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Abstract

Evolving systems, be it an antibody repertoire in the face of mutating pathogens or a micro-

bial population exposed to varied antibiotics, constantly search for adaptive solutions in

time-varying fitness landscapes. Generalists refer to genotypes that remain fit across

diverse selective pressures; while multi-drug resistant microbes are undesired yet prevalent,

broadly-neutralizing antibodies are much wanted but rare. However, little is known about

under what conditions such generalists with a high capacity to adapt can be efficiently dis-

covered by evolution. In addition, can epistasis—the source of landscape ruggedness and

path constraints—play a different role, if the environment varies in a non-random way? We

present a generative model to estimate the propensity of evolving generalists in rugged

landscapes that are tunably related and alternating relatively slowly. We find that environ-

mental cycling can substantially facilitate the search for fit generalists by dynamically enlarg-

ing their effective basins of attraction. Importantly, these high performers are most likely to

emerge at intermediate levels of ruggedness and environmental relatedness. Our approach

allows one to estimate correlations across environments from the topography of experimen-

tal fitness landscapes. Our work provides a conceptual framework to study evolution in time-

correlated complex environments, and offers statistical understanding that suggests general

strategies for eliciting broadly neutralizing antibodies or preventing microbes from evolving

multi-drug resistance.

Author summary

Generalists are robust performers under varied environmental conditions, even though

they are less fit than specialists in any particular environment. For better (e.g. induction of

broadly neutralizing antibody response) or worse (e.g. emergence of multi-drug resistance

in microbes), it is important to be able to evolve generalists efficiently. Yet, whether and

when environmental changes select generalists over specialists remain largely unknown.

Here we develop a dynamic landscape model to study the evolutionary discovery of gener-

alists in time-varying correlated environments. We demonstrate that cycling rugged fit-

ness landscapes can enhance the propensity of evolving fit generalists, via dynamic

augmentation of their attractors. We find that high performers are most reliably evolved
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under intermediate environmental correlations, reflecting a tension between diversity and

accessibility. Our approach offers design principles for choosing correlated environments

in dynamic protocols to speed or slow generalist evolution in diverse contexts.

Introduction

Temporally varying environments profoundly influence various properties of evolving sys-

tems, including their structure [1–4], robustness [5–8], evolvability [4, 9–11], as well as evolu-

tionary speed [12] and reversibility [13]. Biological populations respond to environmental

variations to minimize potential adverse effect on their survival and reproductive growth.

Adaptive solutions employed fall into two broad categories: generalists that perform reason-

ably well across environments, and a diverse mixture of specialists each excelling in a particular

environment. Which solution confers the greatest selective advantage in the long run depends

on the nature and statistics of environmental variations [14, 15].

Theoretical studies have examined the adaptive utility of survival strategies at different

timescales of environmental fluctuations [16–21]. While stochastic switching between distinct

specialist phenotypes appears to be favored when environments change sufficiently slowly

[16], adopting a single generalist phenotype is shown to be advantageous for rapid fluctuations

(e.g. faster than cell division) [22, 23]. Notably, these studies often assume the environments to

be unrelated, randomly fluctuating and having few phenotypic dimensions. However, natural

environments are often partially related over the course of the system’s adaptation. Further-

more, the high-dimensional evolutionary landscapes, a nonlinear mapping from genotype to

function, ultimately guide the adaptive search in the sequence space. Deep mutational scans

[24] have mapped out modest-size functional landscapes in fine details for a variety of evolving

systems including protein binding affinity [25, 26], enzymatic activity of RNA [27, 28], as well

as viral growth [29] and infectivity [30], highlighting the significant role of epistasis—interac-

tion between mutations—in sculpting landscape ruggedness and shaping viable paths of adap-

tation. Yet, how these intra-landscape structures interplay with inter-landscape correlations to

constrain or open pathways toward generalists is not understood.

Generalists can reuse partial solutions in new contexts and hence rapidly adapt to previ-

ously unseen environmental conditions [31–33]. In other words, such evolvable solutions are

capable of extracting common features from correlated environments. From a landscape per-

spective, generalist genotypes can be recognized as local fitness optima shared by distinct land-

scapes representing varied environments. Remarkable examples of generalists in adaptive

evolution complement each other in an inspiring way: It is desirable for the immune system

to evolve broadly neutralizing antibodies [34] that target relatively conserved features of fast

evolving pathogens such as HIV and influenza, which can evade recognition by specific anti-

bodies while remaining fit; an unwanted circumstance is that of the emergence of multi-drug

resistant bacteria [35] and viruses [36]. Attempts to elicit broad antibody responses and to

prevent multi-drug resistance have thus far met with mixed success [37–41], which calls for

a better and unified understanding of how evolution discovers generalists in correlated and

changing fitness landscapes (or seascapes [18]).

Here we present a general theoretical framework to address the propensity of evolving gen-

eralists in high-dimensional environments that are tunably related and cycling relatively slowly

(Fig 1). This is motivated by evolution of the adaptive immune system against natural patho-

gens or man-made antigenic stimuli (e.g. vaccines) that change slowly or are sampled sparsely

over time, so that considerable immune adaptation occurs in each epoch. Of particular interest
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Fig 1. A schematic view of switching landscapes and adaptive walks demonstrating possible attractor types.

