
INTRODUCTION 

Aging exacerbates muscle function, power, strength, and endur-
ance; it also increases the incidence of falls and chronic metabolic 
diseases, which impact the quality of life. The reduction of muscle 
function in older adults is predominantly because of the decrease 
in muscle mass during aging, a process known as sarcopenia.1) As 
aging progresses, skeletal muscles show decreased responsiveness 
to physical activity and other anabolic stimuli, resulting in a de-
crease in the muscle protein synthetic response referred to as ana-
bolic resistance.2) 

Background: This study explored the effects of aging on the expression of angiogenic and muscle 
protein synthesis factors, as well as the number of satellite cells affecting sarcopenia in naturally 
aged rat skeletal muscles. Methods: We divided 16 Sprague-Dawley rats into young (12 weeks 
old, n=8) and old (24 months old, n=8) groups and compared muscle and body weight (BW) be-
tween them. We also analyzed the expression levels of angiogenic and muscle growth proteins in 
soleus (slow-twitch) and extensor digitorum longus (EDL; fast-twitch) muscles by western blot-
ting and assessed the number of skeletal muscle satellite cells and myonuclei and mean fiber 
cross-sectional area (CSA) using by immunofluorescence staining. Results: EDL/BW was signifi-
cantly lower in old rats than in young rats (p=0.002). The vascular endothelial growth factor level 
in soleus muscles was significantly lower in old rats than in young rats (p=0.001). Hypoxia-in-
ducible factor 1-alpha and fetal liver kinase 1 levels in EDL muscles were lower in old rats than in 
young rats (p=0.001). The mammalian target of rapamycin (mTOR), p70S6K, and 4E-BP1 levels 
were significantly lower in the soleus muscles of old rats than in those of young rats (p<0.01). 
Similarly, insulin growth factor-1, Akt, mTOR, and p70S6K levels were significantly lower in EDL 
muscles of old rats than in those of young rats (p<0.01). Additionally, myonuclei/fiber, Pax7/fiber, 
and mean fiber CSAs in both muscle types were significantly lower in old rats than in young rats 
(p<0.01). Conclusion: These data suggest different regulation of indices of angiogenic and mus-
cle growth with aging in different muscle types. 
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The aberrant expression of proteins involved in muscle cell syn-
thesis and degradation has been implicated in anabolic resistance 
induction.2) Additionally, protein synthetic response impairments 
may play key roles in the reduction of muscle mass with aging.3) 
Age-related changes in anabolic resistance and muscle growth vary 
among muscle fiber types.4) In humans, the number of muscle fi-
bers, especially in fast-twitch muscles, decreases significantly 
during aging.5) The mammalian target of rapamycin (mTOR) 
plays an essential role in muscle protein synthetic responses.6) Al-
though different mTOR expression levels in different muscle types 
(slow vs. fast-twitch muscle) in aging animals have been reported,7) 
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the study focused only on muscle synthetic protein expression. 
Recently, mTOR was shown to regulate the proliferation and dif-
ferentiation of extensor digitorum longus (EDL; fast-twitch) mus-
cle satellite cells in mTOR knockout mice (6 weeks of age).8)  
During aging, the number of satellite cells decreases by approxi-
mately 50%.9) However, little is known about aging-related satellite 
cell reduction with mTOR-related signaling in different muscle 
types (slow vs. fast-twitch). 

