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Abstract
Background: Illumina Sentrix-6 Whole-Genome Expression BeadChips are relatively new
microarray platforms which have been used in many microarray studies in the past few years. These
Chips have a unique design in which each Chip contains six microarrays and each microarray
consists of two separate physical strips, posing special challenges for precise between-array
normalization of expression values.

Results: None of the normalization strategies proposed so far for this microarray platform allow
for the possibility of systematic variation between the two strips comprising each array. That this
variation can be substantial is illustrated by a data example. We demonstrate that normalizing at
the strip-level rather than at the array-level can effectively remove this between-strip variation,
improve the precision of gene expression measurements and discover more differentially
expressed genes. The gain is substantial, yielding a 20% increase in statistical information and
doubling the number of genes detected at a 5% false discovery rate. Functional analysis reveals that
the extra genes found tend to have interesting biological meanings, dramatically strengthening the
biological conclusions from the experiment. Strip-level normalization still outperforms array-level
normalization when non-expressed probes are filtered out.

Conclusion: Plots are proposed which demonstrate how the need for strip-level normalization
relates to inconsistent intensity range variation between the strips. Strip-level normalization is
recommended for the preprocessing of Illumina Sentrix-6 BeadChips whenever the intensity range
is seen to be inconsistent between the strips. R code is provided to implement the recommended
plots and normalization algorithms.

Background
Illumina Whole-Genome Expression BeadChips have
been widely adopted for high-throughput gene expression
analysis in the past few years. Most popular and compre-
hensive of these are the HumanWG-6 and MouseWG-6
(Sentrix-6) BeadChips. Each Sentrix-6 BeadChip allows

the interrogation of six RNA samples in parallel and pro-
duces data that can be treated as coming from six inde-
pendent microarrays. Physically, each Sentrix-6 BeadChip
consists of twelve equally-spaced strips of beads (Figure
1). Each pair of adjacent strips comprises a single microar-
ray and is hybridized with a single RNA sample. In the first
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generation of Human-6 and Mouse-6 BeadChips, the first
strip of each array was populated mainly with probes for
curated RefSeq transcripts while the second strip was pop-
ulated with probes for less well-annotated transcripts
from a variety of databases including RefSeq, RIKEN FAN-
TOM, Gnomon and Unigene [1].

Normalization of microarray data is an essential analysis
step which removes unwanted technical variation and
ensures that expression values from different arrays are
comparable. Normalization needs to adjust not only for
technical variation between RNA samples but also for sys-
tematic measurement errors associated with the hybridiz-
ing and scanning steps. In the case of Illumina BeadChips,
normalization needs to adjust for technical variation
within each BeadChip, including spatial variation across
the slide.

All normalization strategies proposed so far for Illumina
BeadChips carry out normalization at the array level,
meaning that data from the two strips comprising each
array are combined before normalization is conducted.
The simplest and most popular strategy is to log-trans-
form the probe-wise expression summaries for each array
which are then quantile normalized between arrays [2-5].
This strategy normalizes the arrays, but fails to take any
account of variation between the two strips comprising
each array, despite the fact that the physical spacing
between strips is the same as the spacing between arrays.

This study illustrates by way of a data example that
between-strip technical variation can be substantial. We
demonstrate that normalizing at the strip level rather than
at the array level can effectively remove this between-strip
variation, improve the precision of gene expression meas-
urements and discover more differentially expressed (DE)

genes. Many of the extra genes found are functionally
closely related to the knockout genes in the experiment.

Results and Discussion
Strip-level variation
As an illustrative case study, we consider data from an
experiment involving 18 RNA samples hybridized to Illu-
mina Mouse-6 Version 1.1 BeadChips. The data were gen-
erated as part of a study designed to dissect molecular
components of the NF-κB1 pathway which mediates the
immune response to pathogen invasion. The experiment
studied the response to LPS stimulation in macrophages
from wild-type, Nfkb1 knockout and Tpl2 knockout mice.
For each of the three genotypes, RNA samples were taken
prior to LPS stimulation and 1 hour and 3 hours after LPS
stimulation, making a total of nine experimental condi-
tions (three genotypes by three times). Two biological
replicates were conducted of the entire experiment, mak-
ing a total of 18 RNA samples hybridized to three Bead-
Chips. Illumina BeadStudio software was used to output a
summary probe profile file containing a raw intensity
value for each probe on each array of the experiment. The
arrays contain 46,657 probes, so the raw data is a 46, 657
× 18 matrix of intensities.

