotes the actual
value of the model, 41, denotes that the y is the mean value of the
model, and i is the ordinal number of the observation, such as 1,
2,3, ..,n.

P_value =

R*=1
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1 - R
MSE = — 3, (- 1)
L (15)

R* was used to represent the performance of the model to
evaluate the degree of conformity between the predicted value of
the model and the actual value. MSE was used to explain the
magnitude of the error. The above two performance indicators
can effectively evaluate the prediction effect of the model.

3. RESULTS AND DISCUSSION

3.1. Feature Correlation and Importance Analysis. As
shown in the Pearson correlation coefficient heat map (Figure
1), the lighter color between the parts indicates the weak

o \\é‘d << 2%
<0 D <0 N '\&_%0\\ o \\\\36 Qc‘la\\\ . _\({\g\%*
Nadl N G e S N
[FeSO,| 0.14  -0.18 004  -006 001 0.28
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Current Density | 0.04 0.01
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Time | 0.01 -0.02

Leaching Rate | 0.28 0.49

Figure 1. Pearson correlation coefficient heat map for leaching
conditions.

correlation between the leaching conditions, and there is no
cumulative contribution to the prediction of the leaching rate.
The leaching conditions with darker colors in the leaching rate
row of Figure 1 are the leaching time, sulfuric acid concentration,
and ferrous sulfate concentration, indicating that the above
conditions have a greater impact on the leaching rate.

The standardized leaching conditions were subjected to a
multiple linear regression with the leaching rate data, and the
fitted equation is

y = 0.277x, + 0.538x, + 0.336x; + 0.043x, + 0.32x,
+ 0.558x, + 3.9 X 107'¢ (16)

where x; — x¢ represent the ferrous sulfate concentration,
sulfuric acid concentration, liquid—solid ratio, current density,
temperature, and leaching time, respectively.

The larger coefficients in front of the leaching conditions in
the equation were leaching time and sulfuric acid concentration,
which were close to the Pearson correlation coeflicient heat map,
and the importance of the above two leaching conditions was
consistent with Zhang et al.*

The importance score analysis according to the GBR model
for leaching conditions (Figure 2) revealed that the leaching
time has the greatest influence on the leaching effect in the
electric-field-enhanced pyrolusite leaching process, which was
due to the fact that the pyrolusite acid leaching process is a
liquid—solid reaction, which is a nucleation reduction model.*”
The acid leaching reaction occurred on the surface of pyrolusite,

03|

0.1

0.0

Importance score of leaching conditions
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Figure 2. Importance score of leaching conditions.

while the reaction has not yet occurred inside the mineral. With
the increase of reaction time, the leaching of the mineral inside
gradually contacted with the liquid surface, and thus, the
leaching rate gradually increased. The second most important
factor was the sulfuric acid concentration. A higher acid
concentration promoted the reduction of manganese dioxide
by ferrous ions, thereby promoting the leaching of manganese.
The third most important factor was the concentration of
ferrous sulfate, in which Fe’" has a strong reducing property,
which can reduce high-valent manganese and thus improve the
leaching.”

3.2. Comparison of the Model Prediction Ability. The
leaching rate was predicted by a multiple linear regression
model, a support vector regressor model, a decision tree model, a
random forest model, a multilayer perceptron model, and a
gradient boosting model after determining the parameters by
grid search. The multiple linear regression model (Figure 3a)
exhibited poor results (R* < 0.8) on the test set, indicating that
leaching of pyrolusites was a complex nonlinear process, which is
consistent with the study of Zhang et al.* The prediction effect of
the decision tree model (Figure 3c) was also relatively poor (R?
< 0.8) with overfitting, indicating that the division of the
decision tree by reducing the information entropy or the Gini
index could not predict the leaching rate accurately. The low
correlation between each leaching condition and the leaching
rate, accounting for individual leaching condition data, could not
accurately determine the leaching rate.