Cycling distinct yet correlated rugged landscapes can drive population escape from specialists—genotypes fit in a

particular environment (orange/gray star in environment A/B) and open new paths (arrows) to generalists—genotypes

that remain fit in different environments (blue star). While generalists constitute fixed point attractors in changing

environments, specialists located in each other’s basin of attraction on alternating landscapes form limit cycle

attractors.

https://doi.org/10.1371/journal.pcbi.1007320.g001
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are two related questions: (1) Whether and under what conditions can alternating environ-

ments grant long-term selective advantage to generalists? (2) How do epistasis and environ-

mental similarity together impact the diversity and accessibility of generalist genotypes?

By constructing and characterizing rugged landscapes with tunable correlations within and

between them—a distinctive feature of this work—we find that environmental cycling can sub-

stantially enhance the likelihood of evolving fit generalists compared with evolution in a con-

stant environment. Large enhancement requires sufficient, yet not overly strong, similarity

in landscape topography, so that cycling can create a pronounced ratchet effect that drives spe-

cialists toward generalists. In fact, intermediate environmental relatedness balances a tradeoff

between the prevalence and accessibility of generalists; as a result, cycling can preferentially

enlarge the attractor region of fit ones. We show in a phase diagram that such balance shifts with

the amount of epistasis. This suggests that we may exploit the fitness correlations within and

across alternating landscapes to favor the emergence and expansion of fit generalists in a popula-

tion, against the natural tendency toward evolving specialists in slowly varying environments.

Results

Construction of tunably related rugged landscapes

The landscape framework has been used to study physical properties of disordered systems

(e.g. macromolecules [42], glasses and spin glasses [43, 44]) as well as nonphysical phenomena

ranging from biological evolution [45] to neural computation [46] and business management

[47]. The unifying attribute of this framework is its statistical characterization of the global

topography of a complex mapping. Interest in fitness landscapes stems from the need for

intuition into the evolutionary behavior of populations in the presence of epistasis [48–56].

Epistatic interactions can result in mutations that are individually deleterious but jointly

beneficial, giving rise to multiple local optima in a genotypic fitness landscape that represent

degenerate solutions to a particular task. Epistasis is central to understanding the predictability

of evolutionary paths [57, 58] as well as evolvability [59–61] and adaptation rate [57, 62] of

biomolecules.

To determine general properties that arise solely from the global topography of landscapes

(i.e., the degree and statistical structure of ruggedness), irrespective of the specific structure of

the evolving system per se, we use the NK model [63] to represent generic rugged landscapes.

This broad family of model landscapes for studying protein evolution describes statistically

how adapted states (fitness optima) are organized in the sequence space. NK models have been

used to understand antibody affinity maturation, rapid evolution toward higher binding affin-

ity, in a static environment [64–67].

In an NK landscape, the fitness Fð~SÞ of a genotype represented by a bit string~S of length N
is defined as the average over the fitness contribution of each bit:

F�ð~SÞ ¼
1

N

XN

i¼1

f �i ðSi; Si1 ; � � � ; SiK Þ: ð1Þ

Here the fitness contribution of bit i, f �i , in a given environment � depends on

fSi; Si1 ; � � � ; SiKg � fSgi, the state of the K + 1 coupled sites influencing the fitness contribu-

tion of site i. An additive landscape (K = 0) has a single global optimum reachable from an

arbitrary starting genotype, whereas in a completely random landscape (K = N − 1) statistical

independence of nearby states leads to an extraordinarily rough surface in which on average

2N/(N + 1) local maxima can be surrounded by fitness valleys. Natural populations are likely

to be guided by fitness landscapes in between these extremes.
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In the case of antibody-antigen binding affinity, each distinct antigen defines a unique

hypersurface spanning over a hypercube of 2N binary antibody genotypes. To link the level

of fitness conservation (the likelihood that a fitness contribution is preserved across environ-

ments) to topographical relatedness between landscapes, we consider two environments A and

B in which

f Bi ðfSgiÞ ¼ aif Ai ðfSgiÞ: ð2Þ

This constructs landscape B from landscape A; the latter is generated according to Eq (1)

with f Ai � Uð� 0:5; 0:5Þ and randomly chosen interacting neighbors. Statistical properties of

landscape topography are insensitive to the distribution of single-site fitness. Although more

structured interaction schemes (e.g. block neighborhood) tend to modestly increase rugged-

ness [56], this factor has little effect on our qualitative results. The strength ai of correlation

between fitness contributions of site i in two environments is given by

ai ¼
1 i � np

� 1 i > np

8
<

:
ð3Þ

In this model, the fitness effect of single mutations under different environments is either

conserved (ai = 1) or subject to tradeoff (ai = −1). While np = N corresponds to identical land-

scapes, np = 0 characterizes completely inverted pairs. Therefore, the fraction of conserved

fitness contributions, np/N, naturally measures the level of conservation. Furthermore, by

making ai independent of the state of the K + 1 epistatically interacting sites, we assume

that fitness correlations are preserved in all backgrounds, which decouples the effect of inter-

landscape correlations (fitness conservation characterized by np) from that of intra-landscape

correlations (epistasis measured by K). This decoupling in turn implies that np tunes the topo-

graphical similarity without affecting the degree of ruggedness. As a consequence, landscapes

thus constructed are tunably related yet statistically equivalent (S1 Fig); changing np does not

alter the expected number (panel A) and mean fitness (panel B) of local optima, while shifting

their locations and modifying topography in their neighborhood.

