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Novel ensemble intelligence 
methodologies for rockburst 
assessment in complex 
and variable environments
Diyuan Li1*, Zida Liu1, Danial Jahed Armaghani2, Peng Xiao1 & Jian Zhou1

Rockburst is a severe geological hazard that restricts deep mine operations and tunnel constructions. 
To overcome the shortcomings of widely used algorithms in rockburst prediction, this study 
investigates the ensemble trees, i.e., random forest (RF), extremely randomized tree (ET), adaptive 
boosting machine (AdaBoost), gradient boosting machine, extreme gradient boosting machine 
(XGBoost), light gradient boosting machine, and category gradient boosting machine, for rockburst 
estimation based on 314 real rockburst cases. Additionally, Bayesian optimization is utilized to 
optimize these ensemble trees. To improve performance, three combination strategies, voting, 
bagging, and stacking, are adopted to combine multiple models according to training accuracy. ET 
and XGBoost receive the best capabilities (85.71% testing accuracy) in single models, and except 
for AdaBoost, six ensemble trees have high accuracy and can effectively foretell strong rockburst to 
prevent large-scale underground disasters. The combination models generated by voting, bagging, 
and stacking perform better than single models, and the voting 2 model that combines XGBoost, ET, 
and RF with simple soft voting, is the most outstanding (88.89% testing accuracy). The performed 
sensitivity analysis confirms that the voting 2 model has better robustness than single models and has 
remarkable adaptation and superiority when input parameters vary or miss, and it has more power 
to deal with complex and variable engineering environments. Eventually, the rockburst cases in 
Sanshandao Gold Mine, China, were investigated, and these data verify the practicability of voting 2 in 
field rockburst prediction.

Rockburst is a geological calamity often confronted in deep mine operations or deep tunnel excavations, and 
it has the manners of rock breaking and the sudden release of energy from wall rock1. The occurrence of rock-
burst is generally relevant to lithology, geological structure, surrounding rock mass properties, terrain, and etc. 
Rockburst, which occurs in many countries2–5, is considered a severe danger to the security of employees and 
equipments in underground construction. Rockburst is a “cancer” in deep mines6, killing many South African 
gold mine employees7. With more and more constructions in underground excavations, efficient prediction and 
prevention of rockburst have become an increasingly crucial topic.

According to Russnes’s method8, the rockburst intensity can be classified into four levels (i.e., none, light, 
moderate and strong). The nature of rockburst is complex and nonlinear, and it is a big challenge to predict rock-
burst. Numerous technologies have been put forward to evaluate rockburst in the last few decades. These methods 
include empirical methods, numerical simulation, experimental methods, and intelligent algorithms3, 9, 10.

The empirical methods are often applied in the trial implementation phase of underground constructions, 
including single and multi-index indicators. The single indicators include stress index, energy index, brittleness 
index, depth index, and so on3. The multi-index indicators utilize mathematical methods or other methods to 
combine the significant factors that are able to control rockburst. The empirical methods are simple and easy 
to implement. However, they are poorly applicable and only effective in a specific area. Jing et al.11 introduced a 
lot of numerical simulation experiments on rockburst prediction. Wen et al.12 applied strain energy density to 
simulate and investigate the rockburst mechanism. Chen et al.13 utilized discontinuity deformation methodology 
to assess rockburst. Numerical simulation can reveal the failure process of rock14. Nevertheless, it is sensitive to 
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input parameters and hard to simulate the dynamic behavior of rockburst. Moreover, the constitutive model in the 
numerical simulation may not demonstrate the real propriety of the rock. Gong et al.15 researched the rockburst 
tendency of red sandstone by rock experiments. He et al.16 adopted indoor experimental methods to study and 
classify rockburst. Rock mechanics experiments can give some essential information, which is beneficial to study 
rock properties17. However, they are challenging to reproduce real engineering environment and are limited by 
monitoring and measurement techniques. The empirical method has a narrow scope of application18. Numeri-
cal simulation for rockburst prediction has high requirements on simulation methods, mechanical constitutive 
model, and rockburst mechanism10. The rock mechanics test for evaluating rockburst requires samples prepa-
ration and adequate types of equipment19, which is expensive and time consuming. In contrast, the intelligent 
algorithm is low cost, only focuses on input and output parameters, and has wider applicability4. The intelligent 
algorithm is more worthy for rockburst prediction efficiently and timely with the growing development of big 
data and artificial intelligence.

Since Feng et al.20 utilized neural networks to predict rockburst, many intelligent algorithms have been 
applied. Table 1 summarizes intelligent algorithms for rockburst prediction in recent years. Each intelligent algo-
rithm has its advantages for specific problems. However, any of these algorithms cannot be perfectly performed 
in all problems according to the ‘No Free Lunch theory’. There are inevitably some disadvantages in each intel-
ligent algorithm when applied in practical engineering. The discriminant analysis21 and logistic regression22 are 
simple and easy to interpret. However, they cannot be applied to complex problems and high-dimensional data. 
Decision trees23–25 can be used for data with missing values, but they tend to overfit. Support vector machine23, 26, 

27 has a solid theoretical basis, and it is not easy to overfit. However, it performs poorly in multiple classification 
problems28. The k-nearest neighbor is efficient and straightforward23, 29, but it is sensitive to irrelevant features. 
Bayes model23, 30 is simple and fast in the calculation. However, it requires that features are independent distri-
bution, which is difficult to satisfy in practice. Although neural networks23, 29, 31, 32 can deal with more complex 
problems, they have many hyperparameters to be turned33.