Figure 2(a) shows the distribution of probe intensities for
each strip of each array. Each strip is shown as a separate
box. The consecutive strips top-to-bottom down each
BeadChip (as seen in Figure 1) are plotted left to right
across the plot. Each array corresponds to two consecutive
strips, so there are 36 boxplots in all. As expected, the first
strip has higher average intensity than the second strip for
every array. This is because probes on the first strip are
derived from curated RefSeq transcripts which make up
most of the moderate to highly expressed transcripts. By
contrast, the second strip contains probes for many pre-

Physical layout of twelve equally-spaced strips in a Illumina Sentrix-6 BeadChipFigure 1
Physical layout of twelve equally-spaced strips in a Illumina Sentrix-6 BeadChip. Each array is made up of a pair of 
strips, one-below the other.
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Boxplots showing intensity distributions for each strip on each arrayFigure 2
Boxplots showing intensity distributions for each strip on each array. Panel (a) shows raw data output from BeadStu-
dio on the log2 scale. Panel (b) shows array-level quantile-normalized data. Panel (c) shows strip-level quantile-normalized data. 
The first six arrays from the left come from the first chip, the second six arrays from the second chip and last six arrays from 
the third chip. The first strip of each array is red and the second strip is green. The two strips belonging to each array have the 
same sample name. Log-intensities greater than 10 are omitted from the plot to better show the main body of values.
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dicted or poorly annotated transcripts, which are less
likely to be expressed in any individual sample. Indeed,
the top quartile of the second strips is typically only about
the same level as the median of the first strip on the same
array. The first strips also show much wider intensity
ranges, as evidenced by longer boxes in the plot, than the
second strips.

Figure 2(a) shows noticeable variation in average intensity
between arrays. This is not necessarily of any concern, as
it will be removed by normalization. What are of concern
are inconsistencies in the relativities between the two
strips. In particular, there are several second-strips (indi-
cated by green arrows) that show unusually large spread
relative to the first-strips for the same arrays (indicated by
red arrows). These three arrays show an unusually wide
range of intensities on the second strip while the first strip
is normal. This is a symptom of intra-array spatial varia-
tion on the BeadChips.

Figure 2(b) shows the distribution of normalized intensi-
ties after array-level quantile normalization. Array-level
normalization ensures that the distribution of intensities
is the same for each array but not for each strip. For some
arrays, a wider range of intensities on the second strip
before normalization forces a narrower range of intensi-
ties on the first strip after normalization, as the normali-
zation process attempts to compensate. This is most
noticeable for the three arrays noted above. For these
arrays, the second strips still have wider than average
spread after normalization, but now the corresponding
first strips become the least spread of all the first strips.
The intra-array variation in the raw intensities, interacting
with the normalization method, has resulted in artificially
compressed intensity values on the first strips for these
arrays.

The same problem can be seen even more vividly by com-
paring replicate arrays. An MA-plot compares two arrays
by plotting probe-wise log-ratios between the arrays
against average log-intensities. The MA-plot in Figure 3(a)
compares the third array in the experiment to the other
array hybridized with RNA sample from the same source.
Both arrays hybridize to the biological sample Tpl2-/- 180
mins. The plot shows that first-strip probes are systemati-
cally lower on the first replicate whereas the second-strip
probes are systematically higher. This systematic bias has
been introduced by the normalization. The bias is sub-
stantial, with the strip-1 and strip-2 bands in Figure 3(a)
separated by more than one unit of the vertical axis, corre-
sponding to a 2-fold discrepancy in intensity. This lack of
alignment between the two strips is clearly systematic and
is enormously greater than could arise from random vari-
ation. Array-level normalization produces here the fiction
that the strip-2 probes appear generally up-regulated

when in reality almost certainly most are not differentially
expressed. Similar bias can be observed on other replicate
pairs of arrays (data not shown).

A solution to the above problem is to normalize the first
and second strips separately. In this approach, quantile
normalization is applied twice, once to the 18 first strips
and once to the 18 second strips. This forces all first strips
to have the same overall intensity distribution, and simi-
larly for the second strips, but no relationship between the
first and second strips is assumed. Figure 2(c) displays the
distribution of intensities after strip-level normalization.
Strip-level normalization has the desirable property that
the intensity distribution for each strip is equalized across
arrays. In particular, the normalized intensities for one
strip can no longer be influenced by aberrations on the
other strip of the same array.