Adaptive walks in cycling landscapes

To focus on the effect of global landscape topography on evolutionary dynamics, we consider

adaptive walks under strong selection and weak mutation. In this limit, an evolving population

can be regarded as a point in the genotype space that moves along paths of increasing fitness in

single mutational steps. The population size of interest is sufficiently large to suppress random

genetic drift. We further assume “greedy hill climbing” by which any starting genotype can be

uniquely associated with a particular fitness peak at the end of the walk. This algorithm thus

divides the sequence space into gaplessly packed regions each surrounding a local fitness opti-

mum; these basins of attraction characterize the numeracy of initial states capable of accessing

a particular peak via uphill moves.

Natural environments are often partially related over the course of systems adaptation; the

very existence of generalists demands a minimal commonality. An immediate consequence of

environmental correlation is that different parts of the sequence space may experience differ-

ent levels of fitness variations as environments cycle: genotypes undergoing large fitness

swings correspond to specialists that are fit in a particular environment, whereas genotypes

facing small fitness fluctuations represent generalists. Thus, in a landscape description (sche-

matic in Fig 1), generalists can be identified as fitness peaks common to multiple distinct

landscapes, whereas specialists correspond to local optima present in a single landscape.

Evolving generalists in cycling landscapes
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Environmental switching opens new possibilities not available in individual landscapes: It

can free a population from a specialist peak (red/grey star in environment A/B) and maintain

an uphill slope on alternate landscapes, thereby driving population flux (arrows) toward a

generalist (blue star in both environments) otherwise inaccessible from a specialist ancestor.

Generalists thus act as stationary attractors in changing environments, i.e, fixed points of evo-

lutionary dynamics. Alternatively, specialists located in each other’s basin on alternating land-

scapes form a limit cycle attractor; as environments alternate, the population passes by each

peak cyclically. Therefore, switching environments present two possible classes of attractors

(Fig 1 bottom panel): limit cycles among specialists and fixed points at generalists. Tunable

correlations (np and K) control the relative dominance of two attractor types and govern their

distribution in sequence space.

We consider the regime in which environmental alternation is sufficiently slow but not

too slow, so that in between switches the population is able to reach a local optimum and yet

unlikely to escape from it by crossing fitness valleys [68, 69] (see Discussion for further com-

ment on relevant environmental timescales). In this regime, instead of performing an exhaus-

tive study of adaptive dynamics, we directly characterize constituent landscapes and quantify

their relationship.

Since our generative model links fitness conservation to topographical similarity, our task

now boils down to identifying topographical features that characterize the extent of related-

ness, so that these static characteristics can inform the prospects for evolving generalists under

alternating environments, including their prevalence, fitness and accessibility. For concrete-

ness, we set N = 12 and vary K and np. In all plots, data are averaged over 1000 pairs of land-

scapes. Error bars are not shown as they are typically very small and have no effect on our

results and conclusions.

Diversity of generalists: Optimum sharing

Local fitness optima that remain in the same location as the environment changes—shared

optima across landscapes—represent generalists. Intuitively, as the number np of conserved

fitness contributions increases, it is more likely that the immediate neighborhood of local

peaks remains and hence a greater prevalence of generalists is expected (Fig 2A). Note that

the expected number of shared optima between landscapes with equal amounts of conserved

and sign-flipped fitness contributions (np = N/2) is close to that between independent land-

scapes, so that np> N/2 (np< N/2) corresponds to overall positively (negatively) correlated

landscapes.

To exclude the effect due to the rapidly growing number of local fitness optima with the

size K of the epistatic groups, we plot the fraction of local optima being shared between land-

scapes (Fig 2B) and observe two features as np increases. First, there is a minimum level of

fitness conservation, n�p=N, below which no single generalist even exists; in this no-sharing

regime, none of the genotypes remains locally optimal as the environment alters, i.e., all

adapted states are specialists. Second, both the onset of optimum sharing (at n�p=N) and the

rate of growth in sharing depend on K. In particular, increasing K weakens the dependence on

np of the degree of optimum sharing; as np decreases, the fraction of shared optima decreases

more slowly at larger K. The decline is nearly exponential at K’ N/2 and is faster (slower)

than exponential for K� (�)N/2. Therefore, stronger ruggedness appears to promote opti-

mum sharing, both by boosting the prevalence of generalists at a given conservation level (Fig

2B, K increasing in the direction of the arrow) and by extending their presence to a lower level

of fitness conservation (Fig 2B inset).
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Fig 2. The onset, abundance and fitness of generalists. Expected number (A) and average fitness (C) of shared peaks

are shown as a function of the number np of conserved fitness contributions at color-coded values of K. In (C), dashed

lines indicate average fitness of all local optima at K = 3 (grey) and K = 11 (blue), respectively, which correspond to

values at np = N = 12, whereby all peaks are shared. Above nmin
p (marked by arrows) generalists are on average fitter

than specialists; this requires a higher level of fitness conservation as ruggedness decreases (e.g. nmin
p ¼ 7 for K = 11

whereas nmin
p ¼ 9 for K = 3). (B) The fraction of generalists among all fitness peaks increases with np; n�p indicates the

minimum conservation level for generalists to exist. Curves correspond to K = 3, 7, 11, increasing in the direction of

the arrow. Inset: n�p=N deceases with increasing K. Each data point is an average over 1000 landscape pairs.