Damage to muscle fiber perfusion owing to aging has recently 
been suggested to be an important factor driving anabolic resis-
tance.10) Sufficient perfusion of muscle tissue is required to main-
tain or increase muscle mass, and capillarization is essential for the 
transportation of oxygen and nutrients to peripheral muscles. 
Thus, angiogenesis is pivotal for the supply of sufficient oxygen 
and nutrients to growing muscle fibers.11) Vascular endothelial 
growth factor (VEGF) is crucial for the formation of new capillar-
ies in adult skeletal muscles. Its expression is regulated by hypox-
ia-inducible factor-1 alpha (HIF-1α)12) and decreases in aging skel-
etal muscle.13) A previous study reported suppressed VEGF pro-
tein levels in older adults, with no differences according to the 
muscle fiber type.14) Additionally, studies have shown that VEGF 
is essential for muscle protein synthetic responses in skeletal mus-
cle cells. Notably, VEGF depletion in rats (4 months of age) sig-
nificantly reduced plantaris muscle weight.15) Thus, the aging-in-
duced downregulation of VEGF and subsequent decrease in an-
giogenesis are considered to be key factors in the induction of ana-
bolic resistance. However, few studies have reported regarding 
changes in VEGF and mTOR in different muscle types in aged ani-
mals, especially in those that naturally aged without specific treat-
ment. 

Previous studies on the relationships between VEGF, mTOR, 
and satellite cells used genetically modified experimental ani-
mals,8,15) with limited information on aged animals. Therefore, it is 
necessary to directly examine aging-related changes occurring in 
naturally aged individuals. In addition, given that the density and 
number of capillaries differ depending on the muscle fiber type, 

the comprehensive exploration of aging-related changes in satellite 
cell number and mTOR level according to muscle type (slow-
twitch vs. fast-twitch) is needed. Hence, we investigated the muscle 
content and basal phosphorylation of these molecules in soleus 
(slow-twitch) and EDL (fast-twitch) muscles. We hypothesized 
that the aging-induced reduction in angiogenic factors would be 
accompanied by muscle growth factors in different skeletal muscle 
types of naturally aged rats. 

MATERIALS AND METHODS 

Materials 
We divided 16 Sprague-Dawley rats (Samtako, Osan, Korea) into 
young (3 months, n = 8) and old (20–24 months, n = 8) groups. 
Two rats per cage were maintained at 22°C ± 2°C and 50%–60% 
humidity with a 12/12-hour light/dark cycle. The rats were fed 
with a diet (Samtako) containing 67.5% carbohydrates, 11.7% fat, 
and 20.8% protein. The animals’ dietary intake and body weight 
(BW) were monitored twice weekly, and we excluded rats exhibit-
ing abnormal symptoms during breeding. All experimental proce-
dures and research methods were approved by the Animal Experi-
ment Ethics Committee of Korea National Sport University (No. 
KNSU-IACUC-2017-07). The experimental animals’ characteris-
tics are presented in Table 1. 

Rotarod Test 
Motor coordination was assessed using a rotarod system (B.S. 
TechnoLab, Seoul, Korea). The rats were allowed to adapt to the 
equipment at a rate of 4–10 rpm starting 2 days before the test. 
Motor coordination was tested at 10 rpm for 2 minutes. The dura-
tion and number of times that the rats fell from the bar were re-
corded, as described previously.16) 

Muscle Sampling 
To exclude the effect on diet, feed was removed except for water 8 
hours before euthanize. The rats were anesthetized by injecting an 

Table 1. Animal characteristics

Young (n = 8) Old (n = 8) p-value
Body weight (g) 427.71 ± 22.21 694.71 ± 88.13 0.001
Soleus (g) 0.18 ± 0.02 0.25 ± 0.05 0.012
Soleus/BW (%) 0.04 ± 0.01 0.04 ± 0.01 0.082
EDL (g) 0.19 ± 0.02 0.20 ± 0.06 0.699
EDL/BW (%) 0.05 ± 0.01 0.03 ± 0.01 0.002
Rotarod test (s) 79.20 ± 12.90 11.00 ± 1.20 0.001

Values are presented as mean±standard deviation.
BW, body weight; EDL, extensor digitorum longus.
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anesthetic (xylazine 8 mg/kg and ketamine 40 mg/kg) into the 
abdominal cavity after 1 week of adaptation. Soleus (slow-twitch) 
and EDL (fast-twitch) muscle samples were obtained and rapidly 
frozen in liquid nitrogen or stored at -80°C after embedding in op-
timal cutting temperature (OCT) compound. 