The random forest model (Figure 3d) and the gradient
boosting regression model (Figure 3f) belong to the ensemble
model, which integrates multiple weak learning models for
voting prediction, which obtains relatively good prediction
results, with R* of 0.87 and 0.88, respectively. The multilayer
perceptron model (Figure 3e) lacks stability in the prediction
process because the grid search determines the parameter
learning rate = adaptive, thus contributing to the learning rate
change during the training process and the prediction effect
change, but several experiments showed that the multilayer
perceptron model prediction effect R* mean value was 0.87.

The support vector regression model (Figure 3b) had the best
prediction effect (R* = 0.92, MSE = 25.04), and it had a good
fitting ability on both the training and test sets. It indicated that
the support vector regression model had the best prediction
effect on the electric-field-enhanced leaching of pyrolusite with a
good generalization ability. The support vector regression model
was used for the subsequent study on the effect of leaching
conditions on the leaching rate.
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Figure 3. Comparisons between different models for prediction of the leaching rate and the evaluation criteria for the test set (train set:test set = 8:2):
(a) multivariate linear model; (b) support vector machine; (c) decision tree; (d) random forest; (e) multilayer perceptron; (f) gradient boosting

regression model.

3.3. Influence of Leaching Conditions on the Leaching
Effect. 3.3.1. Effect of Single Leaching Conditions on the
Leaching Rate. The trend of the leaching rate under single
factor conditions was examined by the method of controlled
variables. The increase of ferrous sulfate concentration (Figure
4a) improves the leaching of manganese, which is due to the
reducibility of Fe** ions, which can promote the reductive
leaching of high-valent manganese. In addition, the leaching of
manganese still occurs in the absence of ferrous ions, which is
caused by the direct reduction of high-valent manganese by the
electric field.® When the concentration of sulfuric acid is low
(Figure 4b), the leaching rate of manganese remains low, which
is due to the existence of colloidal alkaline ferric sulfate in the
reaction solution under the environment of low-concentration
sulfuric acid, which affects the leaching effect. When the sulfuric
acid concentration increased, the colloidal basic iron sulfate is

48134

converted into iron sulfate, the solution mass transfer capacity
increases, and the leaching effect is improved.*’ The increase of
the liquid—solid ratio (Figure 4c) leads to an increase in the
leaching rate of manganese, improving ion migration and the
movement space of particles.7 However, the improvement of the
leaching effect is no longer obvious after the liquid—solid ratio
reaches 5.5 mL/g. The increase of current density (Figure 4d)
can significantly improve the leaching rate of manganese. After
the current density increases from 500 to 950 A/m?, the leaching
rate increases to 98%, but it still does not reach 100% at around
1000 A/m?, which is due to the MnO, attached to the anode
after the oxidation of Mn*".*! As the leaching temperature
increases (Figure 4e), the leaching rate of manganese also
increases. The molecules in the leaching reaction solution are
heated and activated, involved in more reaction, and the surface
reaction rate is proportional to the temperature.*” The increase
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Figure 4. Influence of leaching conditions on the leaching rate. (a) Ferrous ion concentration; (b) sulfuric acid concentration; (c) liquid-to-solid ratio;

(d) current density; (e) leaching temperature; (f) leaching time.

in the leaching rate with time is due to the gradual completion of
the reaction (Figure 4f).

3.3.2. Effect of the Combination of Leaching Conditions on
the Leaching Rate. According to Figure Sa, with the increase of
the ferrous sulfate concentration and sulfuric acid concentration,
the leaching rate of pyrolusite gradually increased generally.
Comparing the effects of the concentration changes of the two
reactants on the leaching rate of pyrolusite, it is found that when
the concentrations of the ferrous sulfate concentration and
sulfuric acid are lower than 0.5 and 0.8 mol/L, respectively, the
change of other leaching conditions has no effect on the change
of the leaching effect and the leaching rate is lower than 70%,
indicating that neither sulfuric acid nor ferrous sulfate at low
concentrations can leach manganese sufficiently. The low
leaching rate at a low concentration of sulfuric acid is due to
the formation of colloidal basic ferric sulfate,”® which hinders the
mass transfer. The low leaching rate at a low concentration of
ferrous sulfate is due to the insufficient reducing agent involved
in the reaction.

