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Abstract: Haemophilus parasuis (H. parasuis) can cause Glässer’s disease in pigs. However,
the molecular mechanism of the inflammation response induced by H. parasuis remains unclear.
The high-mobility group box 1 (HMGB1) protein is related to the pathogenesis of various infectious
pathogens, but little is known about whether H. parasuis can induce the release of HMGB1 in piglet
peripheral blood monocytes. Baicalin displays important anti-inflammatory and anti-microbial
activities. In the present study, we investigated whether H. parasuis can trigger the secretion of
HMGB1 in piglet peripheral blood monocytes and the anti-inflammatory effect of baicalin on the
production of HMGB1 in peripheral blood monocytes induced by H. parasuis during the inflammation
response. In addition, host cell responses stimulated by H. parasuis were determined with RNA-Seq.
The RNA-Seq results showed that H. parasuis infection provokes the expression of cytokines and
the activation of numerous pathways. In addition, baicalin significantly reduced the release of
HMGB1 in peripheral blood monocytes induced by H. parasuis. Taken together, our study showed
that H. parasuis can induce the release of HMGB1 and baicalin can inhibit HMGB1 secretion in
an H. parasuis-induced peripheral blood monocytes model, which may provide a new strategy for
preventing the inflammatory disorders induced by H. parasuis.
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1. Introduction

Haemophilus parasuis (H. parasuis), the causative agent of Glässer’s disease in pigs, is a
Gram-negative bacterium that colonizes the upper respiratory tract of pigs [1]. The disease is
characterized by fibrinous polyserositis, polyarthritis and meningitis [2]. H. parasuis can cause high
morbidity and mortality, resulting in huge economic losses for the pig industry [3]. In recent years,
it has become one of the most important bacterial respiratory pathogens, and has received increasing
attention from pig producers. So far, 15 serovars of H. parasuis have been identified, but up to 20%
of isolates cannot be serotyped according to the Kielstein–Rapp–Gabrielson serotyping scheme [4].
Serovars 4, 5 and 13 are the most prevalent serotypes in China [5,6]. In general, H. parasuis serovars are
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considered to be important markers of bacterial virulence [7,8]. Serovar 5 is highly virulent and serovar
4 is considered to be moderately virulent [9]. Because of the large number of H. parasuis serovars and
uncertainty in the identification of some of them, preventing and controlling infection by H. parasuis
has become a challenge.

Currently, the pathogenesis of H. parasuis infection remains unclear, especially the pathways
causing the systemic inflammatory response and vascular injury. However, some virulence-related
factors have been demonstrated to play important roles in the pathogenesis of the disease. H. parasuis
lipooligosaccharides (LOS) can mediate the adhesion of H. parasuis to porcine brain microvascular
endothelial cells (PBMEC) and are able to induce the release of IL-8 and IL-6 by PBMEC [10].
The contribution of the inner core oligosaccharide of LOS, cytolethal distending toxin (CDT) and
the rfaE gene are associated with serum resistance and has the ability to adhere to and invade porcine
kidney epithelial cells (PK-15) and porcine umbilical vein endothelial cells (PUVEC) [11–13]. The vacJ
gene plays an essential role in maintaining biofilm formation, serum resistance, and adherence to and
invasion of PK-15 cells [14]. Deletion of the arcA gene resulted in less biofilm mass being produced and
reduced H. parasuis EP3 strain virulence in mice [15]. Disruption of the htrA gene affected resistance to
complement-mediated killing and significantly attenuated virulence of H. parasuis in the murine model
of infection [16]. Despite the numerous virulence-related factors that have currently been discovered,
the pathogenesis of inflammation caused by H. parasuis still needs to be resolved.

