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Abstract

Early public health strategies to prevent the spread of COVID-19 in the United States relied

on non-pharmaceutical interventions (NPIs) as vaccines and therapeutic treatments were

not yet available. Implementation of NPIs, primarily social distancing and mask wearing, var-

ied widely between communities within the US due to variable government mandates, as

well as differences in attitudes and opinions. To understand the interplay of trust, risk percep-

tion, behavioral intention, and disease burden, we developed a survey instrument to study

attitudes concerning COVID-19 and pandemic behavioral change in three states: Idaho,

Texas, and Vermont. We designed our survey (n = 1034) to detect whether these relation-

ships were significantly different in rural populations. The best fitting structural equation mod-

els show that trust indirectly affects protective pandemic behaviors via health and economic

risk perception. We explore two different variations of this social cognitive model: the first

assumes behavioral intention affects future disease burden while the second assumes that

observed disease burden affects behavioral intention. In our models we include several

exogenous variables to control for demographic and geographic effects. Notably, political

ideology is the only exogenous variable which significantly affects all aspects of the social

cognitive model (trust, risk perception, and behavioral intention). While there is a direct nega-

tive effect associated with rurality on disease burden, likely due to the protective effect of low

population density in the early pandemic waves, we found a marginally significant, positive,

indirect effect of rurality on disease burden via decreased trust (p = 0.095). This trust deficit

creates additional vulnerabilities to COVID-19 in rural communities which also have reduced

healthcare capacity. Increasing trust by methods such as in-group messaging could poten-

tially remove some of the disparities inferred by our models and increase NPI effectiveness.
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Introduction

In response to evidence of community spread of COVID-19 [1], the United States (US) began

providing guidance and implementing various mitigation policies to reduce disease transmis-

sion in March 2020. These mitigation strategies relied on non-pharmaceutical interventions

(NPIs) such as mask wearing and social distancing. State and local governments canceled

events, issued stay-at-home orders, and mandated the closure of nonessential businesses.

Though type, timing, and duration of the orders varied greatly between jurisdictions [2, 3], all

of these public health orders called for behavioral changes and restrictions on personal move-

ment, gatherings, and business activity.

In order to properly assess the potential effectiveness of NPIs, decision makers must take

into account human behaviors. Voluntary compliance with public health guidance and orders

is affected by demographic factors, cognitive constructs, and social constructs [4]. Health

behavior theory and risk behavior models [5–7], characterize the demographic factors related

to risk perception and health protective behavior. The perception that viruses pose a serious

threat, and that one is susceptible to this threat, is the most likely predictor of adoption and

compliance with NPIs. Other cognitive constructs, namely perceived severity, perceived sus-

ceptibility, and belief in the benefits of adopted behaviors, are all associated with reduced

COVID-19 risk behaviors and increased health protective behavior [8, 9]. That behaviors are

often shaped by perceptions of what others are doing, by in-group approval, and by desires to

protect those in their communities [10, 11] further complicates NPI adoption.

Political identity in particular is one factor that can lead to out-group distrust [12]. Affective

polarization [13] extends beyond issue-based disagreement to an identity-based comparison

between in-groups and out-groups. This exacerbates dislike and distrust of those outside of the

in-group [13–15]. When public health institutions are considered part of the out-group, this

can result in non-adoption of preventative behaviors [16].

Rural Americans face increased risk of severe illness and death from COVID-19 due to

health disparities, health care shortages, and social inequities [17, 18]. On average, rural Amer-

icans are older, are more likely to live in poverty, have higher rates of chronic disease and dis-

ability, and are less likely to be insured than urban dwellers [19, 20]. Studies have consistently

shown less compliance with NPIs in rural areas, particularly among rural Americans identify-

ing as conservative. These associations were less strong among older rural individuals [17, 18].

The lack of healthcare resources due to hospital closures, limited numbers of health profes-

sionals, and low critical-care capacity in rural communities poses an additional risk in the face

of a surge of patients with COVID-19 [21].

In this study, we use a survey instrument distributed in three socially and demographically

diverse US states (Idaho, Texas, and Vermont) during October and November 2020 in order

to examine the differences among rural and urban Americans in their attitudes towards, and

uptake of, NPIs. To advance health behavior theory, we tested various causal relationships

between trust in public health guidance, health and economic risk perception, and resistance

to pandemic behavioral change using structural equation modeling. Secondarily, we also

explore the relationship between disease burden and behavior with models of our survey data.

From the best-supported models, we determine how rurality—along with other exogenous

variables such as political ideology—factors into behavior during the early portion of the

COVID-19 pandemic. We emphasize that our model is not an attempt to produce the best pre-

dictive model of COVID-19 burden, an effort which has been done using many other better

suited methods for that task. Rather, we wish to determine a model of human behavior that

could augment such models and increase their value to public health officials. Our work is

important and novel because it incorporates human attitudes, perceptions, and behavioral
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intention into infectious disease models, which extends our ability to predict expected differ-

ences in disease outcomes across the United States.