Immunofluorescence 
Immunofluorescence was performed to assess the number of skel-
etal muscle satellite cells. OCT compound-embedded muscle tis-
sues were cross-sectioned (10 μm) at -20°C using a microtome 
(CM1850; Leica, Wetzlar, Germany). After drying, the muscle tis-
sues were rinsed in T-PBS (0.1% Tween-20; pH 7.4) for 25 min-
utes, fixed in 4% paraformaldehyde for 15 minutes, and blocked 
with T-PBS for 30 minutes. Then, the tissues were incubated over-
night at 4°C with mouse monoclonal anti-Pax7 and rabbit poly-
clonal anti-laminin antibodies (1:500; Dako Ltd., Ely, UK). After 
washing, the tissues were incubated with Cy3 anti-mouse IgG 
(1:500; Jackson ImmunoResearch, West Grove, PA, USA) and 
FITC-conjugated anti-rabbit IgG (1:200; Sigma-Aldrich, St. Lou-
is, MO, USA) antibodies for 1 hour. We determined the number of 
myonuclear and satellite cells and the mean fiber cross-sectional 
area (CSA) using AxioVision software (rel. 4.8; Carl Zeiss Micros-
copy, Jena, Germany). 

Western Blotting 
Muscle tissues were incubated for 30 minutes at 4°C in lysis buffer 
containing 25 mM Tris-Cl (pH 7.5), 250 mM NaCl, 5 mM EDTA, 
1% NP-40, 1 mM phenylmethylsulfonyl fluoride, and 5 mM dith-
iothreitol. The supernatant was collected by centrifugation at 
14,000 rpm for 30 minutes. The protein concentration of the su-
pernatant (total cytosol fraction) was measured using the Bio-Rad 
(Bio-Rad Laboratories, Hercules, CA, USA) protein assay reagent 
according to the manufacturer’s instructions. Equal amounts of 
proteins were mixed with 2X sodium dodecyl sulfate (SDS) load-
ing buffer containing 60 mM Tris (pH 6.8), 25% glycerol, 2% SDS, 
14.4 mM 2-mercaptoethanol, and 0.1% bromophenol blue. The 
samples were boiled at 100°C for 10 minutes and centrifuged for 
20 minutes at 15,000 rpm and 4°C. Then, the proteins (100 μg) 
were resolved in a 10% separating gel (30% acrylamide, 1.5 M Tris 
[pH 8.8], 10% SDS, 10% ammonium persulfate, tetramethyleth-
ylenediamine [TEMED]) and a 5% stacking gel (30% acrylamide, 
1 M Tris [pH 6.8], 10% SDS, 10% ammonium persulfate, 
TEMED) using a Mini-PROTEAN II apparatus (Bio-Rad). Elec-
trophoresis was performed for approximately 2 hours at 80 V. 
Then, the proteins were transferred onto polyvinylidene difluoride 
membranes (Bio-Rad) using a Mini Trans-Blot cell system (Bio-
Rad) according to the manufacturer’s instructions; the transfer 

buffer contained 190 mM glycine, 50 mM Tris base, 0.05% SDS, 
and 20% methanol. Then, the membranes were blocked for 5 min-
utes with 5% w/v bovine serum albumin solution (10 mM Tris 
base, HCl [pH 7.6], 0.5 M NaCl, 0.05% Tween-20). After block-
ing, the membranes were incubated for 12 hours with primary an-
tibodies (anti-VEGF, anti-HIF-1α, anti-FLK-1, anti-insulin growth 
factor-1 [IGF-1], anti-Akt, anti-mTOR, anti-eIF4E-binding pro-
tein 1 [4E-BP1], anti-P70S6 kinase 1 [p70S6K], and anti-α-tubu-
lin; all diluted 1:1000 in blocking solution). After five washes, the 
membranes were incubated for 90 minutes with secondary anti-
bodies (horseradish peroxidase-conjugated goat anti-rabbit 65-
6120 or horseradish peroxidase-conjugated rabbit anti-goat 81-
1620, diluted 1:5000 in blocking solution; Thermo Fisher Scien-
tific, South San Francisco, CA, USA). After five washes, the signal 
was developed using Western Blotting Luminol Reagent (SC-
2048; Santa Cruz Biotechnology, Dallas, TX, USA) and visualized 
on a Molecular Image ChemiDoc XRS system (Bio-Rad). The 
amount of protein was calculated using the Quantity One 1-D ana-
lytical software (Bio-Rad). 