The inflammatory immune response and inflammation injury play important roles in the
pathogenesis of Glässer’s disease. Macrophages have important regulatory effects on the inflammatory
response [17]. Activation of the inflammation-associated signaling pathway can induce the production
of inflammatory cytokines such as IL-6 and IL-8 [18]. High-mobility group box 1 (HMGB1), which is a
nuclear protein and is identified as a cytokine, is ubiquitously expressed in many mammalian cells and
participates in diverse important intracellular and extracellular functions [19,20]. Previous research has
shown that exposure of human bronchial epithelial cells to HMGB1 leads to pro-inflammatory cytokine
secretion, enhanced ER-mitochondrial Ca2+ transfer and reactive oxygen species (ROS) production [21].
HMGB1 is involved in the pathophysiology of pulmonary fibrosis by causing the release of pro-fibrotic
proteins [22]. HMGB1 production is increased in injured mouse spinal cords and can induce neurotoxic
inflammation [23]. In addition, lipopolysaccharide (LPS) from Aggregatibacter actinomycetemcomitans,
Porphyromonas gingivalis, and Escherichia coli significantly induced HMGB1 secretion from human
gingival fibroblasts, which may contribute to periodontal tissue destruction [24]. It has been
documented that the HMGB1 inhibitor glycyrrhizic acid can mediate renal injury and inflammatory
responses in diabetic rats by regulating the activation of the RAGE/TLR4-related ERK and p38
MAPK/NF-κB signaling pathways [25]. Ethyl pyruvate can suppress acute lung damage through
inhibition of NF-κB and HMGB1 following trauma and hemorrhagic shock [26]. Thus, we speculate
that HMGB1 may be useful as a valid therapeutic target for controlling H. parasuis infection.

Baicalin is the principal component of the flavonoid derivatives in the roots of Scutellaria baicalensis
Georgi [27]. It has been reported that baicalin has important anti-inflammatory, anti-microbial,
and anti-oxidant activities [28]. Baicalin can inhibit biofilm formation, suppress quorum
sensing-controlled virulence, and enhance Pseudomonas aeruginosa clearance in a mouse peritoneal
implant infection model [29]. Baicalin reduced A549 cell injury induced by Staphylococcus aureus
and protected mice from S. aureus pneumonia [30,31]. Baicalin improves the survival of mice with
polymicrobial sepsis by suppressing the inflammatory response and lymphocyte apoptosis [32].
Baicalin canprotect CHON-001 cells from IL-1β-induced inflammatory injury through miR-126
downregulation [33]. Baicalin also effectively suppresses the breast cancer metastasis by reversing the
epithelial-to-mesenchymal transition [34]. Thus, we speculate that baicalin may be utilized as a novel
drug to control the inflammation response or injury evoked by H. parasuis.

Our previous research has shown that baicalin can suppress the inflammation response through
the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes and the NF-κB
and NLRP3 inflammasome pathway in H. parasuis-induced piglet mononuclear phagocytes [35,36].
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In the present study, we determined the pattern of secretion of HMGB1 in piglet mononuclear
phagocytes triggered by LPS and H. parasuis. Signaling pathways related to HMGB1 in piglet
mononuclear phagocytes infected by H. parasuis were also explored by RNA-Seq. In addition, we
investigated the effect of baicalin on the secretion of inflammatory cytokines and HMGB1 from piglet
mononuclear phagocytes. Our results suggest that baicalin can significantly inhibit the release of
HMGB1 in piglet mononuclear phagocytes, which may provide a novel strategy for preventing the
inflammation response or injury induced by H. parasuis.

2. Results

2.1. H. Parasuis and Lipopolysaccharide (LPS) Infection-Triggered High-Mobility Group Box 1 (HMGB1)
Release in the Piglet Peripheral Blood Monocytes

To explore the pattern of production of HMGB1 promoted by H. parasuis and LPS in detail, the piglet
peripheral blood monocytes were infected with H. parasuis or LPS for 12 h to 48 h. The results showed
that H. parasuis could stimulate the production of HMGB1 in the piglet peripheral blood monocytes for
12 h to 48 h compared with the control cells, and the amount of HMGB1 released reached a peak at 24 h
before falling at 36 h to 48 h (Figure 1A) (p < 0.05). In addition, LPS also could induce HMGB1 secretion at
12, 36, and 48 h (Figure 1A) (p < 0.05). Western blot analysis further confirmed the expression of HMGB1
in the cell supernatants when induced at 36 to 48 h (Figure 1B) (p < 0.05).

Figure 1. Detection of high-mobility group box 1 (HMGB1) release in the piglet peripheral blood
monocytes triggered by H. parasuis or lipopolysaccharide (LPS) using the real-time quantitative reverse
transcription polymerase chain reaction (qRT-PCR) method (A) and Western blot method (B). * p < 0.05;
** p < 0.01; HPS: H. parasuis; 36 h: LPS vs. Control (p < 0.01) and HPS vs. Control (p < 0.01); 48 h: LPS vs.
Control (p < 0.01) and HPS vs. Control (p < 0.05).