https://doi.org/10.1371/journal.pcbi.1007320.g002
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This finding is somewhat surprising given that increasing ruggedness is often thought to

imply reduced fitness correlations, until we realize that the impact of K on landscape topogra-

phy is not merely controlling the abundance of local optima, but also affecting how they are

organized in the sequence space. When K is small, the highest peaks tend to locate close to one

another and the general configuration of the landscape is very non-random. As K increases,

fit local optima become more evenly distributed which may therefore raise the chance of peak

sharing between landscapes. An interesting implication thus follows: while increasing epistasis

would reduce fitness correlations within a landscape, it might enhance correlations between

landscapes at a given conservation level of fitness contributions.

When are generalists favored over specialists? As known from ecology, generalist birds with

intermediate bill lengths may evolve when prey types are alike, whereas specialization develops

when more diverse prey types require highly dissimilar beaks [70]. This also applies to the

competitive advantage of generalist antibodies over specific ones in recognizing structurally

related antigens. Our tunably related NK landscapes capture this trend (Fig 2C): The average

fitness of shared optima increases with np sublinearly; while in dissimilar environments (small

np) specialists are on average more fit, at sufficiently high levels of environmental relatedness

(large np), generalists become selectively favorable (arrows indicating the crossing between the

average fitness of generalists alone, shown in solid lines, and that of specialists and generalists

combined, shown in dashed lines). Note that stronger ruggedness enlarges the generalist-

favored regime toward a lower conservation level, at the expense of a modest reduction in

average fitness.

Accessibility of generalists: Dynamic basin linking

In an epistatic landscape, provided that fitness conservation is sufficient to support optimum

sharing across environments, generalists are likely to be separated from specialists by fitness

valleys. If the environment were static, only populations initialized in a single basin of attrac-

tion (e.g., bA
2

or bB
2

in Fig 3A, the ramified shape filled with orange or gray color) could reach

the encompassed generalist peak (blue triangle). In contrast, environmental alternation

(dotted arrows) might link to the “hinge” basins (bA
2

and bB
2
) additional basins that surround

specialist peaks (orange or gray triangles) and are otherwise disconnected in individual land-

scapes. Each successively linked peak is determined as the highest local optimum in current

environment that is enclosed by a basin in the preceding environment (e.g., the peak in basin

bA
3

is the fittest genotype in landscape A that belongs to basin bB
2

in landscape B). In this way,

landscape cycling dynamically enlarges the attractor size of generalists by connecting basins

segregated in static environments (e.g. bB
1

serves as a bridging basin between bA
1

and bA
2
); such

valley-bridging effect of environmental changes has been observed in drug-resistant bacteria

[71].

It is important to note that basin linking via landscape switching exemplifies a ratchet

effect that enhances population flux from specialists to generalists but not the reverse. In other

words, cycling between correlated environments creates an effective continuous positive slope

on alternating landscapes toward generalists, because generalists experience smaller variations

in their fitness neighborhood than do specialists under environmental switches. Consequently,

starting from any genotype inside these dynamically linked basins, a population would con-

verge to the generalist after a sufficient number of switches (ABAB or BABA in the example

in Fig 3A). Therefore, the total coverage of linked basins defines the effective accessibility of

a generalist in cycling environments. Note that the number of basins in a chain is relatively

modest (e.g. no greater than 8 for N = 12; see S2 Fig, panels A and C). Thus, for sequence sizes
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relevant to antigen or antibiotic binding sites (e.g. of order 10 amino acids), several environ-

mental cycles would suffice to channel the population to generalists.

We next quantify potential benefit of landscape cycling. We first estimate the probability

that generalists have greater accessibility under environment cycling than in a static envi-

ronment. Specifically, we evaluated the fraction of shared optima that have enlarged

attractor region via basin linking (Fig 3B). Here results are shown for parameter values

where generalists are not too few so that details of landscapes would not cause large varia-

tions among realizations. At high levels of fitness conservation (large np), the frequency

of basin linking declines with increasing np; too similar landscape topography makes it

unlikely that a generalist basin in one landscape contains a specialist peak in the other

landscape. Increasing epistasis also monotonically diminishes the chance of basin linking;

stronger decorrelation in fitness (larger K) results in fewer (S2C Fig) and smaller (S2D Fig)

linked basins. In highly rugged landscapes (K� 9), the likelihood of basin linking exhibits

a relatively weak dependence on np. Intermediate values of np result in, on average,

longer chains (S2A Fig) of larger basins (S2B Fig) compared to weaker or stronger fitness

conservation, reflecting an optimal similarity between landscape profiles that balances the

Fig 3. Dynamic basin enlargement via ratchet effects under environmental cycling. (A) Schematically, in a static landscape, only a single basin of

attraction (shaded orange/gray in landscape A/B) leads to a generalist (blue peak). Under environmental switches (ABAB or BABA, indicated with

dotted arrows), a population initialized in any genotype inside the linked basins (six amorphous shapes with orange or gray borders) can reach the

generalist. This chain of basins fb�lg contains bA
2

and bB
2

hinged at the generalist peak, bA
1

and bB
3

as two ends, along with bB
1

and bA
3

as intermediate links.