The single model has low robustness, cannot get the optimal solution for all problems, and its performance 
changes with the variation of engineering environment or input parameters. Accordingly, scholars have attempted 
to adopt ensemble models to combine multiple models to overcome the shortcomings of a single model. Nonethe-
less, there are only a few studies in the area of rockburst. Moreover, there is no detailed research on the selection 
and application of ensemble models in rockburst prediction. To fill the gaps, the present study considers seven 

Table 1.   Intelligent algorithms for predicting rockburst in recent years. LDA = linear discriminant analysis; 
H = depth; σθ = maximum tangential stress; σc = uniaxial compressive strength; σt = uniaxial tensile strength; 
Wet = the elastic strain index; QDA = quadratic discriminant analysis; PLDA = partial least-squares discriminant 
analysis; LR = logistic regression; DT = decision tree; KNN = k-nearest neighbor; ANN = artificial neural 
network; FA = firefly algorithm; ABC = artificial bee colony; SVM = support vector machine; BPNN = back 
propagation neural network; MLR = multiple linear regression; GA = genetical algorithm; XGB = extreme 
gradient boosting; DNN = deep neural network; RNN = recurrent neural network.

Algorithm/model Input parameters Data size

LDA23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

QDA23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

PLDA23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

LR22 H , σθ , σc, σt ,Wet 135

DT23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

C5.0 DT25 σθ /σc, σc/σt ,Wet 174

DT24 σθ /σc, σc/σt ,Wet 132

KNN23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

Naive Bayes23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

Bayesian network30 H , σθ , σc, σt ,Wet 135

ANN23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

FA-ANN31 σθ , σc, σt , σθ /σc, σc/σt ,Wet 196

ABC-ANN34 σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

SVM23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

SVM26 σθ , σc, σt , σθ /σc, σc/σt ,
σc−σt
σc+σt

,Wet 246

SVM27 σθ , σc, σt ,Wet 132

GBM23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

RF23 H , σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

RF35 σθ , σc, σt , σθ /σc, σc/σt ,Wet 246

Voting (BPNN,SVM,DT,KNN,LR,MLR, Naive Bayes)36 H , σθ , σc, σt ,Wet 188

Bagging37 σθ , σc, σt , σθ /σc, σc/σt ,Wet 102

Boosting37 σθ , σc, σt , σθ /σc, σc/σt ,Wet 102

GA-XGB38 σθ , σc, σt , σθ /σc, σc/σt ,Wet 275

Stacking(KNN,SVM,DNN,RNN)29 σθ , σc, σt , σθ /σc, σc/σt ,
σc−σt
σc+σt

,Wet 246
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models based on decision trees and three combination strategies for rockburst estimation in complex and vari-
able engineering conditions. The seven models include random forest (RF), extremely randomized tree (ET), 
adaptive boosting machine (AdaBoost), gradient boosting machine (GBM), extreme gradient boosting machine 
(XGBoost), light gradient boosting machine (LighGBM), and category gradient boosting machine (CatBoost), 
which all adopt decision trees (DTs) as the basic classifier due to the low bias and high variance of DTs39. Three 
combination strategies are voting, bagging and stacking. These seven models have good performance in machine 
learning (ML) tasks, but there are no detailed investigations of applying them to rockburst. Furthermore, apply-
ing combination strategies to combine multiple single models can make the rockburst models more robust and 
powerful. Apart from that, Bayesian optimization is implemented to optimize these models. It is significant to 
note that Bayesian as a highly efficient optimization model, has been widely used in hyperparameter optimiza-
tion of ML area40.

The rest of this study is organized as follows: “Methodology” section describes the techniques and the data 
from real cases for simulation. Section “Simulation” presents the model parameter optimization and combination, 
which exhibits the process of selection and integration of the base classifier in detail. In “Results and discussion” 
section, all models are evaluated to select an optimal model. Moreover, the selected model conducts the sensitivity 
analysis and is tested for engineering practicability.

Methodology
Ensemble trees.  Random forest and extremely randomized tree.  RF is the ML model composed of K de-
cision trees. The process to construct the RF is shown in Fig. 1. ET is similar to RF, and the main differences 
between them are as follows: first, RF uses bootstrap sampling to build a random sample subset, while ET utilizes 
all original samples, which can reduce the deviation. Secondly, the choice of the split point is different. The RF 
selects the optimal split point, while the ET randomly chooses the split point, which can reduce the variance. The 
choice of random split point adds more randomness to the model and speeds up the calculation speed.

(1)Gini(D) = 1−

|y|
∑

k=1

p2k

(2)Gini_index(D, a) =

V
∑

V=1

∣

∣DV
∣

∣

|D|
Gini(DV )

Figure 1.   The flowchart to build RF.
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In Eqs. 1 and 2, D represents the dataset, 
∣

∣y
∣

∣ is the class number, p is the proportion of each class to the total 
dataset, Gini(DV ) is the Gini value of the class V  , |D| represents the number of instances, 

∣

∣DV
∣

∣ represents the 
number of instances of the class V  , and a represents the feature that needs to be divided.

Boosting model.  Boosting model sequentially combines multiple poor learners to build a robust model. The 
steps to develop the boosting model are presented in Fig. 2. AdaBoost constructs many poor learners from the 
training data, then linearly synthesizes them into a strong model41. Compared with AdaBoost, GBM is a more 
robust model, which can optimize any differentiable loss function42. XGBoost43, LightGBM44, and CatBoost45 are 
the development and extension of GBM. The detailed comparison between these three models can be referred 
to previous investigations46.