2.2. Baicalin Inhibited HMGB1 Release in Piglet Peripheral Blood Monocytes Induced by H. Parasuis

After the piglet peripheral blood monocytes were pretreated with 12.5–100 µg/mL baicalin and
infected with H. parasuis for 24 to 48 h, HMGB1 secretion was measured. These data demonstrated that
H. parasuis could significantly promote the release of HMGB1 in the piglet peripheral blood monocytes
compared with the control cells (Figure 2) (p < 0.01). Surprisingly, N-acetyl-L-cysteine (NAC) could not
trigger the production of HMGB1 compared with the controls (Figure 2). The production of HMGB1 was
not significantly attenuated by 12.5 µg/mL baicalin when co-incubated with H. parasuis for 24 and 36 h,
although it was attenuated after 48 h (Figure 2). In addition, 25–100 µg/mL baicalin could reduce HMGB1
secretion in the piglet peripheral blood monocytes (Figure 2) (p < 0.01).
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Figure 2. The effect of baicalin on HMGB1 release in piglet peripheral blood monocytes induced by
H. parasuis. 1 × 106 piglet peripheral blood monocytes were pretreated with baicalin at 12.5, 25, 50,
100 µg/mL or NAC (1 mM/mL) for 1 h. 1 × 106 CFU/mL H. parasuis were added to the wells and
co-infected for 24, 36 and 48 h. The HMGB1 concentration was measured. ## p < 0.01 vs. control.
* p < 0.05; ** p < 0.01; HPS: H. parasuis.

2.3. The Effect of LPS on HMGB1 Release in the Piglet Model

After the piglets were inoculated with LPS for 3, 6, 9, 12, 24, 36, 48, and 72 h, blood samples were
collected for the detection of HMGB1 release. The results demonstrated that the levels of HMGB1
secretion significantly increased from 3 to 48 h compared with the control (Figure 3) (p < 0.05). HMGB1
release rose to a peak at 36 h and then declined at 72 h (Figure 3).

Figure 3. The effect of LPS on HMGB1 release in the piglet model. The piglets were inoculated with
LPS for 3, 6, 9, 12, 24, 36, 48, and 72 h, blood samples were collected for the detection of HMGB1 release.
* p < 0.05; ** p < 0.01.
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2.4. RNA-Seq Analysis of the Interaction between Host Cells and Bacteria

To understand the host-pathogen interaction, we performed RNA-Seq of H. parasuis-infected piglet
peripheral blood monocytes using the Illumina Hiseq 2000 platform. Then the sequences were aligned
against Sus scrofa gene sequences (Sscrofa11.1). The results showed that more than 55 million raw reads
for every sample were obtained. After data filtering, about 53.7 million reads could be mapped to the
reference genome (Table 1), which demonstrated that the high quality of the sequences of the samples
obtained could be used for the next analysis. After the cells were infected with H. parasuis for 24 h,
a total of 982 genes were observed to be significantly altered (fold change ≥ 2, p < 0.05), of which 646
genes were up-regulated and 336 genes were down-regulated (Supplemental Table S1). Surprisingly,
the HMGB1 gene was up-regulated 0.21-fold. To better explore the host cell response to H. parasuis,
an enrichment analysis utilizing DAVID was carried out. The gene ontology (GO) enrichment
analysis showed that differentially expressed genes involved in the top 30 GO enrichments were
related to chemokine activity, CCR chemokine receptor binding, eosinophil migration, and chemotaxis
(Figure 4A). The top 30 pathways identified as enriched in the infected cells by the Kyoto Encyclopedia
of Genes and Genomes (KEGG) are shown in Figure 4B. The cytokine–cytokine receptor interaction,
chemokine signaling pathway, and tumor necrosis factor (TNF) signaling pathway were the most
enriched upon host cell infection, which indicated the central importance of the signaling pathways in
the pathogenesis of H. parasuis.

Figure 4. Analysis of the top 30 pathway enrichment (A) and gene ontology (GO) enrichment (B)
by RNA-Seq.
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Table 1. Statistical summary analysis of RNA-seq datasets of infection cells and control cells.