Materials and methods

Survey development and data collection

Data for this research come from a sequential mixed-mode survey distributed to a dispropor-

tionate stratified sample of households in Idaho, Texas, and Vermont. The specific survey

design, employing both an online and a paper survey option, as well as English and Spanish

translations, was selected in order to reach communities that are typically harder to reach via

online surveys (for example, rural and elderly populations, individuals who lack access to reli-

able internet connections, and non-English speakers) [22]. Following standard survey design

principles, the survey design includes several steps: pre-testing, field testing, pilot testing, and

validation [23, 24]. We first pre-tested the survey with a convenience sample of college stu-

dents (n = 55) recruited from the University of Idaho via the online survey platform Qualtrics

(Provo, UT, USA). Pre-testing enabled us to measure pertinent factors such as time for com-

pletion, satisfaction, and level of difficulty. Subsequently, we field tested the survey question-

naire by sharing it with 10 state and regional public health experts and one community based

organization serving Hispanic populations in Idaho (Community Council of Idaho). This

organization helped us to verify the Spanish translation and determine its cultural resonance.

Feedback from these experts was used to revise and refine the survey questions to help ensure

their validity and reliability. Lastly, we pilot tested the survey using Qualtrics by distributing

the survey to 50 respondents each from ID, TX, and VT (n = 150) between August-September

2020. For each state, we obtained equal proportions of rural and urban/suburban respondents.

We conducted consistency analysis using the pilot data and examined other factors such as

time for completion and any inexplicable patterns in the pilot data. The finalized survey covers

topics including: worry about COVID-19, social distancing, mask wearing, economic impacts,

contact tracing, vaccination intention, trust, information sources, and demography. Our ques-

tions are theory driven, tapping into constructs from common health behavior theories such

as Social Cognitive Theory [25] and the Health Belief Model [26]. We also rely on CDC’s

Behavioral Risk Factor Surveillance System (BRFSS) and other published survey studies, e.g.,

Jamieson and Albarracı́n [27], to determine the consistency and validity of survey questions.

Our disproportionate stratified sample purchased from Dynata (Shelton, CT, USA) consists

of 2000 rural and 2000 urban or suburban addresses from each of Idaho, Texas, and Vermont

(12000 in total). Dynata classifies addresses as rural if they fall outside of a metropolitan statis-

tical area (MSA) as defined by the US Office of Management and Budget. We employed the

services of Washington State University’s Social & Economic Sciences Research Center to dis-

tribute the survey. All household addresses within the sampling frame were sent an initial invi-

tation letter—which included a $1 USD incentive—directing respondents to a URL where they

were asked to enter their unique response ID and complete the survey online. Non-respon-

dents were sent a reminder postcard one week later, and two weeks after that a final reminder

letter was mailed. We offered a phone number and an email address with the option to reach

out to us to request a paper copy of the survey for those preferring the paper option. Online

survey data collection occurred during October and November, 2020. Requested paper surveys

were mailed in mid-November, and the data collection was completed in December, 2020.

Our survey questionnaire (S1 Appendix) was approved by the University of Idaho Institu-

tional Review Board (IRB #20–119). This study was deemed exempt from full review by the

IRB as it includes a voluntary survey data collection of adults over the age of 18. Informed con-

sent was obtained from all survey participants. Consent was documented by online survey
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participants reading the consent form and voluntarily clicking a button to proceed to the full

survey. The participants who took the paper survey read a consent form and voluntarily mailed

back their completed surveys. This study does not include any retrospective medical records

or archived samples.

Measurements

Our demographic variables are comprised of direct measures of five attributes. Political ideol-

ogy is coded as an unordered factor with levels: liberal, moderate, conservative, libertarian,

non-political, and other; moderate is designated as the reference level for statistical analyses.

The remaining measures are recorded as Boolean variables measuring race (white = 1), gender

(female = 1), age (over 64 years = 1), and geography (rural = 1). See S3.1 Table in S3 Appendix

for a detailed breakdown of demographic characteristics. Except for geography, which is deter-

mined by our de-identified address-based survey sample, all demographic variables are self-

reported.

Rural/urban designations for each response are determined based on the United States

Department of Agriculture’s (USDA) rural-urban commuting area codes (RUCA), which clas-

sify US census tracts based on population density, urbanization, and daily commuting distance

[28]. While RUCAs utilize a similar metropolitan/micropolitan approach used as part of the

Office of Management and Budget (OMB) classification of metropolitan statistical areas

(MSAs), the use of census tracts in RUCA assignment provides a more detailed geographic

structure for urban and rural delineation [29].

For our analyses, we geographically mapped all survey respondents (n = 1034) for all three

states (ID, TX, and VT), and associated RUCA codes based on the respondents’ de-identified

addresses. We used ArcGIS software from Environmental Systems Research Institute, Inc.

(ESRI; West Redlands, CA, USA) to perform this spatial association. We then designated

respondents whose RUCA primary code was 1, 2, 3, or 4 as urban, and all other RUCA codes

as rural (see S3.2 Table in S3 Appendix for a full list of all RUCA code designations). This stric-

ter classification, as opposed to MSA classifications used in the sampling frame, ensures that

rural-classified responses would reflect rural attitudes and experience [29].