Combination strategy.  This study uses three combination strategies: voting, stacking and bagging to com-
bine multiple models. Figure 4 displays the combination process. Voting is a commonly used method to combine 
the output of multiple classifiers. In this research, simple soft voting is adopted. Individual classifier hi outputs a l  
dimensionality vector (h1i (x), ..., h

l
i(x))

T when inputting sample x . The simple soft voting method calculates and 
outputs the average value of the output of each classifier.

Bagging uses bootstrap sampling to generate different base classifiers. Given a training dataset with m 
instances, a training subset of m instances can be obtained with the replacement sample. Some of the original 
instances are selected many times, and others are not selected. Repeating the process t times, t training subsets 
including m instances are obtained. Each training subset is used to develop a base classifier. Voting is adopted 
to aggregate t base classifiers in the classification task.

Stacking combines individual classifiers by training classifier, and the individual classifier is called first-level 
learner, and the connector is called second-level learner. Stacking first trains the first-level learners utilizing the 
initial database, then forms a new database to train the second-level learners using the outcomes of the first-level 
learners as input features and the corresponding initial markers as new markers.

Bayesian optimization.  Bayesian optimization (BO) is suitable for complex problems whose objective 
function cannot be expressed47. BO chooses the next estimation points according to previous outcomes. BO 

Figure 2.   The steps to construct the boosting model.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1844  | https://doi.org/10.1038/s41598-022-05594-0

www.nature.com/scientificreports/

consists of the surrogate model and acquisition function47. The goal of the surrogate model is to match the 
detected points into the objective function. The acquisition function decides to use different points by balancing 
exploration and exploitation. The Bayesian model can discover the most likely optimum area for the present and 
avoid missing better parameters in unknown areas.

Gaussian process regression is often chosen as the surrogate model in BO40. The acquisition functions include 
the probability of improvement48, expected improvement49, 50, and upper/lower confidence bound (UCB/LCB)51. 
To match the acquisition function to the surrogate model, GP-Hedge is introduced to select an appropriate 
acquisition function in each BO iteration51, 52.

Data.  A database including 314 real rockburst cases is established and used for modeling. Table 2 lists dif-
ferent sources of this database. The maximum tangential stress ( σθ ), the uniaxial compressive strength ( σc ), the 
tensile strength ( σt ), the stress ratio ( σθ/σc ), the brittleness ratio ( σc/σt ), and the elastic strain energy index 
( Wet ) are selected as the input variables in this study by referring to the previous research31, 34, 53. Pearson correla-
tion coefficients (Eq. 3) between the six variables are calculated. Table 3 shows correlation coefficients between 
variables. Figure 3 displays the statistics and distribution of each variable.

According to Fig. 4, the database is split into a training set (80%) and a test set (20%). The training set is 
employed to construct seven models based on trees. fivefold cross-validation is employed for model selection. BO 
is utilized to optimize the hyperparameters of models. The voting, bagging, and stacking strategies are applied to 
combine these optimized models to develop ensemble models in predicting/evaluating rockburst. The test set is 
implemented to assess the capability of models. Finally, the optimal model is utilized to conduct the sensitivity 
analysis and how it can be applied to engineering projects.

Simulation
Model metrics.  Accuracy was applied to estimate the global performance of the model. The F1 combined 
precision and recall and was utilized to assess the performance of each classification.

(3)r =

∑n
i=1 (Xi − X)(Yi − Y)

√

∑n
i=1 (Xi − X)2

√

∑n
i=1 (Yi − Y)2

(4)ACC =
1

m

∑m

i=1
I(yi = yi)

(5)Precision =
TP

TP + FP

Table 2.   The rockburst database source.

No Data size References

1 None(43), Light(78), Moderate(81), Strong(44) Zhou et al.23

2 None(3), Light(7), Moderate(7), Strong(3) Xue et al.54

3 Light(1), Moderate(11) Pu et al.26

4 None(3), Light(4), Moderate(8), Strong(1) Liu et al.55

5 Light(3), Moderate(3) Jia et al.56

6 None(1), Light(2), Strong(4) Du et al.57

7 Light(1), Moderate(5), Strong(1) Wu et al.58

Sum None(50), light(96), moderate(115), strong(53)

Table 3.   The correlation coefficient of each variable.

Variables σθ σc σt σθ /σc σc/σt Wet

σθ 1.00 0.09 0.34 0.90 − 0.26 0.46

σc 0.09 1.00 0.47 − 0.25 0.02 0.24

σt 0.34 0.47 1.00 0.14 − 0.63 0.35

σθ /σc 0.90 − 0.25 0.14 1.00 − 0.26 0.32

σc/σt − 0.26 0.02 − 0.63 − 0.26 1.00 − 0.13

Wet 0.46 0.24 0.35 0.32 − 0.13 1.00
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(6)Recall =
TP

TP + FN

(7)F1 =
2× precision× recall

precision+ recall

Figure 3.   The histograms and violin plots of six variables.
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In Eq. 4, m is the number of samples, yi  represents the predicted labels, yi represents the actual labels, and 
I(·) is one if the conditions in brackets are true and zero, otherwise. In Eqs. 5 and 6, TP is the true positive, FP 
is the false positive, and FN is the false negative.