The success of strip-level normalization can be seen by
comparing replicates, which now show high concordance.
Figure 3(b) shows the third array and its replicate after
strip-level normalization. The strip-1 and strip-2 bands
are now perfectly aligned about the M = 0 line, i.e., the

MA-plots for two replicate arrays after (a) array-level nor-malization and (b) strip-level normalizationFigure 3
MA-plots for two replicate arrays after (a) array-level 
normalization and (b) strip-level normalization. Both 
arrays are hybridized with RNA from Tpl2-/- macrophages 
after 180 mins. The horizontal axis shows A-values, the aver-
age log2-intensity for each probe, and the vertical axis shows 
M-values, the log-intensity ratio between the two replicate 
arrays for each probe. The horizontal zero line represents 
equality of probe intensities.
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expression log-ratios are now randomly scattered about
zero for both first and second strips. This shows that the
bias related to the physical position of the strips within
the arrays has been removed.

Between-array precision
The most basic aim of normalization is to increase the
consistency between replicate arrays. To examine this, we
computed the standard deviation of normalized log2-
expression values between replicate arrays for each probe.
Each of the nine experimental conditions has a pair of rep-
licate arrays, so each pooled standard deviation has nine
degrees of freedom. When array-level normalization was
used, the median of the probe-wise standard deviations
was 0.155. This implies that replicate expression values
have a typical variation up or down by about 11% on the
unlogged scale (because 20.155 = 1.11). When strip-level
normalization was used, the median standard deviation
decreased more than 10% to 0.139. This corresponds to a
20% increase (0.155/0.139 squared) in statistical infor-
mation, equivalent to the gain which would be achieved
by increasing the number of microarrays used in the
experiment by 20%. Since normalization can reduce only
the technical component of the residual variability, not
the biological component, we can conclude that the tech-
nical standard deviation corresponding to microarray pre-
cision has been reduced by substantially more than 10%.

Differential expression analysis
Next we identified probes which are differentially
expressed between wild-type and the two knockout lines.
Significance analysis was conducted using empirical Bayes
moderated t-statistics [6,7], a popular method which
gains precision compared to an ordinary t-test by moder-
ating the standard deviations across probes. Not surpris-
ingly, the increased precision arising from strip-level
normalization translates directly into greater numbers of
DE probes. Table 1 gives the numbers of DE probes
between the knockout sample and the wild-type sample at
each time point. Twice as many DE probes can be detected
at a 5% false discovery rate after strip-level normalization
as compared to the usual array-level normalization. The
larger list of DE probes after strip-level normalization

includes almost all of those found after array-level nor-
malization.

Figure 4 shows fold-changes for the DE genes in the two
knockout lines, log2 fold change on the vertical axis vs
average log-intensity on the horizontal axis. DE genes are
distributed more or less evenly across the whole intensity
range. As expected, genes with the very largest fold
changes were detected by both normalization methods,
but the genes newly discovered by strip-level normaliza-
tion were also amongst the larger fold-changes. For Tpl2-/

-, the second, third and fourth ranked genes in terms of
fold-change were found only by strip-level normalization.
In fact, most of the genes up-regulated by the Tpl2 knock-
out are detected only after strip-level normalization. The
few genes found only by array-level normalization tend to
have small fold changes.

Functional analysis
In the previous section, we have demonstrated that strip-
level normalization gives a global and substantial
improvement in precision for the microarray data. Natu-
rally, the improved precision increases the number of sta-
tistically significant genes. Figures 2 and 3 demonstrate
the mechanism by which this improved precision arises,
by improving the alignment of the strips. We can be con-
fident that improving precision by a proper analysis of the
physical properties of the microarrays will in general
improve the reliability of our biological results, although
specific effects will of course depend on the data set. In
this section we confirm that strip-level normalization
does indeed return more biologically meaningful results
for this particular data.

Our functional analysis consists of two parts. Firstly we
used the functional annotation tool DAVID [8] to look for
biologically interesting annotation categories amongst
our DE genes. Secondly, we used the Ingenuity database
[9] to show that the DE genes are enriched for genes
known to interact with the genes knocked out in the
experiment. In both cases, genes DE at the 180 min time
point were used for the analysis.