Thus, the total coverage of linked basins defines the effective accessibility of a generalist in switching landscapes. (B) The fraction of generalists that gain

basin size under landscape switching, where K increases from top to bottom. Each data point is an average over 1000 realizations of landscape pairs. (C)

Correlation between fitness and basin size of local optima in a static landscape (orange filled symbols) and in switching landscapes (blue open symbols).

https://doi.org/10.1371/journal.pcbi.1007320.g003
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diversity of generalists (degree of optimum sharing) and their accessibility (frequency of

basin linking).

To explore how landscape cycling might affect the difficulty in evolutionary search for fit

generalists, we computed the correlation coefficient between the fitness and basin size of

shared optima (Fig 3C). For a single static landscape, the correlations are already positive

and high, decreasing with increasing epistasis, which is consistent with known properties

of NK models. Remarkably, under environmental switches, total basin size of linked

peaks and their overall fitness are much more correlated compared to the static case; such

enhancement in fitness-basin size correlation is significant as long as optimum sharing is

prevalent. Strong enhancement occurs at intermediate values of np, showing little decline

toward larger K. Taken together, landscape cycling can significantly enlarge the catchment

basins of generalists, especially for those with high fitness, well beyond the counterpart in

static environments.

Likelihood of evolving fit generalists

At similar levels of epistasis, landscape topography can nevertheless differ markedly. Whether

generalists would benefit from landscape switching depends critically on the topographical

relationship between alternating landscapes. As shown in the phase diagrams (Fig 4), for a

given K, as np increases, the system crosses the boundary from phase I in which all adapted

states are specialists (grey region) to phase II where generalists constitute stationary attractors

in changing environments (colored region). While selectively accessible (i.e. monotonically

increasing in fitness) trajectories are rarely circular on a static landscape, closed paths may

prevail under environmental cycling in phase I—either due to oscillations between nearby spe-

cialists each present in only one landscape (Fig 4B upper inset), or arising from limit cycles

Fig 4. Accessibility of generalists under environmental cycling. (A) The fraction of genotypes that can reach a generalist via an adaptive walk. (B) The

ratio of the total basin size of fit generalists (within the top 30% of maximum fitness) to that of all generalists. Both heatmaps are obtained by averaging

over 1000 pairs of landscapes at each combination of np and K. In both diagrams, the gray area corresponds to phase I in which all fitness peaks are

specific to one environment; in this no-generalist phase, landscape switching leads to oscillations (panel B, upper inset) or limit cycles (lower inset)

among specialists. The colored region represents phase II, where generalists act like hubs into which evolutionary trajectories enclosed by linked basins

converge, following multiple landscape switches.

https://doi.org/10.1371/journal.pcbi.1007320.g004
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composed of specialist peaks located in successive basins on alternating landscapes (Fig 4B

lower inset). In both scenarios, the population is driven away from a local optimum upon

every switch and never settles. In contrast, in phase II, landscape cycling can channel a popula-

tion flow to a generalist peak. Note that even in phase II specialists could coexist with general-

ists, if initially-specialists would generate intermediate products as they transit toward a

generalist via linked basins. This is relevant for the makeup of immune repertoires, since

instantaneous output (e.g. memory cells and antibodies) accumulate throughout the course of

an immune response.

Starting from diverse sequences, how likely will a population discover a generalist under

environmental cycling? To estimate the mutational accessibility of generalists (phase II), we

first computed the fraction of genotypes that would follow an adaptive path to a shared opti-

mum as landscapes alternate (Fig 4A). This quantity, which measures the overall accessibility

of all generalists combined, is large either when the number of shared optima is large at large

np and large K (S3A Fig) or when the basin size of shared optima is large at small K (S3C Fig).

Yet, among these finally-generalists, the accessibility of the fit ones (defined as being within

the top 30% of the maximum fitness among the shared optima) determines the likelihood of

evolving fit generalists. Fig 4B shows a heat map of the expected ratio of the total basin size of

fit generalist to that of all generalists for each combination of np and K. This conditional acces-

sibility decreases monotonically as np and/or K increases, once exceeding the onset of opti-

mum sharing (i.e. in phase II). Notably, the chance of evolving fit generalists is worst in the

strong-conservation high-epistasis corner (blue color), where the sequence space divides into

many small and rarely linked basins surrounding generalist peaks of which the majority are

unfit (S3A and S3B Fig, while the total number of generalists rapidly grows with increasing np
and K, the fit ones saturate in number).

Therefore, to enable efficient discovery of fit generalists, cycling rugged landscapes should

have an adequate level of epistasis to allow a diversity of solutions (Fig 2), while presenting

complementary profiles of ruggedness to guide adaptation, so that the ratchet effect can most

effectively enlarge the set of mutational trajectories leading to fit generalists (Fig 3). Interest-

ingly, the conserved fraction of sitewise fitness contributions—a mean-field-like parameter—

closely tunes the topographical correlations between landscapes: Increasing np not only

increases the number of distinct generalists, but also reduces the average distance between spe-

cialists resulting in a lower chance of basin linking. Consequently, an intermediate level of con-

servation best promotes adaptive linkage of successive specialist basins toward the generalist

peak. Moreover, such cycling induced basin linkage preferentially enhances the accessibility of

fit generalists (Fig 4B) over less fit ones. Thus, intermediate correlations within and between

cycling landscapes strike a balance between diversity and accessibility of fit generalists, facili-

tating their discovery by evolution.