Model hyperparameters optimization.  The hyperparameters range.  The training set was adopted to 
train the seven ensemble models based on DTs. Z-score was used to process the input variables (Eq. 8). The 
open-source Python library, Scikit-learn59, was used to construct RF, ET, AdaBoost, and GBM models. The open-
source Python libraries, XGBoost43, LightGBM44, and CatBoost45, were utilized to build the XGBoost, LightGBM, 
and CatBoost models, respectively. Table 4 presents the hyperparameters optimization range in seven models.

(8)x
′

=
x − x

σ

Figure 4.   The flowchart of the modeling procedure in this study.
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In Eq. 8, x is the mean value of the data and σ is the standard deviation of the data.

The objective function.  Before hyperparameters optimization, the objective function should be defined. In ML, 
the cross-entropy loss function is a method to measure classifier performance (Eq. 9). It is generally believed 
that the classifier performs better when the cross-entropy loss function obtains a smaller value. In this paper, we 
adopted the cross-entropy loss function in fivefold cross-validation as the objective function. Figure 5 shows the 
steps to calculate the objective function.

In Eq. 9, m is the number of instances and p mod el[yi ∈ Cyi ] is the prediction probability of the model in the 
actual label.

The process of BO.  In this research, the Scikit-Optimize 61 was used to perform the BO. The surrogate model 
in BO adopted the Gaussian process (GP) regression, the acquisition function utilized the GP-Hedge, and the 
noise was assumed to be Gaussian distribution. The kernel function was an important part of the GP regres-
sion. Table 5 tabulates the kernel function parameters of GP regression. Figure 6 illustrates the process that BO 
optimized the hyperparameters. In this research, the iteration N was set to 50. BO can minimize the objective 
function within the parameter range so that the performance of the model can reach optimum. In addition, 
Fig. 7 presents the objective function convergence of seven models in 50 iterations. It reflects the variation of the 
objective function with the iteration process. Different models had different values of the objective function in 
the initial state, which was related to the random selection of the initial point in BO. With the iteration progress, 
BO was constantly balancing the process of exploration and utilization, and the value of the objective function 
was shrinking. After 50 iterations, BO can find the minimum value of the objective function and return the opti-

(9)loss = −
1

m

∑m

i=1
log p mod el[yi ∈ Cyi ]

Table 4.   The hyperparameters range.

Model Hyperparameters Range of value References

RF
The number of DTs (10,100)

Liang et al.60

The DTs maximum depth (1,10)

ET
The number of DTs (10,100)

Liang et al.60 and Pedregosa et al.59

The DTs maximum depth (1,10)

AdaBoost
The maximum number of DTs (10,100)

Liang et al.60

Learning rate (0.01,0.2)

GBM

The number of boosting iterations (10,100)

Liang et al.60 and Pedregosa et al.59Learning rate (0.01,0.2)

Maximum depth (1,10)

XGBoost
Number of boosting rounds (10,100)

Liang et al.60

Learning rate (0.01,0.2)

LightGBM
Number of boosted DTs (10,100)

Liang et al.60

Learning rate (0.01,0.2)

CatBoost
Max count of DTs (100,500)

Dorogush et al.45

Learning rate (0.01,0.2)

Figure 5.   The calculation method of the objective function.
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mum value of hyperparameters. Table 6 shows the optimized parameter value and the training accuracy in seven 
models. The training accuracies in the seven models varied greatly. XGBoost had the highest training accuracy, 
and AdaBoost had the worst training performance.

Nu controlling the smoothness of the learned function.

Model combination.  Voting combination.  According to the accuracy results in the training set (Fig. 8), 
multiple models were combined by the simple soft voting method. From XGBoost to AdaBoost, the model was 
added to the voting combination model in order of accuracy in the training set. Table 7 presents the final six 
voting combination models. It can be seen that with the addition of some models with lower training accuracy, 
the training accuracy of the voting combination model was gradually decreasing.

Bagging combination.  The seven models were used as base classifiers in bagging ensemble models. Bagging 
fitted each base classifier on a random subset of the initial training set and then combined their prediction out-
comes by voting to build an eventual ensemble model. The number of base estimators in the bagging ensemble 
model was set to 10. Table 8 displays the final seven bagging combination models. Except for the AdaBoost 
model, the training accuracies of other models that adopted the bagging combination were reduced.

Stacking combination.  In stacking combination, we adopted the seven models as the first-level learners, and 
the second-level learners adopted LR. Like “Voting combination” section, voting combinations, multiple models 

Table 5.   The kernel function parameters of GP regression in BO.

Kernel Value

Matern kernel
The length scale of the kernel [1, 1, 1]

Nu 2.5

WhiteKernel Noise level 1

Figure 6.   The Bayesian optimization flow chart.
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Figure 7.   The iterative convergence of the objective function.

Table 6.   The optimized parameter value.

Model Hyperparameters Value Training accuracy

RF
The number of DTs 100

93.23%
The DTs maximum depth 7

ET
The number of DTs 88

98.80%
The DTs maximum depth 10

AdaBoost
The maximum number of DTs 10

51.39%
Learning rate 0.195

GBM

The number of boosting iterations 61

87.25%Learning rate 0.0795

Maximum depth 2

XGBoost
Number of boosting rounds 24

99.20%
Learning rate 0.1258

LightGBM
Number of boosted DTs 10

85.25%
Learning rate 0.2

CatBoost
Max count of DTs 100

92.82%
Learning rate 0.111
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Figure 8.   The training accuracy variation of seven models.