We use two different measures of disease burden. For models where behavioral intention is

hypothesized to affect disease burden, we consider cumulative cases per 100 people from the

beginning of the pandemic in January 2020 through 30 April 2021, at the county level, as

reported by the New York Times [30]; county-level data represent the finest spatial scale avail-

able for use in the study region (e.g., city-level data are not available). Choosing a date after the

survey period enables observation of delayed consequences of behavior on disease burden.

The chosen sample date captures the main wave of the pandemic in the US prior to widespread

availability of the vaccines. Exploratory analyses showed that the exact choice of date has little-

to-no effect on model results, which is to be expected given the auto-correlative structure of

spatiotemporally-distributed cumulative disease data. For models where disease burden is

hypothesized to affect behavioral intention, we use the cumulative case count from January

2020 to the recorded response date of the observation. Using this measure is consistent with

the idea that previous, personal experience with the pandemic is shaping behavior. For all

models, each respondent is assigned disease data corresponding to the county of the sampled

de-identified address.

We explored using other measures of burden, in particular the number of COVID-19

deaths reported. Death data are highly correlated with case data, which produced model con-

vergence issues (singularities) if both measures were used simultaneously. Use of death data

alone produced only slight changes in our model results, and thus are not presented herein.

PLOS ONE Effects of trust, risk perception, and behavior on the COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0268302 May 20, 2022 4 / 16

https://doi.org/10.1371/journal.pone.0268302


Because much of sample comes from small rural populations, death data are sparse due to

increased stochasticity; this sparsity reduces statistical power, and we therefore opted to use

cumulative case counts.

Statistical models

We use structural equation modeling (SEM) to test six different hypotheses regarding poten-

tially causal pathways between trust, two types of risk perception, behavioral intention, and

disease burden. SEM is a flexible modeling method that allows for the decoupling of the ran-

dom error arising from observation and the error in the model and comparison of different

pathways of causality. Our SEM application utilizes the lavaan package [31] which integrates

factor analysis to define the latent variables with systems of simultaneous linear regression

equations. Latent variables are those for which there is no direct measurement, but rather the

variables are inferred indirectly via indicators. All analyses were performed in R v4.1.0 (see S2

Appendix for R code). The four central latent variables in our attitudinal framework are

inferred as follows.

“Health risk perception” and “economic risk perception” are derived from survey questions

which asked directly about respondents’ concern for their own and community health and

economic security. For these two measures, higher values of the latent variable indicate higher

perceived risk. “Trust” is derived from similar questions which probe the degree of trust in

COVID-19 guidance from governmental public health, medical, and scientific authorities. For

our trust measure, higher values indicate higher trust in selected sources.

“Behavioral intention” is derived from 8 other latent variables corresponding to expected

engagement in day-to-day activities and protective behavior. Specifically, these activities

include: 1) gathering indoors with close friends and family, 2) gathering indoors with a large

group, 3) dining indoors at a restaurant, 4) attending church indoors, 5) shopping in person,

6) attending personal appointments, 7) participating in large community activities, and 8)

wearing a mask. Questions about participating in these 8 activities were presented at increasing

COVID-19 exposure-risk levels. A higher behavioral intention score indicates that the respon-

dent expects to continue activities 1–7 and eschew masking as risk levels increase.

Health risk perception, economic risk perception, and trust, together with the second-order

variable behavioral intention, form our attitudinal framework. See S3.2 and S3.3 Fig in S3

Appendix for specifics of the latent variable submodels. For all of the latent variables in our

attitudinal framework, as well as disease burden, we controlled for demographic variables via

structural regressions (rural/urban, female/non-female, white/non-white, over/under 65 years

old, and political ideology). Other control variables—such as education and income—were

originally explored in structural regressions as well; however, due to a lack of significant

impact, these variables have been dropped from the presented analyses.

Prior studies have considered various causal relationships between trust and risk perception

[32], finding support for influence in both directions depending on the context. In order to

determine the best fitting causal framework for this study, we test three different relationships

between them: 1) trust affecting risk perception (models 1A and 1B), 2) risk perception affect-

ing trust (models 2A and 2B), and 3) independence of trust and risk perception (models 3A
and 3B). We also test the direction of the causal relationship between disease burden and

behavioral intention (e.g., by comparing model 1A to 1B). Thus, we test six different compet-

ing hypotheses using SEM in total. Fig 1 gives graphical representations of the different

hypotheses being compared. For all of the factor analyses and structural regressions being run,

the observational unit is at the individual-level with the exception of the 3 structural regression

models (one each in models 1A, 2A, and 3A) where the dependent variable is cumulative cases
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per 100; in these three models, 117 unique values of case burden as of 30 April 2021 were avail-

able for the 117 counties sampled and were paired according to each individual’s county of

residence.