Samples_ID All Reads Mapped
Reads

Mapped Pair
Reads

Mapped
Broken-Pair

Reads

Mapped
Unique Reads

Mapped Multi
Reads Mapping Ratio

H1 55,854,342 44,980,513 40,035,218 4,945,295 43,121,932 1,858,581 80.53%
H2 54,986,838 44,145,405 39,108,774 5,036,631 42,172,615 1,972,790 80.28%
H3 50,658,012 40,793,438 36,277,250 4,516,188 39,182,384 1,611,054 80.53%
K1 61,627,718 49,131,998 43,393,550 5,738,448 46,888,148 2,243,850 79.72%
K2 55,917,120 44,938,810 39,598,978 5,339,832 42,736,227 2,202,583 80.37%
K3 54,216,750 43,563,887 38,251,636 5,312,251 41,401,511 2,162,376 80.35%

H1, H2, H3: the infected cells; K1, K2, K3: the control cells.

2.5. Analysis of the Association among DEGs of the Main Signaling Pathways Using STRING

The network of the 12 DEGs which were involved in the main pathways was explored by using
the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) v10 database to show the
complex associations between those genes. The analysis demonstrated that most of the DEGs chosed
were closely related to each other and showed a coordinated interactive network, but some proteins
were not associated with each other (Figure 5). We speculated that the crosstalk of the chosen DEGs
triggered inflammation in coordination following H. parasuis infection and the network interaction of
HMGB1 linked to the possible proteins.

Figure 5. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis of the
relationship between 12 choosed DEGs.

2.6. Real-Time Polymerase Chain Reaction (PCR) Verification of DEGs

Ten genes from the main signaling pathways were choosen for verification of the DEGs data
of the RNA-seq by using the real-time quantitative reverse transcription polymerase chain reaction
(qRT-PCR) method. The results showed that among the chosen 10 genes, 8 genes (CYCS, CXCL9,
STAT3, IGF-1, Myd88, CD14, CCR2 and CCL4) demonstrated similar expression levels compared with
the RNA-seq data (Figure 6). And another 2 genes (CTSK, TLR6) did not display obvious changes in
expression levels by using the real-time qRT-PCR method.



Int. J. Mol. Sci. 2018, 19, 1307 7 of 14

Figure 6. Relative quantification of DEGs for verification by RT-PCR. RT-PCR relative expression levels
of selected genes were chosen for the cells infected for 24 h.

3. Discussion

Although HMGB1 has recently been reported to be an important immune modulator during
bacterial or viral infection [37–39], there is so far no evidence that H. parasuis can induce HMGB1
release during the infection process of piglet peripheral blood monocytes triggered by H. parasuis.
In the present study, our work demonstrated that H. parasuis can promote the production of HMGB1
in piglet peripheral blood monocytes and, subsequently, may induce inflammatory responses.

Baicalin, a flavonoid, is an important traditional Chinese herb that is extracted from
Scutellaria baicalensis. Some previous reports have shown that baicalin is an effective treatment
forcerebral ischemia [40] and Chikungunya virus infection [41]. Reports also showed that baicalin
could attenuate LPS-induced inflammation and apoptosis of cow mammary epithelial cells [42]
and LPS-induced injury of intestinal epithelial cells and intercellular tight junctions [43]. However,
all of these findings were obtained in vitro. In the present study, we found that HMGB1 release
from peripheral blood monocytes was significantly inhibited by 50–100 µg/mL baicalin. Thus, we
speculated that one possible effective mechanism provided by baicalin might be related to suppressing
HMGB1 release, and then reducing the HMGB1-triggered inflammatory response, but this needs to
be investigated in detail. Based on these data, in future we will further explore the effect of baicalin
on inflammation responses induced by H. parasuis and HMGB1 release triggered by H. parasuis in a
piglet model.

The innate immune system is the first line of defense and plays an important role in
eliminating pathogenic microorganisms [44]. Monocytes are the major innate immune cells that
can constitutively express receptors that respond to pathogens [45]. Research has shown that immune
cells such as monocytes can release cytokines when induced by pathogenic microorganisms [46].
The over-expression of inflammatory cytokines and their prolonged accumulation can lead to a
systemic inflammation response or organ injury [47,48]. HMGB1, a member of the HMG family,
is passively secreted from damaged or injured cells following ischemia/reperfusion injury [49], thus it
may serve as a damage-associated molecular pattern molecule (DAMP) [50]. It has been documented
that pathogen stimulation can result in HMGB1 cytoplasmic translocation, followed by secretion
into the extracellular milieu [51]. The over-secretion of HMGB1 extracellularly could lead to severe
infections or tissue damage, thereby triggering inflammatory disease [52]. In this study, we used NAC
as a positive control. A previous study has shown that NAC could inhibit the translocation of HMGB1
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from amnion epithelial cells’ nuclei to cytoplasm [53]. Therefore, we speculated that HMGB1 may
be secreted from the nuclei to the extracellular milieu following H. parasuis infection, and thus late
release of HMGB1 from peripheral blood monocytes may contribute to tissue damage. How HMGB1
production follows H. parasuis stimulation and how the secretion of HMGB1 causes damage remain to
be determined.