Table 7.   The voting ensemble model.

Model Base classifier Training accuracy

Voting 1 XGBoost and ET 99.60%

Voting 2 XGBoost, ET, and RF 98.80%

Voting 3 XGBoost, ET, RF and CatBoost 97.21%

Voting 4 XGBoost, ET, RF, CatBoost and GBM 98.62%

Voting 5 XGBoost, ET, RF, CatBoost, GBM and LightGBM 95.22%

Voting 6 XGBoost, ET, RF, CatBoost, GBM, LightGBM and AdaBoost 95.22%

Table 8.   The seven bagging ensemble models.

Model Base classifier The number of base classifier Training accuracy

Bagging 1 XGBooost 10 94.82%

Bagging 2 ET 10 96.01%

Bagging 3 RF 10 92.03%

Bagging 4 CatBoost 10 90.83%

Bagging 5 GBM 10 87.25%

Bagging 6 LightGBM 10 83.67%

Bagging 7 AdaBoost 10 53.38%

Table 9.   The stacking ensemble models.

Model First-level learners Second-level learner Training accuracy

Stacking 1 XGBoost LR 98.00%

Stacking 2 XGBoost and ET LR 98.40%

Stacking 3 XGBoost, ET, and RF LR 96.81%

Stacking 4 XGBoost, ET, RF and CatBoost LR 94.02%

Stacking 5 XGBoost, ET, RF, CatBoost and GBM LR 94.42%

Stacking 6 XGBoost, ET, RF, CatBoost, GBM and LightGBM LR 94.02%

Stacking 7 XGBoost, ET, RF, CatBoost, GBM, LightGBM and AdaBoost LR 94.02%
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were combined in turn among first-level learners based on the performance in the training set. Table 9 displays 
the final seven stacking combination models.

Results and discussion
Model performance evaluation.  The individual model performance evaluation and comparison.  The 
test set is applied for evaluating the seven base models. Table  10 presents the F1 and accuracy of the test 
set in seven base models. In the individual model, ET and XGBoost perform best, and AdaBoost performs 
worst. When considering the accuracy in the test set, it can be concluded that the capacity ranking is ET, XG-
Boost > RF > GBM > CatBoost > LightGBM > AdaBoost. Besides, apart from AdaBoost, these single models have 
high F1 in strong rockburst, and these suggest that ensemble trees have superior capability to forecast massive 
rockburst hazards.

Six other widely used ML models, LR, SVM, KNN, ANN, DT, and Naive Bayes, are also developed based 
on the training set and evaluated by the test set. Their hyperparameters adopt the default value in Scikit-learn. 
Figure 9 shows the performance comparison of ensemble trees and other ML models. DT model suffers from 
serious overfitting, and the ensemble trees have better generalization than DT. Except for AdaBoost, the ensem-
ble trees have higher testing accuracy than other ML models. These indicate that the proposed ensemble trees 
solution can get more accurate rockburst prediction results.

Table 10.   The F1 and accuracy in seven base models.

Model Metrics None Light Moderate Strong

RF
F1 0.75

0.82 0.88 0.86
ACC​ 84.12%

ET
F1 0.75

0.85 0.90 0.86
ACC​ 85.71%

AdaBoost
F1 0.31

0.48 0.50 0
ACC​ 42.85%

GBM
F1 0.78

0.72 0.83 0.95
ACC​ 80.95%

XGBoost
F1 0.78

0.83 0.89 0.91
ACC​ 85.71%

LightGBM
F1 0.75

0.70 0.75 0.90
ACC​ 76.20%

CatBoost
F1 0.82

0.75 0.79 0.86
ACC​ 79.37%

Figure 9.   The performance comparison of ensemble trees and other ML models.
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Investigate the strength of voting combination models.  Due to the difficulty of selecting base learners, not all 
voting combination models improve performance compared to their base classifiers. Therefore, the test set is 
employed to assess the capability of the voting combination models. Table 11 shows the F1 and accuracy of the 
test set in six voting combination models. It is found that the voting 2 has an outstanding F1 in a single type of 
rockburst prediction and the highest accuracy. Besides, six voting combination models have the same perfor-
mance in predicting strong rockburst. Figure 10 presents the accuracy improvement of the voting combination 
model in the test set compared to the individual optimal classifier. Voting 1, voting 2, and voting 3 perform better 
than the individual model on the testing set. The performances of the three models increase by 1.59%, 3.18%, 
and 1.59%, respectively. With the combination of poor performance base learners, voting 4, voting 5, and voting 
6 perform poorly than the single optimal model. Figure 11 compares the F1 of the voting 2 model and its base 

Table 11.   The F1 and accuracy in voting combination models.

Model Metrics None Light Moderate Strong

Voting 1
F1 0.82

0.86 0.89 0.91
ACC​ 87.30%

Voting 2
F1 0.82

0.88 0.91 0.91
ACC​ 88.89%

Voting 3
F1 0.82

0.86 0.89 0.91
ACC​ 87.30%

Voting 4
F1 0.75

0.78 0.85 0.91
ACC​ 82.54%

Voting 5
F1 0.75

0.75 0.83 0.91
ACC​ 80.95%

Voting 6
F1 0.75

0.75 0.83 0.91
ACC​ 80.95%

Figure 10.   The accuracy improvement of voting combination models in the test set.