It can be seen from Figure 5b that with the increase of the
concentration of ferrous sulfate, the leaching effect shows an
upward trend first and then tends to be gentle. When the
concentration of ferrous sulfate is lower than 0.5 mol/L, it is

48135

difficult to improve the leaching effect by increasing the liquid-
to-solid ratio, which is caused by the insufficient reducing agent
in the reaction system.” When the concentration of ferrous
sulfate is higher than 0.5 mol/L, the effect of the liquid—solid
ratio on the leaching effect is gradually clear. In addition, the
change of the ferrous sulfate concentration at a high liquid—solid
ratio has more obvious effects on the leaching rate, which is
caused by improving the mass transfer effect and increasing the
space for particle movement at a high liquid—solid ratio.”

The leaching rate observed by Figure Sc increased
continuously with the increase of leaching time, but the
increasing trend gradually flattened after the time reached 160
min. As shown in Figure 5S¢, when the sulfuric acid concentration
is lower than 1 mol/L, the leaching rate always remains at low
levels and there is no response to the increase in leaching time.

Figure 5d shows that a higher liquid—solid ratio and current
density can obtain a higher leaching rate, but the increase of the
leaching rate does not improve the leaching rate obviously after
the current density reaches 900 A/m’ while the energy
consumption continues to increase. When the liquid—solid
ratio is lower than 3.5 mL/g, the increase of current density
cannot improve the leaching rate significantly and the leaching
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Figure S. Effect of combination of leaching conditions on the leaching rate. (a) Influence of the concentration of ferrous sulfate and concentration of
sulfuric acid. (b) Influence of the liquid-to-solid ratio and the concentration of ferrous sulfate on the leaching rate. (c) Influence of the leaching time
and the concentration of sulfuric acid on the leaching rate. (d) Influence of the current density and the liquid-to-solid ratio on the leaching rate. (e)
Influence of temperature and current density on the leaching rate.

rates is lower than 75%, which is caused by the viscous reaction
system with a low liquid—solid ratio and poor mass transfer.’
Figure Se illustrates that when the temperature is higher than
70 °C and the current density is higher than 500 A/ m?, the
leaching rate will be higher than 90%, showing that an

appropriate current density at a higher temperature can achieve
good leaching results. Meanwhile, the leaching reaction does not
require a particularly high reaction temperature with the action
of an electric field, and a considerable leaching rate can be
obtained because the electric field reduces the apparent
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activation energy of the pyrolusite leaching process.’ In

addition, excessive current density will increase the energy
consumption, but it will not significantly increase the leaching
rate or even reduce the performance. This is owing to the fact
that leached manganese ions are oxidized to MnO, and
adso:bed on the anode, resulting in a decrease in the leaching
rate.

4. CONCLUSIONS

Through the comparison of machine learning models driven by
pyrolusite leaching data, it revealed that the linear model
predicted poorly indicating the complex nonlinearity of electric-
field-enhanced pyrolusite leaching. The remaining machine
learning models had better prediction results, of which the
support vector regression model had the best prediction ability
(R* = 0.92, MSE = 25.04), indicating the feasibility of machine
learning models to predict leaching products in the field of
hydrometallurgy. In addition, by studying various leaching
conditions, it was found that the more important conditions are
the leaching time, sulfuric acid concentration, and ferrous sulfate
concentration. The leaching effect can be changed effectively by
adjusting the above conditions. This study combined the field of
hydrometallurgy with machine learning and used data visual-
ization to analyze the influence and change trend of each
leaching condition on the leaching rate. This study has
important guiding significance for the intelligent research of
hydrometallurgy.
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