Results

Overall, we received 1087 responses, a majority online. 57 people chose to receive a paper copy

of the survey, and 44 of those respondents mailed completed surveys back to us. Our overall

response rate is 9.98%, excluding the 1110 addresses that were not deliverable. After

Fig 1. Hypothesized conceptual models. We tested several hypotheses about the interplay between trust, risk

perception, behavioral intention, and COVID-19 disease burden. Each path diagram shows the hypothesized causal

relationships between our measured variables. Latent variables are shown in ovals; exogenous variables are shown in

rectangles. Structural equation modeling (SEM) was used to assess which model was best supported by our survey data.

https://doi.org/10.1371/journal.pone.0268302.g001
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eliminating redundant and incomplete surveys, we received 1034 responses that were usable

for analysis. Raw data are available at Dryad (http://datadryad.org); S2 Appendix contains R

scripts with our data processing and analysis routines.

Of the survey respondents, 55% identify themselves as female, 44% as male, and 0.6% as nei-

ther male nor female. The mean age of the full sample is 55 years of age (range 16–96,

SD = 16.42). A majority of our sample has college degrees or higher levels of education (66%)

followed by those who have attended some college (16%). A majority indicate that their total

household income exceeds $75,000 per year (52%) with only 7% reporting household incomes

less than $25,000. In terms of ethnicity, 4% of our respondents are Hispanic or Latino; racially,

the majority of respondents were white (85%). Approximately 29% of respondents in each cat-

egory identify as liberal, moderate, and conservative while the rest identify as Libertarian, non-

political or other. Most of our respondents indicate that they are currently married or in

domestic partnerships (68%). In terms of religion, most respondents identify as evangelical

Christian (17%), followed by Catholic (16%), Mainline Christian (15%) and Agnostic (14%).

S3.1 Table in S3 Appendix has a full breakdown of our demographic variables. Overall, our

survey sample is disproportionately white, has higher levels of education and income, and is

older than the national and state distributions, which has been observed elsewhere in mail sur-

veys [33].

We tested whether demographic distribution of our responses is dependent on the state in

which a respondent lives. Overall, respondent distributions for age, gender, and income are

similar across ID, TX, and VT. While our sample has a large fraction of rural responses due to

the sampling method, the only state for which a majority of respondents are rural is Vermont;

the distribution of urban/rural respondents is significantly different between the sampled

states (χ2: 46.74, df: 2, p< 0.001). Statistically significant differences are also observed for polit-

ical orientation (χ2: 113.04, df: 10, p< 0.001), ethnicity (χ2: 29.45, df: 2, p< 0.001), race (χ2:

71.64, df: 14, p< 0.001), educational attainment (χ2: 31.37, df: 8, p< 0.001), relationship status

(χ2: 24.3, df: 8, p = 0.002), and religion (χ2: 201.83, df: 18, p< 0.001).

For our SEM models, of the 1034 respondents, 829 are usable (“complete” or lacking any

missing columns) for this analysis. All of the SEM hypotheses in which we test behavioral

intention driving disease burden produce good fits (RMSEA values of 0.071, 0.072, and 0.072,

respectively for models 1A, 2A, and 3A). Comparison of models 1A, 2A, and 3A via Akaike’s

Information Criterion (AIC) give values of 98774, 98950, and 98932, respectively. Likelihood

ratio tests indicate that the first model, where trust affects risk perception, is supported signifi-

cantly better by our data (model 1A vs. 2A: χ2 = 178.41, df = 1, p< 0.001; model 1A vs. 3A: χ2

= 159.91, df = 1, p< 0.001). Thus, all fit measures indicate 1A to be the best supported model

of the three.

For models 1B, 2B, and 3B, where behavioral intention is hypothesized to be affected by

prior pandemic experience, we also observe good fits of the model (RMSEA values of 0.071,

0.072, 0.072, respectively). AIC values for these models are 89908, 90122, and 90080, respec-

tively, and likelihood tests again favor the first trust-risk structure (model 1B vs. 2B: χ2 =

216.12, df = 1, p< 0.001; model 1B vs. 3B: χ2 = 173.51, df = 1, p< 0.001). Thus, model 1B is

the best supported model of the three by all fit measures. From hereon, we will focus on the

results of models 1A and 1B for the remainder of this article. We note that there is no method

to statistically compare model 1A with 1B because of differences in the underlying data and

equation structures. However, because the model structures for the social and cognitive latent

variables in these models are, in general, similar, we report the p-values in parallel with pA
denoting the p-value of model 1A, and pB denoting the p-value of model 1B; the full results of

each of the models are provided in S3.3-S3.8 Table in S3 Appendix.
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Both model 1A and model 1B posit that trust affects risk perception which subsequently

affects behavioral intention; for model 1A all paths are significant with the exception of eco-

nomic risk perception affecting behavioral intention, while for model 1B all paths are signifi-

cant (Fig 2). Increased trust leads to increased health risk perception (pA, pB< 0.001) and

economic risk perception (pA, pB< 0.001). Higher health risk perception is associated with

lower behavioral intention to engage in activities that have greater potential for exposure to

disease (pA, pB = 0.009). For model 1A, this riskier behavioral intention leads to increased dis-

ease burden (pA = 0.013). While for model 1B, where we consider the impact of the respon-

dents’ pandemic experience on their expressed behavioral intentions, higher disease burden is

Fig 2. Best supported social cognitive model with A and B types. The results of our SEM show that the model where

trust influences perceived health risk which in turn alters behavioral intention is the best of our causal hypotheses.