Discussion

We present an attempt to endow the ecological notion of generalists with an evolutionary

meaning in the context of adaptive strategies in evolving systems. Specifically, we demonstrate

the impact that switching between distinct yet related environments might have on the pro-

pensity of evolving generalists—genotypes adapted to recurring features in changing environ-

ments. We provide a statistical framework to construct and characterize tunably related fitness

landscapes, and extend the idea of adaptive walks to study long-term evolution in environ-

ments that change on comparable timescales to evolutionary response of a population.

We show that landscape topography and relatedness interplay to determine the relative preva-

lence and fitness of specialist and generalist genotypes. Depending on the degree of fitness
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conservation and the amount of epistasis, evolutionary dynamics divides into two phases dis-

tinguished by the dominant attractor type: (I) oscillations or cycles among specialists in the

absence of generalists, and (II) convergence to a generalist after multiple environmental

switches. We find that an intermediate amount of epistasis, reflective of evolved functional

constraints in biological systems, appears to balance the diversity (Fig 2) and accessibility (Fig

3B) of generalists. What is more, in the convergence phase, an intermediate level of similarity

between the structure of ruggedness in alternating landscapes affords the best chance of evolv-

ing fit generalists (Fig 4), by more effectively enlarging their basins of attraction (Fig 3B) and

strengthening the correlation between basin size and fitness (Fig 3C) compared to weaker or

stronger similarity.

In the context of adaptive immunity, recent work has suggested that temporal correlations

in antigenic environments crucially regulate evolution of generalist antibodies [72–74]. Here,

we make this notion more quantitative: by describing the underlying rugged landscapes in a

statistical manner, we turn the abstraction of environmental correlations into concrete mea-

sures of relatedness between landscapes, such as the frequency of optimum sharing and

dynamic basin linking, and predict adaptive outcomes based on these topographical attributes.

Our predictions are relevant because they rely on a statistical framework that neither oversim-

plifies the topography for interstate dynamics, nor fully characterizes all possible evolutionary

trajectories which is not practical for system sizes of most interest. This generic approach thus

helps uncover key determinants of the propensity of evolving fit generalists, emphasizing the

importance of simultaneously considering the role of epistasis and topographical similarity

between landscapes in guiding the evolutionary discovery.

The NK model was originally developed for studying antibody affinity maturation in a con-

stant environment. Our extended NK model helps to solve the problems of evolving generalists

in time varying correlated environments. By combining laboratory selection experiments with

next-generation sequencing, it is now feasible to map sizable fitness landscapes under different

environments, e.g. binding of antibodies to different mutants of influenza haemagglutinin [75]

and growth of bacteria under different antibiotics [76]. These data could reveal the correlation

of empirical fitness landscapes in different environments.

For a combinatorially complete empirical landscape, the fitness contribution of single

mutations and the amount of epistasis can be computed by decomposing the landscape using

Hadamard-Walsh transform (a generalized class of Fourier transform [52, 77, 78]). K can be

determined by comparing the contribution of epistasis in the empirical landscape to that in

simulated NK landscapes at varied K values [79]. Meanwhile, np can be estimated by compar-

ing fitness contributions of single mutations across different environments. For example, we

performed Hadamard-Walsh transform on fitness landscapes of β-lactamase under different

β-lactam antibiotics [80]. We found that the correlation in fitness effect of single resistance

mutations under distinct antibiotics follows a bimodal distribution (i.e. with two peaks around

+1 and −1, respectively), suggesting that in this empirical system the effect of single mutations

in different environments is predominantly conserved (ai� 1) or subject to tradeoff (ai� −1),

with more weight on the conserved side (S4 Fig and S1 Text).

If we know more about the mechanism underlying the mutational effects, we can also esti-

mate np qualitatively. For example, single amino acid substitutions can affect protein stability

and function (e.g. binding affinity to antigens or drugs) [59, 81]. For amino acid sites con-

served to ensure structural stability (e.g. in the core of a protein), we expect the fitness effect

of mutations to be similar across different environments. In contrast, for sites that determine

binding affinity to drugs, we expect the effect of mutations to change drastically for drugs with

different binding targets. In the case of multi-drug resistance, we expect drugs with similar

resistance profile to have higher np than those with dissimilar profile.
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Given that we can empirically estimate ruggedness within a landscape and correlations

between landscapes, our results (in particular Fig 4B) identify conditions that foster the evolu-

tion of fit generalists, as well as strategies to slow their emergence. For the former, in order to

efficiently induce generalist antibodies, vaccine antigens that alternate in time should be simi-

lar enough to allow generalists to exist and yet sufficiently different so that fit ones own large

basins. Furthermore, fitness conservation should be chosen to match the level of epistasis. For

instance, antibody binding sites (epitopes) may vary widely in structural complexity and thus

differ in K. Our finding suggests that evolving antibodies that recognize simple epitopes (small