Inflammation plays important roles in the pathogenesis of H. parasuis infection. LPS is widely
used to construct an inflammation model that can induce the lung and brain to trigger inflammation
with the pathological state [54,55]. When monocytes were activated, induced by LPS, it may play as
the inflammation central, hence release cytokines [56]. Thus, we chose LPS to induce an inflammation
model in piglets. Previous research showed that LPS could induce HMGB1 production in BEAS-2B
cells and trigger acute lung injury [57], and that it stimulated HMGB1 secretion in RAW264.7 cells [58].
Consistent with previous research, our results indicated that LPS also could trigger HMGB1 production
in the piglet.

In this study, the piglet peripheral blood monocytes were infected with H. parasuis for 12 h to
48 h. A long co-incubation may influence the cells’ viability or trigger citotoxicity. We also detected
the cell viability at each incubation time and we found that there is no significant citotoxicity induced
by H. parasuis (data not shown). In this study, the results showed that HMGB1 release by the piglet
peripheral blood monocytes induced by LPS at 24 h displayed no significant difference from the
control. However, HMGB1 production in piglet blood at 24 h was significantly higher than the
control. We speculated that there were other cells existing in the blood that can secrete HMGB1,
but which cells provide this function needs to be investigated. Previous reports have shown that
HMGB1 is involved in IFN-α production and TNF-related apoptosis-inducing ligand expression by
HIV-1-exposed plasmacytoid dendritic cells [59]. HMGB1 can stimulate the production of IL-1, IL-6,
and TNF-α in human monocytes [60] and also activate signaling pathways [61,62]. In the present
work, our results showed at the RNA level, according to RNA-Seq analysis, that cytokine production,
the chemokine signaling pathway, and the TNF signaling pathway were also activated in the peripheral
blood monocytes stimulated by H. parasuis for 24 h. In addition, HMGB1 expression was up-regulated
according to RNA-Seq, although the change fold was very low, which may be related to late cytokine
release. However, whether HMGB1 is involved in the promotion of cytokine expression and signaling
pathway activation in the piglet peripheral blood monocytes needs confirmation in further research.

Taken together, our study showed that H. parasuis can induce HMGB1 release and that baicalin
can inhibit HMGB1 secretion in piglet peripheral blood monocytes triggered by H. parasuis. These new
findings will help to advance our understanding of the molecular mechanisms of H. parasuis
pathogenesis as well as the anti-inflammatory effect of baicalin. This discovery of baicalin function
may provide a new strategy for preventing the inflammatory disorders induced by H. parasuis.

4. Materials and Methods

4.1. Bacterial Strain, Growth Conditions, and Drug

The H. parasuis SH0165 isolate used in this study is a highly virulent strain of serovar 5, and was
isolated from the lung of a commercial pig with fibrinous polyserositis, arthritis, hemorrhagic
pneumonia, and meningitis [5]. The SH0165 isolate was grown in tryptic soy broth (Difco Laboratories,
Detroit, MI, USA) supplemented with a final concentration of 10 µg/mL of NAD (Sigma, St Louis, MO,
USA) and 10% newborn calf serum (Gibco, Canberra, Australia) at 37 ◦C.

Baicalin was obtained from the National Institutes for Food and Drug Control (Beijing, China,
B110715-201318). When used, baicalin was dissolved in and diluted with RPMI-1640 medium.

4.2. Isolation and Culture of Piglet Peripheral Blood Monocytes

The experiments were designed in strict accordance with the recommendations in the China
Regulations for the Administration of Affairs Concerning Experimental Animals 1988 and the Hubei



Int. J. Mol. Sci. 2018, 19, 1307 9 of 14

Regulations for the Administration of Affairs Concerning Experimental Animals 2005. The protocol
was approved by the China Hubei Province Science and Technology Department [permit number
SYXK(ER) 2010-0029]. At the end of the study, all experimental piglets were euthanized.