Model A shows behavioral intentions affecting disease burden, and Model B shows the effect of disease burden on

behavioral intention. In model A, rurality has an indirect effect on disease burden, with a negative effect on trust

ultimately leading to increased disease burden. Only pathways that are supported with p< 0.1 are shown.

https://doi.org/10.1371/journal.pone.0268302.g002
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associated with riskier behavioral intention (pB = 0.019). In model 1B, we also found a margin-

ally significant effect of increased economic risk perception on behavioral intention (pB =

0.073).

In model 1A, we can consider the indirect impacts of social cognitive factors on disease bur-

den via behavioral intentions. For the indirect effect of trust on disease burden, mediated via

perceived health risk and behavioral intention, we find that increased trust is significantly asso-

ciated with decreased disease burden (pA< 0.001); the intermediate pathway of increased

health risk perception is also associated with higher disease burden (pA< 0.001). Because

rurality has a marginal effect on trust, we examine the indirect effect of rurality on disease bur-

den mediated via the trust-health risk-behavioral intention pathway. We find that this indirect

effect of rurality increases disease burden but is only marginally significant (pA = 0.095). How-

ever, the net effect of rurality is still protective at the time of the survey because rural areas

experienced fewer COVID-19 cases per capita through the Spring of 2021, i.e., the direct effect

of being rural overwhelmed the indirect effect.

The results of the factor analysis for behavioral intention indicate which activities are tied

to a higher intention to engage in activities that potentially increase exposure to COVID-19.

Recall that behavioral intention is estimated using 8 day-to-day activities as indicator variables.

The results of the SEM for both models show that all 8 activities are at least marginally signifi-

cant for this measure. (Only respondents’ answers regarding willingness to go shopping and

attend appointments are marginally significant.) Listed from strongest association to weakest

association, indicators of behavioral intention are eating in restaurants, attending indoor

group gatherings, participating in large community activities, attending church, going to

appointments, meeting indoors with close friends and family, mask wearing, and shopping.

We find that demographic variables have significant effects on several of the latent variables.

The only significant effect of geography is on disease burden, with rural communities having a

significantly lower disease burden (pA< 0.001). There are, however, marginally significant

effects of rurality on trust (decreasing; pA, pB = 0.088) and on economic risk perception

(decreasing; pA = 0.096, pB = 0.094). Women show significantly increased health risk percep-

tion (pA, pB< 0.001) and economic risk perception (pA, pB = 0.035). Women are also signifi-

cantly more likely to continue daily activities in 1A (pA = 0.045); this effect was marginally

significant in 1B (pB = 0.057). Individuals who are white have significantly higher trust (pA, pB
< 0.001) and lower perceived health risk (pA, pB< 0.001). Elderly individuals perceive signifi-

cantly higher health risk (pA, pB< 0.001).

The most significant exogenous factor included from our survey data is political ideology.

Compared to respondents self-identifying as moderates, self-identified liberals communicate

more trust (pA, pB = 0.001) and self-identified conservatives communicate the least trust (pA,

pB< 0.001). Those self-identifying as non-political or libertarian also express significantly less

trust than self-identified moderates (pA, pB< 0.001 for both). In terms of risk to health from

COVID-19, self-identified liberals are significantly more concerned (pA, pB = 0.013), while

self-identified libertarians are less concerned (pA = 0.053, pB = 0.050), though this effect is mar-

ginal in model 1A. In considering economic risks from the pandemic to themselves and their

community, self-identified conservatives are less concerned than self-identified moderates (pA,

pB = 0.005), while self-identified libertarians are more concerned (pA, pB = 0.023). Finally, with

respect to behavioral intention, identifying as conservative has the strongest positive associa-

tion with increased behavioral intention to continue pre-pandemic activities and avoid mask-

ing (pA = 0.013, pB = 0.014); self-identified libertarians are also more likely to take on more

risk of exposure to COVID-19, though only marginally so (pA = 0.079, pB = 0.084). In model

1A, self-identified liberals are predicted to have increased protective behavior (p = 0.037), but

not in model 1B.
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Discussion

Our results imply there are downstream, indirect consequences of demographic and ideologi-

cal characteristics on behavior and potentially on disease burden. Specifically, we find the

most support for social cognitive models where trust influences risk perception, which in turn

affects behavioral intention (models 1A, 1B). Counter intuitively, model 1B predicts higher

observed disease burden during the beginning of the COVID-19 pandemic is associated with

decreased prophylactic behaviors. Individuals from rural communities express reduced trust

and reduced perceived risk, indicating that the barrier to public health engagement is stronger

in these regions. Importantly, our research suggests cultivating trust in authorities tasked with

communicating public health information would be the optimal way to increase adoption of

NPIs to slow the spread of future pandemics.

In the case of COVID-19, trust in the message and the messenger has been undermined by

several factors. Namely, there was a lack of uniform national, state and local strategies; inade-

quate reach, accessibility, and consistency of public health information; and widespread misin-

formation and disinformation that was not adequately refuted [34, 35]. Studies suggest that

misinformation not only erodes trust in public health authorities, but also decreases the moti-

vation to seek and adopt correct information [36]. The influence of social media on informa-

tion consumption exacerbates the impact of misinformation [27]. News partisanship further

impacts trust in public health authorities’ message of risk and the reduction of risk through

social distancing and other actions [37, 38].