Table 1: Numbers of differentially expressed probes between knockout and wild-type samples at various times at a 5% false discovery 
rate

Normalization Genotype

Tpl2-/- Nfkb1-/-

0 60 180 mins 0 60 180 mins

Array-level 6(4) 20(19) 47(42) 23(23) 49(42) 140(135)
Strip-level 17 40 89 49 96 290

Numbers in parentheses are the number of probes which were also found by strip-level normalization.
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Consider first the Tpl2 knockout. At a false discovery rate
(FDR) cutoff of 0.05, no DAVID terms at all were found to
be significantly enriched in the list of DE genes found by
array-level normalization. After strip-level normalization,
on the other hand, fifteen highly relevant terms were
found to be significantly enriched (Table 2). All fifteen
DAVID terms found by strip-level normalization were
grouped by DAVID into one cluster of closely related cat-
egories. As can be seen from Table 2, this cluster relates to
the Toll-like receptor signaling pathway, exactly the path-
way which is being studied in this experiment, and all the
terms are of obvious biological relevance. In summary,
strip-level normalization returns easily interpretable and
highly relevant biological results whereas array-level nor-
malization returns no significant results at all.

Now consider the Nfkb1 knockout (Table 3). In this case,
array-level normalization did manage to find two Gene

Ontology (GO) terms and two other keywords at a 5%
FDR, however strip-level normalization found many
more terms at much higher significance levels. The only
term found by array-level normalization but not by strip-
level normalization is "glycoprotein", which is an
extremely common keyword, and has no obvious role
specific to the particular molecular pathways being stud-
ied here. Most of the terms (13 out of 17) found by strip-
level normalization were grouped by DAVID into the
same functional cluster relating to cytokine activity and
immune response. Again, strip-level normalization gave
strong, clearly interpretable results, whereas array-level
normalization gave very limited results at best.

Further evidence of the biological relevance of genes
found by strip-level normalization can be seen from a
gene interaction analysis using Ingenuity Pathway Analy-
sis (IPA) tool. Only 1.7% of genes on the microarrays are
known to interact with Nfkb1. Yet 7% of genes found by
strip-level normalization are known to interact with
Nfkb1, and almost all of these are in fact directly interact-
ing genes (Table 4). This enrichment for Nfkb1 interacting
genes is highly significant (P = 4e-6). The enrichment is
virtually the same if we restrict to genes found only by
strip-level normalization and not by array-level normali-
zation (P = 0.0068). On the other hand, no interacting
genes were found by array-level normalization only.

Six directly interacting genes were found by strip-level
normalization only, and these are shown in an IPA dis-
play (Figure 5). Three are the transcriptional targets of
Nfkb1: Interleukin 6 (Il6), Interferon regulatory factor 4
(Irf4) and Prostaglandin-endoperoxide synthase 2
(Ptgs2). Two of them have a protein-protein interaction
with Nfkb1: B-cell leukemia/lymphoma 3 (Bcl3) and
TNFAIP3 interacting protein 2 (Tnip2). TNFAIP3 interact-
ing protein 1 (Tnip1) has a protein-RNA interaction with
Nfkb1.

A literature search confirms that these six genes are direct
targets of or associates with Nfkb1. Il6 is required for B-
and T-cell growth and differentiation, neuronal and mac-
rophage differentiation [10]. Inhibition of mouse Nfkb
protein decreases expression of mouse Il6 mRNA in
colonic tissue from mouse exhibiting experimentally
induced colitis [11]. Irf4 is a lymphoid/myeloid-restricted
member of the IRF transcription factor family that plays
an essential role in the homeostasis and function of
mature lymphocytes. Irf4 expression in HTLV-1-infected
cells is driven through activation of the Nfkb and NF-AT
pathways, resulting in the binding of p50, p65, and c-Rel
to the Nfkb1 element and p50, c-Rel, and NF-ATp to the
CD28RE element within the -617 to -209 region of the
Irf4 promoter [12]. The proto-oncoprotein Bcl3 is a mem-
ber of the Ikb family and is present predominantly in the