Fifteen 30-day-old, naturally farrowed early-weaned piglets each weighing 6–8 kg
(Duroc× Landrace× large white), in which antibodies against H. parasuis were negative, were purchased
from Wuhan Jinying Livestock Co., Ltd. (Wuhan, China) and used for in vitro and in vivo experiments.

The piglet peripheral blood monocytes were isolated and cultured according to the method our
lab previously established [35]. Briefly, piglet heparinized blood from the precaval vein was layered
carefully on an equal volume of phosphate-buffered saline (PBS) (pH 7.4) in a conical centrifuge tube,
and then an equal volume of mixed blood was carefully layered on the surface of the lymphocyte
separation medium (Tian Jin Hao Yang Co,. LTD, Tianjin, China). The suspension was centrifuged at
400× g for 20 min at 4 ◦C. The cells of the lymphocyte layer were collected and washed three times
with PBS and centrifuged at 400× g for 20 min at 4 ◦C. Then the cells were resuspended in Roswell
Park Memorial Institute (RPMI) 1640 medium (Gibco, Carlsbad, CA, USA) and seeded in a six-well cell
culture plate (Costar, Washington, DC, USA). 3 mL of suspension were added to each well, and these
were then pre-incubated in a constant temperature incubator at 37 ◦C with 5% CO2 for 3 h in RPMI-1640
containing 10% fetal bovine serum (Gibco, Canberra, Australia). Cells were washed three times
with PBS and then washed with pre-warmed RPMI-1640 medium to discard the non-adherent cells.
Attached cells (monocytes) were detached using a cell scraper and suspended in RPMI-1640 medium.
Mononuclear cells were counted and their viability was determined by trypan blue exclusion.

4.3. Western Blot Analysis of the Release of HMGB1

Piglet peripheral blood monocytes (1× 106) were seeded into 24-well plates and were treated with
1 µg/mL LPS (Sigma, St. Louis, MO, USA), or the plate wells were infected with 1.0 × 106 CFU/mL
H. parasuis. The MOI was 1:1 according to our previous work [35]. After co-incubation for 24 h
and 48 h, the cell supernatants were collected and used to determine the release of HMGB1 using
western blot. The cell supernatants were isolated with 12% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and then electrophoretically transferred to a polyvinylidene difluoride
(PVDF) membrane. After blocking with 5% skim milk at room temperature for 3 h and washing five
times with TBST, the PVDF membrane was incubated with anti-rabbit HMGB1 polyclonal antibody
(Abnova, Walnut, CA, USA) or β-actin antibody (Cell Signaling Technology, Danvers, MA, USA) for
12 h at 4 ◦C. The membrane was washed five times with TBST and incubated with goat anti-rabbit
IgG (Cell Signaling Technology, Danvers, MA, USA) at room temperature for 3 h and visualized by
utilizing ECL solution (Thermo Pierce ECL, Waltham, MA, USA). The levels of HMGB1 expression and
β-actin were measured using a FluorChem FC2 AIC system (Alpha Innotech, San Leandro, CA, USA).

4.4. Total RNA Extraction and Real-Time Polymerase Chain Reaction (RT-PCR)

HMGB1 expression at the mRNA level was carried out with the RT-PCR method as previously
described with some modifications [63]. Briefly, 1× 107 piglet peripheral blood monocytes were seeded
into 24-well plates and treated with 1 µg/mL LPS or infected with 1 × 107 CFU/mL H. parasuis and
co-incubated for 12, 24, 36, or 48 h. Then, the cells were collected and total cellular RNA was extracted
using TRISOL reagent (Thermo Fisher Scientific, Waltham, MA, USA). Next, the purified RNA was
reverse-transcribed to cDNA by utilizing reverse transcriptase (TaKaRa, Beijing, China). The levels of
cDNA amplification were measured using a SYBER Green PCR Kit (ABI, Vernon, CA, USA). To explore
the effect of baicalin on the release of HMGB1 at the mRNA level, 1 × 107 cells were seeded into
24-well plates and pre-treated with baicalin at concentrations of 12.5, 25, 50, 100 µg/mL or NAC (Sigma,
St Louis, MO, USA) 1 mM/mL for 1 h. Then 1 × 107 CFU/mL H. parasuis were added to the wells and
co-cultured for 24 h. The total RNA was isolated and used for RT-PCR. The primers included β actin
(forward, 5′-TGCGGGACATCAAGGAGAAG-3′; reverse, 5′-AGTTGAAGGTGGTCTCGTGG-3′) and
HMGB1 (forward, 5′-CTATCCATTGGTGATGTTGC-3′; reverse, 5′-TCCTCCTCTTCCTTCTTTTT-3′).
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The level of transcription expression of the HMGB1 gene was measured according to the relative
quantification of the 2−∆∆Ct method.