Statistical Analysis 
We performed all experiments in duplicate and presented the aver-
age values. Statistical analysis was performed using SPSS version 
18.0 (SPSS Inc., Chicago, IL, USA). Differences between groups 
were analyzed using independent-samples t-tests. The significance 
level was set to p < 0.05. 

RESULTS 

Differences in Muscle Weight and Motor Coordination between 
Young and Old Rats 
The BW of old rats was significantly higher than that of young rats 
(p = 0.001). Although the weight of the EDL muscle did not differ 
significantly between groups (p = 0.699), the soleus weight was 
significantly greater in old rats than in young rats (p = 0.012). The 
soleus mass normalized to BW did not differ significantly between 
groups (p = 0.082), whereas the EDL mass normalized to BW was 
significantly lower in old rats than in young rats (p = 0.002). Motor 
coordination differed significantly between groups, with old rats 
exhibiting a significantly earlier first drop from the rotarod bar 
(p = 0.001) (Table 1). 

Differences in the Expression of Angiogenesis-Related Proteins 
in Type I and II Muscles of Young and Old Rats 
We assessed the expression levels of different angiogenesis-related 
proteins in soleus (slow-twitch) and EDL (fast-twitch) muscles. In 
the soleus muscle, while HIF-1α and FLK-1 levels did not differ 
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between groups, the VEGF level was significantly lower in old rats 
than in young rats (p = 0.001). In the EDL muscle, VEGF levels 
did not differ significantly between groups (p > 0.05), while HIF-
1α and FLK-1 levels were significantly lower in old rats than in 
young rats (both p = 0.001) (Fig. 1A, 1B). 

Differences in the Expression of Muscle Protein Synthesis–
Related Proteins in Type I and II Muscles of Young and Old Rats 
In the soleus muscle, IGF-1 and Akt levels did not differ signifi-
cantly between groups, while phosphorylated mTOR, p70S6K, 
and 4E-BP1 levels were significantly lower in old rats than in young 
rats (all p = 0.001). In the EDL muscle, phosphorylated IGF-1, 
Akt, mTOR, and p70S6K levels were significantly lower in old rats 
than in young rats (all p = 0.001), while the phosphorylated 4E-
BP1 level did not differ significantly between groups (p > 0.05) 
(Fig. D). 

Differences in the Number of Myonuclear and Satellite Cells 
in Type I and II Muscles of Young and Old Rats 
Immunofluorescence analysis revealed significantly lower myonu-
clei/fiber (2.15 ± 0.25 vs. 1.66 ±  0.14), Pax7/fiber (0.04 ± 0.01 vs. 
0.01 ± 0.01), and muscle (2,169.25 ± 87.77 μm2 vs. 1,701.23 ± 99.85 
μm2; p < 0.01) CSAs in slow-twitch muscles of old rats than in those 
of young rats. In fast-twitch muscles, myonuclei/fiber (2.49 ± 0.55 
vs. 1.32 ± 0.14), Pax7/fiber (0.14 ± 0.05 vs. 0.05 ± 0.01), and muscle 
(2,277.41 ± 75.75 μm2 vs. 1,552.64 ± 24.61 μm2) CSAs were signifi-
cantly lower in old rats than in young rats (all p < 0.01). 