MA-plots for DE probes discovered by different normaliza-tion strategies (a) Tpl2 knockout vs wild-type at 180 mins and (b) Nfkb1 knockout vs wild-type at 180 minsFigure 4
MA-plots for DE probes discovered by different nor-
malization strategies (a) Tpl2 knockout vs wild-type 
at 180 mins and (b) Nfkb1 knockout vs wild-type at 
180 mins. This figure highlights the log2 fold changes of DE 
probes discovered by different normalization strategies when 
comparing Tpl2-/- with wild-type at 180 mins and comparing 
Nfkb1-/- with wild-type at 180 mins. M-values (log2-fold-
change between the two conditions) and A-values (average 
log2-intensity) were obtained from the linear models fitted to 
the probe intensities from strip-level normalization. Plots 
were generated using the plotMA function in the Bioconduc-
tor package limma. Probes in red, green and blue were dis-
covered by strip-level normalization only, array-level 
normalization only, and both respectively. All other probes 
are in black. Numbers of DE probes can be found in Table 1.
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nucleus. It acts as an adaptor between Nfkb p50/p52 and
other transcription regulators [13].

This is far from a comprehensive study of the biological
results of this experiment. Such a study will be published
elsewhere, including RT-PCR confirmation of differential
expression for selected genes and other follow-up assays.
The bioinformatics analysis included here is however
more than enough to demonstrate that the extra differen-

tial expression detected by strip-level normalization is
biologically relevant and not merely a random sample of
unrelated probes. Moreover the extra differential expres-
sion is sufficient to materially change the conclusions
obtained.

Probe filtering
As demonstrated above, inconsistencies in the relativities
between the two strips caused array-level normalization to

Table 2: Functional analysis for DE genes at Tpl2-/- 180 mins from different normalization strategies

Array-level Strip-level

Source Term Count FDR Count FDR

INTERPRO Four-helical cytokine, core 4 0.94 9 7.5E-7
SP_PIR_KEYWORDS cytokine 5 0.21 9 1.6E-4
KEGG_PATHWAY Cytokine-cytokine receptor interaction 5 0.84 10 0.001
KEGG_PATHWAY Toll-like receptor signaling pathway - - 7 0.002
KEGG_PATHWAY Jak-STAT signaling pathway 3 1.0 8 0.002
GOTERM_MF_ALL cytokine activity 5 1.0 9 0.007
GOTERM_CC_ALL extracellular region part 15 0.072 22 0.008
GOTERM_CC_ALL extracellular space 14 1.0 21 0.008
GOTERM_CC_ALL extracellular region 16 0.072 23 0.013
KEGG_PATHWAY Regulation of autophagy - - 4 0.038
INTERPRO Interferon alpha - - 4 0.039
GOTERM_MF_ALL receptor binding 7 1.0 12 0.043
SMART IFabd - - 4 0.043
SP_PIR_KEYWORDS glycoprotein 17 0.16 24 0.048
SP_PIR_KEYWORDS Secreted 10 0.2 14 0.048

The first column is the data source from which terms in the second column come. The third column gives the number of DE genes found by array-
level normalization which are associated with the term in the same row in the second column. FDR (False Discovery Rate) from the enrichment 
test for these genes in all the DE genes found by array-level normalization is given in the fourth column (see METHODS for details). The fifth and 
sixth column are similar with the third and fourth column respectively except that DE genes examined are from strip-level normalization rather 
than from array-level normalization.

Table 3: Functional analysis for DE genes at Nfkb1-/- 180 mins from different normalization strategies

Array-level Strip-level

Source Term Count FDR Count FDR

GOTERM_BP_ALL immune system process 19 0.002 29 8.2E-5
GOTERM_BP_ALL immune response 15 0.001 22 1.1E-4
SP_PIR_KEYWORDS cytokine 9 0.01 13 3.3E-4
GOTERM_BP_ALL cytokine metabolic process 4 0.96 9 0.005
GOTERM_BP_ALL cytokine biosynthetic process 4 0.96 9 0.006
INTERPRO Fos transforming protein 3 1.0 5 0.006
GOTERM_BP_ALL cytokine production 5 0.88 10 0.01
GOTERM_BP_ALL leukocyte activation 7 0.92 13 0.01
GOTERM_BP_ALL hemopoietic or lymphoid organ development 7 0.89 14 0.01
GOTERM_BP_ALL regulation of cytokine biosynthetic process 3 1.0 8 0.011
GOTERM_BP_ALL immune system development 7 0.91 14 0.013
GOTERM_BP_ALL cell activation 7 0.93 13 0.013
GOTERM_BP_ALL hemopoiesis 7 0.94 13 0.014
GOTERM_BP_ALL positive regulation of translation 3 1.0 7 0.014
GOTERM_BP_ALL positive regulation of cellular biosynthetic process 3 1.0 7 0.019
KEGG_PATHWAY Cytokine-cytokine receptor interaction 10 0.056 14 0.027
GOTERM_MF_ALL cytokine activity 9 0.16 13 0.036
SP_PIR_KEYWORDS glycoprotein 36 0.017 51 0.18
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perform poorly. Now we want to investigate if it is possi-
ble to alleviate these inconsistencies by filtering out non-
expressed probes. Probe filtering has been reported to be
able to increase the power of detecting DE genes [14].