4.5. RNA-Seq Analysis

To understand the interaction between piglet peripheral blood monocytes and H. parasuis, 1 × 107

piglet peripheral blood monocytes were infected with 1× 107 CFU/mL H. parasuis for 24 h. The cellular
RNA was extracted for RNA sequence analysis (RNA-Seq) at the Shanghai Biochip Corporation
(Shanghai, China). Key pathways and genes were identified by utilizing GO, KEGG and STRING.

4.6. Validation by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

The cell RNA was extracted and cDNA synthesis was carried out by PrimeScript™ II 1st
Strand cDNA Synthesis Kit (TaKaRa, Dalian, China). mRNA expression levels of 10 genes were
explored (Table 2). The relative gene expression was measured by using the threshold cycle method.
Then, the fold changes were calculated by using the 2−∆∆Ct formula.

Table 2. Primers for qRT-PCR.

Gene Nucleotide Sequence (5′–3′)

β-actin Forward TGCGGGACATCAAGGAGAAG
Reverse AGTTGAAGGTGGTCTCGTGG

CCR2 Forward ATGCCCAGTTTTCTACGGGG
Reverse CCGGGCACTTGCTTTAGAGA

CD14 Forward CACTGCCTAGTGCCAAGGAT
Reverse CCCACGTTCGCTACACTTCT

Myd88 Forward CATCCCTTGGATGTCAGGCA
Reverse AAACTGGATATCGCTGGGGC

TLR6 Forward TGTTGACCACAGGGAGGGTA
Reverse TGGATCCACATTGCATGGCT

CYCS Forward CCTCCATGGTCTCTTTGGGC
Reverse GGCGGTGGCCAACTTTTACT

CTSK Forward GCCATTGATGCAAGCCTGAC
Reverse ATAGCCTTTGTTGCCCCAGT

CXCL9 Forward AACAGCCCGTGTCAACATGA
Reverse GTGGAAAGGTGTGGAATGCG

STAT3 Forward CCCCGTGTCTAATAGGGGAG
Reverse ATCCAAGGGGCCAGAAACTG

IGF-1 Forward TGTACTGTGCACCCCTCAAG
Reverse AACTCGTGCAGAGCAAAGGAT

CCL4 Forward CTTCACATACACCGTGCGGA
Reverse AGACCTGCCTGCCCTTTTTG

4.7. Determining the Effect of Baicalin on the Release of HMGB1 Triggered by H. parasuis with Enzyme-Linked
Immunosorbent Assay (ELISA)

In brief, 1× 106 piglet peripheral blood monocytes were seeded into 24-well plates and pretreated
with baicalin at 12.5, 25, 50, 100 µg/mL or NAC (1 mM/mL) for 1 h. Then 1 × 106 CFU/mL H. parasuis
were added to the wells and co-infected for 36 and 48 h. The cell supernatants were collected and the
HMGB1 concentration was measured with the HMGB1 enzyme-linked immunosorbent assay (ELISA)
kit (Shanghai BlueGene Biotech CO., LTD, Shanghai, China) according to the manufacturer’s protocol.
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4.8. Detection of the Effect of LPS on the Secretion of HMGB1 in the Piglet Model

To evaluate the effect of LPS on the secretion of HMGB1 in the piglet, three piglets were injected
subcutaneously with 2 mL of 500 µg/mL LPS. Then, blood samples were collected at 3, 6, 9, 12, 24, 36,
48 and 72 h. The levels of HMGB1 in the sera were determined with the HMGB1 ELISA kit.

4.9. Statistical Analysis

The experimental data are expressed as the mean ± standard deviation (SD). The difference
between the two groups was analyzed using the student’s t-test. p values of <0.05 were considered
significant (* p < 0.05 and ** p < 0.01).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/5/
1307/s1.
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