Figure 11.   The comparison of F1 in voting 2 model and its base classifiers.
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classifiers. It can be seen that voting 2 has better performance than XGBoost, ET, and RF models in the single 
rockburst category. The results suggest that the voting 2 combining high accuracy and diversity is the best in 
voting combination models.

The effect of bagging integration on single model performance.  Bagging combines independent base classifi-
ers, which reduces the error. The bagging combination models are evaluated by the test set to determine the 
enhancement of models (i.e., RF, ET, etc.) performance before and after bagging integration. Table 12 presents 
the F1 and accuracy of the test set in the seven bagging combination models. Figure 12 displays the accuracy 
improvement of the bagging combination model in the test set compared to the individual classifier. After the 
bagging combination, except for the ET model, the accuracies in the test set of other models increase, and the 
accuracy of the AdaBoost increases by 23.82%. XGBoost, GBM, and LightGBM achieve the best performance 
after adopting the bagging combination. Figure 13 compares the F1 of XGBoost, GBM, and LightGBM and their 
bagging combination models. The bagging 1 that adopts XGBoost as the base learner has great improvement for 
predicting the none intensity of rockburst. Bagging 4 and bagging 6 perform better than their base classifiers in 
the prediction of a single rockburst category.

Explore the power of the stacking combination models.  Stacking is a learning combination method, and it is 
of importance to match the appropriate first-level learners (i.e., RF, ET, etc.) to second-level learner (i.e., LR). 

Table 12.   The F1 and accuracy in seven bagging combination models.

Model Metrics None Light Moderate Strong

Bagging 1
F1 0.89

0.84 0.88 0.90
ACC​ 87.30%

Bagging 2
F1 0.82

0.84 0.86 0.90
ACC​ 85.71%

Bagging 3
F1 0.75

0.79 0.90 0.95
ACC​ 85.71%

Bagging 4
F1 0.82

0.82 0.89 0.96
ACC​ 87.30%

Bagging 5
F1 0.78

0.77 0.87 0.95
ACC​ 84.13%

Bagging 6
F1 0.78

0.78 0.92 1.00
ACC​ 87.30%

Bagging 7
F1 0.75

0.50 0.71 0.71
ACC​ 66.67%

Figure 12.   The accuracy improvement of bagging combination models in the test set.
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The performance of stacking combination models in the test set can reflect whether the model combination is 
appropriate. Table 13 shows the F1 and accuracy of the test set in seven stacking combination models. Stacking 5 
is the optimal model in terms of accuracy and F1 . Figure 14 illustrates the accuracy improvement of the stacking 
combination models in the test set. Compared with the previous two combination strategies, the rockburst pre-
diction performance of the stacking combination with the individual classifier is not ideal, and only the stacking 
5 performs better than the individual optimal classifier in the seven stacking combination models. Figure 15 
compares the F1 of stacking 5 and its base classifiers. Stacking 5 has an improvement in predicting the rockburst 
of light intensity compared to its base classifiers. Contrasted to GBM, the performance of stacking 5 in the strong 
rockburst prediction is weakened. We assume that the reason for the poor performance of the stacking models 
might be that the LR does not validly match models based on DTs.

Figure 13.   The comparison of F1 in bagging 1, bagging 4, and bagging 6 and their base classifiers.

Table 13.   The F1 and accuracy in stacking combination models.

Model Metrics None Light Moderate Strong

Stacking 1
F1 0.82

0.86 0.85 0.80
ACC​ 84.13%

Stacking 2
F1 0.75

0.83 0.84 0.74
ACC​ 80.95%

Stacking 3
F1 0.75

0.83 0.87 0.86
ACC​ 84.13%

Stacking 4
F1 0.75

0.83 0.87 0.86
ACC​ 84.13%

Stacking 5
F1 0.82

0.88 0.89 0.86
ACC​ 87.30%

Stacking 6
F1 0.82

0.83 0.83 0.80
ACC​ 82.54%

Stacking 7
F1 0.82

0.83 0.83 0.80
ACC​ 82.54%
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Summary
For this part, seven ensemble trees are evaluated and compared with other ML models. Except for AdaBoost, 
the proposed ensemble trees have superior rockburst estimation results than other ML models. The XGBoost 
and ET perform best in the single models, and the accuracies in the test set are 85.7%. In the voting combination 
models, the voting 2 consisting of XGBoost, ET, and RF, is the best, and the accuracy in the test set is obtained 
88.89%. The bagging combination models which adopt XGBoost, CatBoost, and LightGBM as base classifiers are 
optimal and their accuracies in the test set are obtained as 87.30%. In stacking combination models, the stacking 
5, which utilizes XGBoost, ET, RF, CatBoost, and GBM as first-level learners and LR as the second-level learner, 
has the most outstanding performance, and the accuracy in the test set is achieved as 87.30%. It is found that 
voting 2 is the best model for rockburst prediction in all proposed models.

Analysis of the adaptation and superiority of applying combination model.  In the previous sec-
tion, we find that voting 2 is the most excellent combination model, and XGBoost, ET, and RF are the best three 
single models. In this part, sensitivity analysis is conducted to determine the adaptation and superiority of apply-
ing the voting 2 model for rockburst cases. The permutation feature importance algorithms59 are introduced to 
discover the crucial input parameters affecting rockburst. The relative importance of input parameters in voting 
2 and its base classifiers are calculated, as shown in Fig. 16a. Although the variables with less importance are 
different in the four models, the pivotal variables are consistent. The relative importance scores of input variables 
in the four models are averaged. Figure 16b displays the mean importance score of the six input variables. The 
importance ranking of parameters influencing the rockburst is Wet > σθ > σθ/σc > σc/σt > σc > σt . The Wet is the 
most critical factor that affected the rockburst. Energy-absorbing bolts and pressure relief blasting can be imple-
mented to absorb the strain energy in deep excavation engineering to prevent rockburst62.