Probes with detection p-value greater than 0.1 on all
arrays were deemed as non-expressed probes and filtered
out. The intensity of a probe with detection p-value less
than 0.1 will be greater than 90 percent of all negative
controls [15]. In total, 22,505 non-expressed probes (48
percent of all probes) were identified. As expected, more

such probes come from the second strip (60 percent of all
non-expressed probes) than the first strip. However,
inconsistencies in the relativities between the two strips
clearly remain in the filtered raw data. Array-level normal-
ization on the filtered raw data shows the same problem.
Filtering probes after the normalization also fails to
remove the inconsistencies [see Additional file 1: Supple-
mental Figures S1-S3].

By filtering out non-expressed probes, the number of DE
probes increased for both normalization strategies. How-

Table 4: Numbers of Nfkb1 interacting genes discovered by the two normalization methods.

Normalization method DE genes Interacting Directly interacting

Array-level only 2 0 0
Strip-level only 99 6 6
Both 111 9 7
Neither 19988 335 221
Total 20200 350 234

The rows give respectively genes found by array-level normalization only, strip-level normalization only, both or neither. The second column gives 
the numbers of genes differentially expressed between Nfkb1-/- and wild-type at 180 mins found by different normalization methods. The third 
column gives the numbers of genes interacting with Nfkb1 in each set (row) of DE genes in the second columns. This interaction could be direct or 
indirect according to IPA. The fourth columns shows the corresponding numbers of directly interacting genes.

Interactions between Nfkb1 and DE genes found only by strip-level normalizationFigure 5
Interactions between Nfkb1 and DE genes found only by strip-level normalization. This gene interaction network is 
generated by Ingenuity Pathway Analysis software which uses a curated gene interaction database.
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ever, strip-level normalization still discovered about twice
as many DE probes as compared to array-level normaliza-
tion irrespective of whether probe filtering was performed
before or after the normalization step (Tables 5 and 6).
Functional analysis revealed that strip-level normalization
still yields much more significant FDR scores for discov-
ered DAVID terms than array-level normalization (Table 7
and Additional file 1: Supplemental Table S1). Two new
DAVID terms ("response to other organism" and "antivi-
ral defense") found by strip-level normalization, not
array-level normalization, are closely related to this exper-
iment. Put together, it was clearly demonstrated that
probe filtering failed to remove intra-array variation.

Conclusion
It has been shown that strip-to-strip technical variation
can have a material effect on expression values from Illu-
mina BeadChips. If the usual strategy of array-level nor-
malization is used, technical variation on one strip can
artificially perturb the normalized intensity values on the
other strip for the array, introducing bias, disagreement
between replicates, and less precise assessment of differ-
ential expression. On the other hand, strip-level normali-
zation successfully removes technical artifacts within as
well as between arrays, solving all of the above problems
and resulting in more powerful statistical analysis of the
expression values.

The evidence we present consists of three major parts.
Firstly we demonstrate that strip-level normalization gives
a substantial improvement in precision for the microarray
data. This improvement in precision is not restricted to
individual genes, but is a global result affecting all the
probes on the arrays. Secondly, we demonstrate by way of
some carefully chosen plots, how this improvement arises
by improving the alignment of the intensity values from
the individual strips. The problem can be seen to arise
from strips which have an unusually large or small inten-
sity range (a long or short box in the boxplot) relative to
their partner strip within the same array. We show that
this phenomenon leads to mis-aligned bands for individ-
ual strips in MA-plots for replicate arrays. In this way, we
have demonstrated the mechanism by which strip-level
normalization leads to improved precision and removal
of bias. Thirdly, we demonstrate by functional analysis

that the extra genes discovered after strip-level normaliza-
tion are not random but do indeed tend to be biologically
related to the experimental conditions. Although this
third component of our evidence is convincing, we view
the first two components as the most compelling, because
they demonstrate global results which affect all the probes
on the arrays, not just those genes which happened to be
significant in this experiment.