DISCUSSION 

This study investigated the effects of aging on the expression of an-
giogenic and muscle protein synthesis factors, as well as the num-
ber of myonuclear and satellite cells, in different skeletal muscle 
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Fig. 1. Expression levels of muscle angiogenic and synthesis–related proteins in slow-twitch and fast-twitch of young (n=8) and old (n=8) rats. 
(A) Angiogenic protein expressions in soleus muscle. (B) Angiogenic protein expressions in EDL muscle. (C) Muscle synthesis-related protein 
expressions in soleus muscle. (D) Muscle synthesis-related protein expressions in EDL muscle. EDL, extensor digitorum longus; HIF-1α, 
hypoxia-inducible factor-1 alpha; VEFG, vascular endothelial growth factor; IGF-1, anti-insulin growth factor-1; mTOR, mammalian target of 
rapamycin; p70S6K, anti-P70S6 kinase 1; 4E-BP1, anti-eIF4E-binding protein 1. *Significant difference between groups.
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types of naturally aged rats. We found that aging differently re-
duced the expression of angiogenic and muscle protein synthesis 
factors in slow-twitch and fast-twitch muscles in naturally aged 
rats. VEGF expression decreased in soleus but not EDL muscle 
with aging. In addition, mTOR and p70S6K phosphorylation de-
creased with aging in both muscle types; however, IGF-1 expres-
sion and Akt and 4EBP1 phosphorylation showed different ten-
dencies between muscle types. We also found reduced myonucle-
ar, pax7, and fiber CSAs with age in both muscle types. Thus, re-
duced angiogenic responses to aging were accompanied by muscle 
growth responses in naturally aged rat skeletal muscles; however, 
the mechanisms regulating angiogenic and muscle growth re-
sponses appeared to differ according to muscle type (type I vs. 
type II). 

As skeletal muscles predominantly contain microvessels, angio-
genesis and adequate muscle tissue perfusion are required to allow 
sufficient transportation of oxygen and nutrients to peripheral 
muscles and the maintenance of muscle mass.17) During aging, the 
angiogenic potential and function of blood vessels considerably 
decrease because of the reduced production of angiogenic fac-
tors.13) VEGF is a 35–45-kDa protein with potent pro-angiogenic 
effects regulated by HIF-1α.12) VEGF signals via tyrosine kinase re-
ceptors, known as Flk-1/KDR (VEGF receptor-2) predominantly 
expressed by endothelial cells.18) Importantly, VEGF promotes en-
dothelial cell survival and differentiation and enhances capillary 
permeability and arteriolar vasodilatation.19) Although the density 
and number of capillaries in skeletal muscles are known to differ 
among muscle fiber types, little is known regarding VEGF produc-
tion in different muscle types. In this study, we observed distinct 
angiogenic protein expression patterns in slow- and fast-twitch 
muscles. In slow-twitch muscles (soleus), HIF-1α levels did not 
change with aging; however, VEGF levels were 11.4% lower in old 
rats than in young rats. This finding suggests that eNOS (endothe-
lial nitric oxide synthase), another indicator that regulates VEGF 
expression,20) may affect the decreased VEGF level in the soleus 
muscle. Therefore, the angiogenic response through VEGF signals 
may differently occur according to the muscle type in naturally 
aged rats. 

The aging-induced decreases in VEGF expression and angio-
genesis have been shown to induce anabolic resistance associated 
with Akt downregulation. In VEGF-deficient mice, the plantaris 
muscle mass was lower at 30 days after functional overload, while 
the average muscle fiber area was also lower. The phosphorylation 
level of Akt was also lower than that of wild-type in the study.15) 

mTOR is a protein kinase21) and is sensitive to the activity of 
IGF-1, a mediator of growth hormone activity.6) When IGF-1 
binds to the receptor, it activates intracellular phosphatidylinosi-