To inspect the adaptation and superiority of voting 2, the number of input parameters are varied, and the 
performances in voting 2 and three base classifiers are recorded and compared. According to the importance of 
variables influencing rockburst, some variables are reduced based on the original training and test sets to gener-
ate five datasets. Table 14 lists the variations of input parameters and generated five datasets. The five datasets 
are used to train and evaluate voting 2, XGBoost, RF, and ET. Table 15 tabulates the training and test results 
of four models in six datasets with different input parameters. According to Fig. 17, with the change of input 
parameters, the performance of the voting 2 in the training set is close or better to the single optimal model. 
Depending on Fig. 18, it can be seen that the single models have great differences in capacities for predicting 
rockburst with the variation of input parameters. For instance, XGBoost performs best for rockburst evaluation 

Figure 14.   The accuracy improvement of stacking combination models in the test set.

Figure 15.   The comparison of F1 in stacking 5 and its base classifiers.
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in 6 input parameters, but in the absence of σc , the estimation results of XGBoost can be worse. On the contrary, 
although RF has optimal performance in only 3 and 2 input parameters, it performs worse than XGBoost with 
the increase of input parameters. As for ET, when only Wet is available for evaluating rockburst, it is not a good 
model. In practical engineering, some input parameters are difficult to obtain or missing, and adopting the 
single model for rockburst prediction might lead to disappointing outcomes. By contrast, the voting 2 model 
always has the optimal capability in the test set with different input parameters and can deal with the variation 
or missing of input data.

A ranking system63 is introduced to evaluate the performance of four models in different training and test sets 
comprehensively, as shown in Table 15. The training and testing accuracies of four models in the same dataset are 
ranked. The higher the accuracy, the higher the ranking score. The total rank in a model is obtained by adding 
the ranks considering the whole six datasets. The final rank is the sum of total ranks in training and test sets. 

Figure 16.   The relative importance of input parameters.

Table 14.   The variation of input parameters.

Datasets The number of input variables The input variables

Original dataset 6 Wet , σθ , σθ /σc , σc/σt , σc , and σt
Dataset 1 5 Wet , σθ , σθ /σc , σc/σt , and σc
Dataset 2 4 Wet , σθ , σθ /σc , and σc/σt
Dataset 3 3 Wet , σθ , and σθ /σc
Dataset 4 2 Wet and σθ
Dataset 5 1 Wet

Table 15.   The rank system for six datasets with different input parameters.

Model Type

Original dataset Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Total Rank Final RankACC​ Rank ACC​ Rank ACC​ Rank ACC​ Rank ACC​ Rank ACC​ Rank

Voting 2
Training 98.80% 2 98.01% 3 97.21% 2 95.22% 3 91.63% 4 83.27% 4 18 38

Testing 88.89% 4 85.71% 3 84.13% 3 79.37% 3 77.78% 3 60.32% 4 20

XGBoost
Training 99.20% 4 98.80% 4 98.01% 3 97.61% 4 88.84% 2 71.71% 1 18 28

Testing 85.71% 2 80.95% 1 82.54% 2 74.60% 1 71.43% 1 58.49% 3 10

RF
Training 93.23% 1 92.83% 1 90.04% 1 88.05% 1 82.87% 1 76.89% 2 7 19

Testing 84.13% 1 84.13% 2 77.30% 1 79.37% 3 77.78% 3 55.56% 2 12

ET
Training 98.80% 2 96.02% 2 98.41% 4 90.44% 2 91.03% 3 80.48% 3 16 29

Testing 85.71% 2 85.71% 3 84.13% 3 74.60% 2 73.02% 2 52.38% 1 13
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The voting 2 has the highest final rank, indicating that the combination model has the most remarkable capacity 
in training and testing phases with different input parameters. The results suggest that the voting 2 has better 
robustness than single models and can copy with polytropic engineering environments.

Engineering application.  The Sanshandao Gold Mine is located in Shandong Province, China, as shown 
in Fig. 19. To meet the production needs, the production of the Sanshandao Gold Mine is going deeper strata. 

Figure 17.   The accuracy in training set when adopting different input parameters.

Figure 18.   The accuracy in the test set when adopting different input parameters.
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Under the deep and high-stress environment, rockburst is a geological hazard threatening mine production. 
Figure 20 shows some rockburst sites in Sanshandao Gold Mine. To carry out the rockburst assessment, eight 
groups of rock specimens from eight locations in the Sanshandao Gold Mine were carried out in rock mechanics 
experiments. According to the test requirements, the rock samples were processed into two specifications of Φ 
50 × 100 mm and Φ 50 × 25 mm, as shown in Fig. 21. The Brazilian splitting tensile tests were carried out by the 
INSTRON 1342 rock mechanics test system with the rock samples of Φ 50 × 25 mm. The uniaxial compression 
tests and the loading and unloading tests utilized the INSTRON 1346 rock mechanics test system with the rock 
samples of Φ 50 × 100 mm. Figure 22 illustrates these three rock mechanics experiments.