K) require switching between similar antigens (large np), whereas antibodies that bind well to

complex epitopes (large K) emerge when cycled antigens are sufficiently dissimilar (small np).
Hence, intermediate np adjusted to K would do best. For the latter, dissimilar antibiotics (small

np and modest K) could avoid generalist microbes and confine the population to a small region

of the sequence space under landscape switching (i.e. tight limit cycles), whereas very similar

drugs with strong epistasis (large np and large K) may trap the microbial population to unfit

generalist genotypes. In fact, experiment has shown that alternating environments can con-

strain the evolution of multi-drug resistance, in the regime where np is small between different

antibiotics [35]. By contrast, for HIV protease inhibitors, np is relatively large and hence multi-

drug resistance is easily achieved [36]. Thus, our results provide a guide for choosing vaccine

antigens (antibiotics) to be cycled in time, so as to promote (suppress) the emergence of fit

generalist antibodies (microbes). Similar analysis and principles also apply to cancer treatment

[82].

Although the dynamics of adaptation is not explicitly studied here, we speculate that the

timescale of environmental changes is important. In particular, the timescale of switching

should be intermediate: on the one hand, it must be sufficiently long so a specialist population

can reach a nearby fitness peak before the next switch; on the other hand, the epoch should

be shorter than the time needed for a generalist population to cross the fitness valley [68, 69].

Therefore, intermediate timescale switching would allow specialists to evolve into generalists

but not for generalists to specialize again. Moreover, relevant environmental timescales

depend on the degree of correlations, because np and K can alter the number and distribution

of specialists and generalists in sequence space. Hence, different parts of the parameter space

may entail different favorable timescales for evolving generalists. For example, a few long

cycles would suffice at small K and large np, whereas many relatively brief cycles are needed for

large K and small np. In future work, we will study explicitly the impact of switching rates on

evolutionary outcomes in finite populations. In contrast to very fast or very slow switching

that can be understood as effective static environments, we speculate, as indicated by studies in

other contexts [17, 83, 84], that cycling at intermediate timescales can drive evolution toward

novel nonequilibrium states [18, 85–87] and are key to evolving generalists.

Another interesting direction is generalization of our findings to evolution under complex

schemes of switching environments (e.g. alternating among more than two landscapes). As

the variety of distinct environments increases, the possibilities of switching schemes expand

quickly, since it permits combinatorial ways of arranging successive environments and wide

choices for the timing of switches. We expect, within our model, that generalists will likely

become rarer given more diverse environments. And yet, guiding principles derived from this

work still hold in choosing successive pairs of environments in a temporal sequence so as to

enlarge basins of fit generalists; further, the underlying mechanism that evolutionary ratchets

are most effective at intermediate correlations remains valid. In this sense, our work comple-

ments prior studies on switching schemes, e.g., in reversal of drug resistance [88] and anti-

cancer therapies [89], which are based on system-specific exhaustive approaches. Sequential

protocols have also been investigated in the context of logic circuits and RNA secondary
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structure [33]. While a sequence of modularly varying environments is favored over a fixed

environment in driving evolution of useful novel phenotypes, tuning the level of correlation

within and between environments explored here may further broaden the range of strategies.

Finally, our results based on temporally varying environments can be extended to under-

stand adaptation in spatially heterogeneous environments, where landscape switching arises

from migration between distinct yet connected habitats or microenvironments [90, 91].

Methods

Consider two environments A and B. Each environment defines a fitness landscape in the

sequence space, characterized by a set of local optima (fitness peaks), f~s�jg, and associated

basins of attraction, fb�jg. Here � labels the environment and j runs through in total N �

opt

local optima in environment �. Generalists correspond to local optima common to different

environments and are represented by f~slg, l 2 G, where G is a set of size N g containing the

sequence labels of generalist genotypes. The rest of the local optima are unique to a particular

environment and thus represent specialists. As the amount of epistasis (K) and the level of fit-

ness conservation (np) vary, both the number and the distribution of generalists and specialists

in sequence space will change. Below we introduce the measures to quantify the prevalence

and accessibility of generalists in static and switching environments.

Diversity of generalists

We calculate the fraction of fitness optima shared between environments (Fig 2B), denoted by

θg, as the ratio of the number of generalists (N g) to the environment-averaged number of all

local optima ( �N �
opt):

yg ¼ h
N g

�N �
opt

i: ð4Þ

Here and below we use the overbar to indicate average over environments and use the

angular bracket to represent ensemble average over many landscapes for given K and np.

Accessibility of generalists

Dynamic basin linking. We identify chains of linked basins under landscape switching as

follows: Starting in environment A, we search through the basin of a generalist. If it contains

any fitness peak in environment B, pick the fittest one and store it as a linked peak and its

basin (in environment B) a linked basin. We then search through this linked basin for fitness

peaks in environment A; if identified, we link the fittest peak and its basin (in environment A).

Iterate until the newly linked basin no longer contains any peak in the other environment.

Repeating this process starting from environment B, we obtain a full chain of linked basins

hinged at the generalist (illustrated in Fig 3A).

Note that this is an approximation of the full basin enlargement enabled by environmental

cycling, because we extend the chains only with the highest peak in each successive environ-

ment, ignoring the contribution of less fit peaks. Yet this is a good approximation in the limit

of strong selection as assumed in this study. In addition, non-greedy paths neglected here may

divert part of the population from the paths toward the generalist. Explicit stochastic simula-

tions of population trajectories would help quantify these effects.
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Basin size. The basin size V� ð~s�j Þ of a fitness peak~s�j in environment � is computed as the

number of starting sequences that can reach~s�j via a greedy walk, which is composed of uphill

moves on the landscape with the largest available fitness increase in each step.