COVID-19 pandemic response protocols ask individuals, families, schools, and communi-

ties to adopt life-altering precautions and behavioral changes. To adopt these practices individ-

uals must perceive the risk of COVID-19 to themselves, their families, and communities.

Furthermore, they must trust public health authorities to accurately identify and communicate

protective disease intervention protocols [39]. One consequence of the request by authorities

for social distancing and mask wearing was increased uncertainty and skepticism [40, 41].

Individuals with more trust in public health authorities are less likely to characterize such

requests as a result of incompetence or malfeasance and comply [35]. The result of increased

trust leading to increased pandemic protective behavior, as measured by decreasing day-to-

day activities and increasing mask wearing, is borne out in both of our best supported models

(Fig 2).

Observed early support for NPIs in the US was notably absent in rural communities and

essential workers [42]. Our analyses similarly shows lower levels of institutional trust, lower

levels of intention to comply with public health measures, and decreased risk perception in

rural areas (Fig 2). Nonetheless, our analyses also shows that disease burden was significantly

lower among rural persons. This suggests that, at least in the earlier stages of the pandemic,

rurality had a protective effect. This was most likely due to reduced population density and

time-of-onset of epidemic waves in those areas. However, not all rural residents were at low

exposure risk to SARS-CoV-2. Some rural residents working in meat, poultry, food processing,

and agricultural industries face additional COVID-19 risks as these industries involve working

and/or traveling in enclosed spaces closer than the recommended 6-foot distance. These

industries were deemed essential and were not closed, even in cases of high community trans-

mission. As a result, outbreaks of COVID-19 disproportionately impacted workers and their

families in such industries [43]. Decreased levels of trust in rural areas likely worsened the

issues stemming from these outbreaks among essential workers.

Our best supported models propose a role for behavioral intention in influencing future

disease burden (model 1A) and, conversely, previously observed disease burden influencing

behavioral intention (model 1B). In model 1A, we find that resistance to behavioral change
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during the COVID-19 pandemic, vı́s-a-vı́s adoption of NPIs, is significantly predictive of

higher disease burden in the Winter 2020 wave of the COVID-19 pandemic. This result fits

with standard epidemiological theory where the rate and frequency of uptake of NPIs drasti-

cally affects the epidemic trajectory. Classic examples of these effects are found in post-hoc

analyses of the 1918 Spanish Flu pandemic [44, 45]. Surprisingly in model 1B, we find that

increased observed prior disease burden actually leads to reduced prophylactic behavior.

While this result is counter intuitive, it is perhaps not without precedent. Recent research [46,

47] shows that perceived disease severity is influenced by various ideological and social factors.

Therefore, one potential explanation for the predictions of model 1B would be a disconnect

between perceived and actual disease burden in a county. If individuals are being told by their

in-group that disease burden is not severe, then they may continue engaging in behaviors that

increase their chances of contracting COVID-19, even in the face of high case counts. These

effects may have been worsened by the fact that a majority of COVID-19 cases are mild and

deaths are concentrated in the elderly [48, 49].

In the United States, adoption and approvals of public health interventions for COVID-19

fall along political lines. Specifically, other research finds people identifying as democrats favor

publicly mandated disease interventions and practice protective health recommendations

more than people identifying as republicans [37, 50–52]. Political ideology similarly influences

every aspect (trust, risk perception, and behavioral intention) of our social cognitive model

results. The finding that political ideology affects trust and compliance with NPIs (i.e., behav-

ioral intention in our models) has been reported in several other studies [34, 37, 41, 53]. Fur-

thermore, our findings are consistent with other recent work in which partisan differences

were found to be more significant than other factors in determining social distancing behavior,

and with results of disparate health outcomes based on party identity [38, 54]. Thus, our work

adds to the body of evidence for the consequences of political ideology on behavioral changes

in response to the pandemic.

Our model, however, offers a more nuanced view of where partisanship plays a role in

affecting various aspects of cognition. In particular, the social construct of trust in public

health guidance seems to be affected by all of the political categories we analyzed (i.e., liberal,

moderate, conservative, libertarian, non-political). For the cognitive constructs, only libertar-

ian identity is significant for both health and economic risk perception. In addition, health risk

perception is also significantly affected by liberal identity, while economic risk perception is

significantly affected by conservative identity. Lastly, self-identified liberals expressed willing-

ness to reduce their day-to-day activities as the risk of SARS-CoV-2 infection increased, while

conservative and libertarian identities were significantly associated with reluctance to reduce

activity. Therefore, public health strategies appealing to certain cognitive constructs might be

better focused toward particular partisan groups. For example, advertising health risks of a dis-

ease may impact liberals and libertarians more effectively than other groups. Still, trust has the

strongest effect on both types of risk perception, there we suggest maintaining trusting rela-

tionships with all groups is the most vital action.