tol-3 kinase/Akt to ultimately activate mTOR.6) mTOR activity is 
involved in protein synthesis through two independent pathways 
via p70S6K or 4E-BP1. Increased p70S6K activity by mTOR ac-
tivity induces the phosphorylation of the ribosomal protein S6, 
which induces protein synthesis, 4E-BP1 inhibits eIF4E activity.22) 
mTOR activity separates 4E-BP1 from eIF4E to form eIF4F, a 
complex of eIF4E and eIF4G, and initiates protein synthesis.23) A 
study investigating changes in muscle mass and mTOR-related sig-
naling proteins in the soleus and EDL muscles of the F344BN rat 
model with aging reported that both SOL/BW and EDL/BW de-
creased with age. In the soleus muscle of old male mice, p-Akt, 
p-mTOR, and p-p70S6K decreased, whereas in the EDL muscle, 
p-Akt and p-mTOR increased, while p-p70S6K decreased, show-
ing different results between muscle types.7) Likewise, in our study, 
we observed partially different protein expression between the so-
leus and EDL muscles. The soleus/BW tended to decrease with 
age, although the difference was not statistically significant, and 
the EDL/BW decreased significantly. We also observed consis-
tently lower mTOR and P70S6K phosphorylation levels in slow- 
and fast-twitch muscles of old rats than in those of young rats. 
However, IGF-1 and Akt phosphorylation levels were lower in old 
rats than in young rats, but only in fast-twitch muscle fibers. Al-
though mTOR, the key factor of muscle growth, was downregulat-
ed in both muscle types with age, other factors responded differ-
ently depending on the muscle types. In addition, contrary to our 
expectation, we observed VEGF reduction only in the soleus mus-
cle. This finding was consistent with with that of a previous study 
showing that mTOR regulates VEGF.24) Therefore, we observed a 
relationship between VEGF and mTOR in slow- but not fast-
twitch muscles, indicating that different muscle fiber types may 
have different muscle growth mechanisms in skeletal muscles of 
naturally aged rats.  

Satellite cells are muscle precursor cells that occupy “satellite” 
cell positions in relation to skeletal muscle fibers.25) In adult skele-
tal muscles, quiescent satellite cells are activated upon muscle dam-
age, promoting muscle repair.26) Satellite cells are related to VEGF 
expression in skeletal muscle.15) In addition, a reduction in the 
number of satellite cells precedes aging-induced muscle fiber atro-
phy,27) suggesting that the satellite cell number is a strong predictor 
of muscle fiber aging.28) Human studies reported no difference in 
satellite cell content between type I and type II muscle fiber types 
of young adults;29) however, the satellite cell/fiber of type II fibers 
were significantly reduced compared to that of type I fibers in old-
er adults.28) In contrast, animal studies reported decreases in the 
proportions of both soleus and EDL satellite cells with aging.30) In 
the present study, we found that the satellite cell number decreased 
with age equivalently in slow-twitch and fast-twitch rat muscles 
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(Table 2, Fig. 2). Additionally, we found that VEGF levels in slow-
twitch muscles reduced with age. Given that satellite cells produce 
VEGF, the aging-induced reduction in satellite cell numbers might 
have contributed to the reduction in VEGF levels. 

Although this study provides significant insights on reduced an-
giogenic and muscle growth factors in skeletal muscles of naturally 
aged rats, it is important to acknowledge its limitations. First, as the 
study sample consisted of experimental animals, the results may not 
generalize to human skeletal muscles. Second, this study used soleus 
and EDL as slow and fast-twitch muscles; thus, we could not provide 
data showing diversification of fiber type in each muscle type. Final-
ly, further morphological studies are required to understand the rele-
vance of the proximity of satellite cells to capillaries in skeletal mus-
cles, which might deepen our understanding of the complex rela-

tionship between angiogenesis and muscle growth. 
In conclusion, this study investigated factors related to angiogen-

esis, muscle protein synthesis, and satellite cells in different skeletal 
muscle types (slow-twitch and fast-twitch) of young and old rats. 
We found that aging differently impaired angiogenic and muscle 
growth responses in slow-twitch and fast-twitch muscle fibers. 
This study is the first to comprehensively examine aging-induced 
alterations in angiogenesis, muscle protein synthesis, and satellite 
cell numbers in different muscle types. We believe that a deeper 
understanding of the muscle growth response according to muscle 
fiber types is necessary. In addition, in-depth morphological analy-
ses are required to elucidate the spatial relationship between capil-
laries and satellite cells in aging skeletal muscles. 
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