The effective basin size ~V ð~slÞ of a generalist~sl in alternating environments is defined as the

total size of linked basins in the chain, with the overlapping portion of adjacent basins counted

once.

Probability of basin linking. We measure the probability of basin linking under alternat-

ing environments (Fig 3B) as follows:

P ~V > V
� �

¼ h
N gð

~V > VÞ
N g

i: ð5Þ

Here the numerator counts the number of generalists that have enlarged basin size in

switching landscapes ( ~V ) than in a static landscape (V); these generalists gain linkage to addi-

tional specialist basins under cycling.

Correlation between fitness and basin size. We quantify how well fitness, F, and basin

size, V, are correlated in static and cycling environments (Fig 3C) using the following metrics:

In a static environment �,

C F�;V�ð Þ ¼ h
mðF�V �Þ � mðF�ÞmðV�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðF�ÞvðV�Þ

p i ð6Þ

where we define mðX�Þ ¼
PN �

opt
j¼1 X�ð~s�j Þ=N

�

opt and v(X�) = m(X� X�) −m(X�)m(X�) to compute

mean and variance respectively. The correlation strength is then averaged over environments.

In cycling environments,

Cð~F ; ~V Þ ¼ h
mð~F ~V Þ � mð~FÞmð~V Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vð~FÞvð~V Þ
q i ð7Þ

where we define functions mð~XÞ ¼
PN g

l¼1
~Xð~slÞ=N g and vð~XÞ ¼ mð~X ~XÞ � mð~XÞmð~XÞ. Here

~F represents the overall fitness of linked peaks under landscape cycling for a given generalist

and ~V denotes its effective basin size, i.e., the total sequence-space “volume” of linked basins.

Likelihood of evolving fit generalists

The absolute accessibility of all generalists (Fig 4A), denoted by A0, is defined as the total cov-

erage of generalists’ effective basins in switching landscapes:

A0 ¼ h
X

l2G

~V ð~slÞi=2N : ð8Þ

The conditional accessibility of fit generalists (Fig 4B), denoted by Ac, is measured by the

total effective basin size of generalists within the top 30% of maximum fitness, normalized by

the total basin size of all generalists combined:

Ac ¼ h
X

l2G

~V ð~slj�F
�ð~slÞ � 70%�max

l
�F �ð~slÞÞ=

X

l2G

~V ð~slÞi ð9Þ

where �F �ð~slÞ indicates environment-averaged fitness of a generalist~sl.
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Supporting information

S1 Text. Fourier analysis of fitness landscapes of TEM-β lactamase under different antibi-

otics.

(PDF)

S1 Fig. Statistical equivalence of tunably related landscapes. (A) Total number of local

optima. (B) Average fitness of local optima. Almost complete overlap of data points at different

values of np (different symbols) indicates that changing np does not alter the number and aver-

age fitness of local optima for a given number K of interacting sites. Each data point is an aver-

age over 1000 landscapes.

(PDF)

S2 Fig. Characteristics of dynamic basin linking. Histograms of the number (left column)

and average size (right column) of linked basins under landscape switching for K = 9 (upper

row) and np = 8 (lower row). The number of linked basins excludes the one associated with

the shared optimum. For each combination of np and K, around 200 generalists are collected.

(A and B) With relatively strong epistasis (K = 9), an intermediate level of fitness conservation

(np = 8, orange bars) leads to longer chains of linked basins (A) of larger average size (B), com-

pared to weaker or stronger conservation. Inset of A: the weight of the np = 8 term for various

numbers of linked basins; the grey line marks 1/3. Inset of B: the average size of linked basins

at different values of np. (C and D) At an intermediate level of fitness conservation (np = 8),

stronger epistasis (larger K) results in shorter chains of linked basins (C) of significantly

smaller average size (D).

(PDF)

S3 Fig. Diversity and accessibility of generalists. The number (left column) and average

basin size (right column) of all generalists (A, C) and fit generalists (B, D, within top 30%

of maximum fitness among all local optima). All color-coded values are in logarithmic

scales and averaged over 1000 landscape pairs for each combination of np and K. While

the number of generalists rapidly grows with np and K (A), the number of fit ones saturates

(B). Average basin sizes of generalists decrease as K increases and are largest at intermediate

np for large K, consistent with the trend of the probability of basin linking (Fig 3B, main

text).

(PDF)

S4 Fig. Correlation in fitness effect of single resistance mutations under different antibiot-

ics. (A) Fitness effect of single drug-resistance mutations, i.e., first-order Fourier coefficients,

is found to be predominantly conserved (Pearson correlation close to 1) or anticorrelated

(Pearson correlation close to −1) under pairs of different drugs. The data of empirical fitness

landscapes under 15 different β-lactam antibiotics are taken from Table in Ref. [80]. (B) Corre-

lation in fitness effect of single mutations between random fitness landscapes does not show a

bimodal distribution. 100 random fitness landscapes are generated that have the same size as

the empirical fitness landscapes (L = 4, 16 genotypes).

(PDF)
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