Our findings related to gender are also in-line with other studies that report women as

more concerned about the health consequences of COVID-19 [55–57]. These results are some-

what surprising given that men are more likely to contract severe COVID-19 cases resulting in

hospitalization or death [58]. However, our findings that women engage in higher levels of

activity that could expose them to SARS-CoV-2 differ from other studies [56]. This might be

explained partially by the increased household responsibilities of women resulting in higher

activity levels [59]. 64% of the women in our survey indicated that they are married and there-

fore may feel increased pressure to perform some the day-to-day activities about which we

asked. Finally, women also perceived more economic risk to themselves and their community
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from COVID-19, which is consistent with women having generally higher risk perception

[60].

Our study has several limitations. First, survey instruments are subject to response bias.

Our respondents tend to be older, wealthier, more-educated individuals compared to the pop-

ulation as a whole. This is typical of many survey-based studies [33]. We interpret our findings

in light of this limitation. Second, we received fewer responses from Texas (144) than from

Idaho and Vermont. However, we received a substantial fraction of rural responses from each

state, resulting in a multifaceted picture of rural attitudes; therefore, the effect of a lack of

respondents from Texas may have been minimal. Third, with respect to disease data, we are

limited by the shortcomings of the disease surveillance and reporting mechanisms. Because of

limitations in testing for COVID-19, reported case counts are an underestimate of the true

number of cases. This should have little effect on the outcome of our study so long as there are

no heterogeneous biases in under-reporting of cases. Fourth, we are limited by the fact that

COVID-19 cases are reported at the county level within the US. We may have been able to

achieve greater resolution in our study had we been able to associate case counts with census

tracts, the geographic level at which the geographic analysis was conducted. Related to this, in

determining whether a zip code is rural or urban, we use the RUCA classification system. This

system offers a finer level of granularity of which locations are urban and which are rural than

the MSA classifications used by Dynata. Fifth, our survey instrument measures an individual’s

self-reported political leanings, rather than political affiliation directly. Previous work shows

that individuals may be afraid to honestly identify their political beliefs for fear of repercus-

sions. Sixth, it should be emphasized that our study represents a snapshot of attitudes in late

2020, and it is possible that attitudes toward NPIs have changed with the progression of the

pandemic and the availability of effective vaccines. Finally, while we received 1,087 responses

out of the 12,000 surveys we sent out, having a larger sample size may have allowed us to attri-

bute significant effects to other factors than those discussed here. That being said, the smallest

significant effects in our models are of magnitude around 0.05, which suggests that our analy-

ses are strong enough to detect small effects.

Conclusion

Understanding how individuals process and respond to threats in their environment is critical to

optimizing public health messaging and policy. Using structural equation modeling to identify

latent variables for trust, risk perception, and behavioral intention, our survey results best sup-

port the hypothesis that building trust in government organizations can be used to influence

behavioral intentions indirectly via risk perception. Higher risk perception leads to reduced

behavioral intention, and model 1A predicts reduced behavioral intentions leads to reduced dis-

ease burden. We therefore propose decision makers focus efforts on trust building to increase

NPI effectiveness in future pandemics. Our work is novel in its attempt to reach and understand

individuals living in rural areas. Rural populations indicate less trust and reduced risk perception

compared to urban populations, making them vulnerable to higher disease burden and a possible

focus area for public health. Lack of trust in rural communities combined with increased risked

to essential workers could have negative synergy; this issue is beyond the scope of this work but

merits future study. In agreement with other COVID-19 studies, political ideology seems to be

an overwhelming factor influencing the trust–risk–behavior cognitive pathway. Our results align

with other research on politicization and polarization of public views towards controversial top-

ics. Future research utilizing increased spatial and temporal resolution of survey data, along with

other measures of disease burden, such as years-of-life-lost, could further elucidate the links

between political affiliation and social cognition.
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42. Czeisler MÉ, Tynan MA, Howard ME, Honeycutt S, Fulmer EB, Kidder DP, et al. Public Attitudes,

Behaviors, and Beliefs Related to COVID-19, Stay-at-Home Orders, Nonessential Business Closures,

and Public Health Guidance—United States, New York City, and Los Angeles, May 5–12, 2020.

MMWR Morbidity and Mortality Weekly Report. 2020; 69(24):751–758. https://doi.org/10.15585/mmwr.

mm6924e1 PMID: 32555138

PLOS ONE Effects of trust, risk perception, and behavior on the COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0268302 May 20, 2022 15 / 16