σc , σt , and Wet were obtained by rock mechanics experiments, and σθ was calculated according to the stress 
of the surrounding rock. Through field observation and evaluation, the rockburst grade was obtained. Table 16 
tabulates the rock mechanical parameters and rockburst grade in eight different regions.

To verify the practicability of the combination model, the voting 2 is applied to predict rockburst in San-
shandao Gold Mine. Meanwhile, four empirical criteria methods are used for rockburst prediction, as shown 
in Table 17. Additionally, Table 18 presents the rockburst prediction results. The voting 2 model has the best 

Shandong, China

Yantai
Sanshandao Gold Mine

Generated by PowerPoint

Figure 19.   The location of Sanshandao Gold Mine.

Structural surface spalling Spalling in roof Spalling

Figure 20.   The rockburst site in Sanshandao Gold Mine62.

Φ 50 × 100 mm

Φ 50 × 25 mm

Figure 21.   The processed rock samples.
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Figure 22.   The rock mechanics tests in the laboratory: (a) Split tension test, (b) Uniaxial compression 
experiment, (c) Rock loading and unloading test.

Table 16.   Rock mechanics parameters and rockburst grade in Sanshandao Gold Mine.

No Rock type σθ σc σt σθ /σc σc/σt Wet Grade

1 Gabbro 28.4 59.65 8.67 0.48 6.88 2.12 Light

2 Gabbro 36.58 90.47 14.88 0.40 6.08 2.11 Light

3 Granite 55.52 115.65 12.15 0.48 9.52 1.9 Light

4 Gabbro 71.15 131.477 14.91 0.54 8.82 5.46 Moderate

5 Granite 86.93 165.23 13.44 0.53 12.29 9.1 Moderate

6 Granite 113.56 115.65 9.46 0.98 12.23 3.99 Strong

7 Granite 36.46 110.01 12.94 0.33 8.50 4.53 Moderate

8 Granite 97.06 97.51 11.93 1.00 8.17 4.93 Strong

Table 17.   Empirical method index.

Empirical method

Classification criteria

Index None Light Moderate Strong

Russenes criterion8 σθ /σc  ≤ 0.2 0.2–0.3 0.3–0.55  > 0.55

σc
64 σc  < 80 80–120 120–180  > 180

Rock brittleness coefficient65 σc/σt  > 40 40–26.7 26.7–14.5  < 14.5

Strain energy storage index66 Wet  < 2.0 2.0–3.5 3.5–5.0  > 5.0

Table 18.   The rockburst prediction results in Sanshandao Gold Mine. N = none rockburst, L = light rockburst, 
M = moderate rockburst, S = strong rockburst.

No Russenes criterion σc Rock brittleness coefficient Strain energy storage index Voting 2 Actual grade

1 M N S L L L

2 M L S L L L

3 M L S N L L

4 M M S S M M

5 M M S S M M

6 S L S M S S

7 M L S M M M

8 S L S M S S

Accuracy 62.5% 50% 25% 37.5% 100%
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performance with 100% accuracy compared to the other methods, which suggests the combination model has 
superior engineering practicability.

Conclusion

1.	 This study comprehensively introduced and evaluated the application of the seven ensemble trees in rockburst 
prediction. The performance ranking of seven models is XGBoost and ET > RF > GBM > CatBoost > Light-
GBM > AdaBoost. Except for AdaBoost, in the tree-based models, the testing accuracy ranges (76.2%, 
85.71%) and F1 of strong rockburst ranges (0.86, 0.91). The ensemble trees have superior capacities than 
other ML models in general. Besides, the ensemble tree models are beneficial to forecast the occurrence of 
strong rockburst for protecting the safety of workers and facilities in underground engineering. Not only 
that, these tree-based models have fewer parameters to tune, and they are easy to apply to the field.

2.	 To improve robustness and capability, three combination strategies, including voting, bagging, and stacking, 
were used to combine multiple models. The testing accuracy of voting combination models is range (80.95%, 
88.89%), testing accuracy of bagging combination models is range (66.67%, 87.3%), and testing accuracy of 
stacking combination models is range (80.95%, 87.3%). The combination models have better capacity than 
single models, and they are suitable for huge and expensive projects that need to forecast rockburst precisely. 
It is worth noting that the voting 2 model, which adopts simple soft voting to combine XGBoost, RF, and ET, 
has an accuracy of 88.89% and is the most excellent in all models.

3.	 Sensitivity analysis is applied to analyze the adaptation and strength of the voting 2 model compared to single 
models. The single model has different performances with different input parameters and is susceptible to 
the variation of parameters. In contrast, the combination model (i.e., voting 2) has better robustness and 
can receive the optimal capability when the input parameters vary. The results suggest that the combination 
model has better applicability for rockburst evaluation on-site when some parameters miss or are difficult 
to obtain.

4.	 The real rockburst cases from Sanshandao Gold Mine, China, are measured and recorded. These datasets 
validate the practicability (100% accuracy) and advantage of the voting 2 model compared to empirical 
methods. Furthermore, the validation data can be employed to expand the rockburst database for building 
more strong models in the future.

5	 The limitations of this study are that the performance of the stacking ensemble models could not achieve 
the desired effect. The second-level learner only considers the LR model in this paper, which is narrow, and 
it is necessary to explore appropriate second-level learners to match tree models in the future. It consumes 
more time and computing power to train the combination models than the single models, and fortunately, 
the limitation can be solved with the development of computation techniques.
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