https://doi.org/10.1111/jrh.12477
https://doi.org/10.1111/jrh.12477
http://www.ncbi.nlm.nih.gov/pubmed/32543751
https://doi.org/10.4256/mio.2010.0014
https://doi.org/10.4256/mio.2010.0014
https://doi.org/10.1037/0003-066X.44.9.1175
http://www.ncbi.nlm.nih.gov/pubmed/2782727
https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/
https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/
https://doi.org/10.2747/0272-3638.20.8.727
https://doi.org/10.2747/0272-3638.20.8.727
https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.1111/risa.13325
http://www.ncbi.nlm.nih.gov/pubmed/31046144
https://doi.org/10.1002/lary.24307
http://www.ncbi.nlm.nih.gov/pubmed/23853050
https://doi.org/10.1007/s00148-021-00848-z
http://www.ncbi.nlm.nih.gov/pubmed/34177123
https://doi.org/10.1177/1075547020959670
https://doi.org/10.1016/j.jpubeco.2020.104254
http://www.ncbi.nlm.nih.gov/pubmed/32836504
https://doi.org/10.1038/s41562-020-00977-7
http://www.ncbi.nlm.nih.gov/pubmed/33139897
https://doi.org/10.1016/j.socscimed.2016.11.016
https://doi.org/10.1016/j.socscimed.2016.11.016
http://www.ncbi.nlm.nih.gov/pubmed/27914936
https://doi.org/10.1016/j.hlpt.2020.08.007
http://www.ncbi.nlm.nih.gov/pubmed/32874854
https://doi.org/10.15585/mmwr.mm6924e1
https://doi.org/10.15585/mmwr.mm6924e1
http://www.ncbi.nlm.nih.gov/pubmed/32555138
https://doi.org/10.1371/journal.pone.0268302


43. Dyal JW, Grant MP, Broadwater K, Bjork A, Waltenburg MA, Gibbins JD, et al. COVID-19 Among Work-

ers in Meat and Poultry Processing Facilities 19 States, April 2020. MMWR Morbidity and Mortality

Weekly Report. 2020; 69(18). https://doi.org/10.15585/mmwr.mm6918e3 PMID: 32379731

44. Bootsma MCJ, Ferguson NM. The effect of public health measures on the 1918 influenza pandemic in

U.S. cities. Proceedings of the National Academy of Sciences. 2007; 104(18):7588–7593. https://doi.

org/10.1073/pnas.0611071104 PMID: 17416677

45. Markel H, Lipman HB, Navarro JA, Sloan A, Michalsen JR, Stern AM, et al. Nonpharmaceutical Inter-

ventions Implemented by US Cities During the 1918-1919 Influenza Pandemic. JAMA. 2007; 298

(6):644–654. https://doi.org/10.1001/jama.298.6.644 PMID: 17684187

46. Siegrist M, Bearth A. Worldviews, trust, and risk perceptions shape public acceptance of COVID-19

public health measures. Proceedings of the National Academies of Sciences. 2021; 118(24). https://doi.

org/10.1073/pnas.2100411118 PMID: 34045360

47. Franz B, Dhanani LY. Beyond political affiliation: an examination of the relationships between social fac-

tors and perceptions of and responses to COVID-19. Journal of Behavioral Medicine. 2021; 44(5):641–

652. https://doi.org/10.1007/s10865-021-00226-w PMID: 33877532

48. O’Driscoll M, Santos GRD, Wang L, Cummings DAT, Azman AS, Paireau J, et al. Age-specific mortality

and immunity patterns of SARS-CoV-2. Nature. 2020; 590(7844):140–145. PMID: 33137809

49. Sen P, Yamana TK, Kandula S, Galanti M, Shaman J. Burden and characteristics of COVID-19 in the

United States during 2020. Nature. 2021; 598(7880):338–341. https://doi.org/10.1038/s41586-021-

03914-4

50. Green J, Edgerton J, Naftel D, Shoub K, Cranmer SJ. Elusive consensus: Polarization in elite communi-

cation on the COVID-19 pandemic. Science Advances. 2020; 6(28). https://doi.org/10.1126/sciadv.

abc2717 PMID: 32923600

51. Palmer CL, Peterson RD. Toxic Mask-ulinity: The Link between Masculine Toughness and Affective

Reactions to Mask Wearing in the COVID-19 Era. Politics & Gender. 2020; 16(4):1044–1051. https://

doi.org/10.1017/S1743923X20000422

52. Republicans, Democrats move even further apart in coronavirus concerns. Pew Research Center;

2020. Available from: https://www.pewresearch.org/politics/2020/06/25/republicans-democrats-move-

even-further-apart-in-coronavirus-concerns/.

53. Engle S, Stromme J, Zhou A. Staying at home: Mobility effects of COVID-19. CEPR Covid Economics:

Vetted and Real-Time. 2020; 4:86–102.

54. Gadarian SK, Goodman SW, Pepinsky TB. Partisanship, health behavior, and policy attitudes in the

early stages of the COVID-19 pandemic. PLOS ONE. 2021; 16(4):1–13. https://doi.org/10.1371/journal.

pone.0249596 PMID: 33826646

55. Galasso V, Pons V, Profeta P, Becher M, Brouard S, Foucault M. Gender differences in COVID-19 atti-

tudes and behavior: Panel evidence from eight countries. Proceedings of the National Academy of Sci-

ences. 2020; 117(44):27285–27291. https://doi.org/10.1073/pnas.2012520117 PMID: 33060298

56. Alsharawy A, Spoon R, Smith A, Ball S. Gender Differences in Fear and Risk Perception During the

COVID-19 Pandemic. Frontiers in Psychology. 2021; 12:3104. https://doi.org/10.3389/fpsyg.2021.

689467 PMID: 34421741

57. Rodriguez-Besteiro S, Tornero-Aguilera JF, Fernández-Lucas J, Clemente-Suárez VJ. Gender Differ-
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