Detailed R code which should enable readers to repeat our
analysis is provided in the Additional file 2. We also pro-
vide the strip-level normalization and plotting algorithms
in the illumina package for R available from http://bio
inf.wehi.edu.au/illumina/.

Our Figure 2 can be viewed as a "figure of merit" from
which the need for strip-level normalization can be
judged. In the Additional file 3, we provide R code for pro-
ducing plots such as Figure 2. Our code is compatible with
the Bioconductor project software including the lumi
package for reading and pre-processing Illumina data. We
recommend strip-level normalization whenever incon-
sistent boxplot inter-quartile ranges can be seen in this
plot.

In our examples, we used what is probably the simplest
and most popular normalization strategy for Illumina
data. Our results are essentially the same using alternative
preprocessing methods including model-based back-
ground correction [5,16], variance-stabilizing data trans-
formation [17] or robust spline normalization [18]. The
need for strip-level normalization remains.

Our data example used Version 1.1 MouseWG-6 Bead-
Chips. Although Illumina stopped shipping this version
of the BeadChip in 2008, data from this platform contin-
ues to be highly current. At our institution, Version 1.1
MouseWG-6 BeadChips continued to be hybridized until
late in 2008. It is likely that the majority of experiments
worldwide, which used human or mouse Version 1 WG-6
BeadChips, have not yet been published and so are still
subject to primary analysis. The majority of Illumina
BeadChip data which is publicly available through data-
bases such as GEO [19] is Version 1.

Table 5: Number of differentially expressed probes between Tpl2-/- knockout and wild-type samples at 180 mins at a 5% false discovery 
rate when probe filtering is applied or not applied

Normalization Without filtering With filtering

Before normalization After normalization

Array-level 47 62 60
Strip-level 89 105 106
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The currently shipped versions of Illumina BeadChips
(HumanWG-6 Version 3 or MouseWG-6 Version 2) no
longer imbed separate sets of probes in the first and sec-
ond strips of each array. Rather, the entire library of
probes (bead types) is now randomly distributed over
each strip. This means that the marked difference in inten-
sity distribution between first and second strips on the
Version 1 BeadChips is no longer apparent. However, the
physical layout of strips on the chip is unchanged. There-
fore the possibility of intra-array variation and the conse-
quent need for strip-level normalization remains.

The probe-level expression summaries output by the Illu-
mina BeadStudio software for HumanWG-6 Version 3 or
MouseWG-6 Version 2 BeadChips do not provide any
means to separate first and second strips. Expression val-
ues are already averaged over the two strips for each array.
Instead, strip-level information can be obtained from the
Bioconductor software package beadarray, which provides
access to bead-level data summaries for Illumina Bead-
Chips [20]. This process requires that the Illumina BeadS-
can software be configured to output bead-level data.
With the new generation of BeadChips, strip-level nor-
malization implies carrying out pre-processing and nor-

malization of the two strips as if these were separate
arrays. The potential need to analyse the strips separately
has been noted by Dunning et al [4] although they do not
elaborate on how this might occur. Our recommendation
is that the two strips be treated as technical replicates in a
differential expression analysis. The strip-level technical
replication fits into the same format as developed previ-
ously for within-array replicate spots [21]. Software for
utilizing these technical replicates in an differential
expression analysis is readily available in the Bioconduc-
tor package limma, using the duplicateCorrelation func-
tion to estimate the correlation between the technical
replicates [7]. While our experience with Version 2 and 3
BeadChips is limited so far, the potential for an improve-
ment in precision is similar to that for Version 1 arrays
when the spread of the intensity distribution is seen to
vary considerably between strips, and bead-level analysis
has demonstrated that spatial variation does occur on Ver-
sion 2 and 3 BeadChips [22].

It is worth noting that the standard normalization
method applied to data from Illumina's Infinium Bead-
Chips for genotyping also occurs at the sub-array level.
Similar to the WG-6 expression arrays, each Infinium

Table 6: Number of differentially expressed probes between Nfkb1-/- knockout and wild-type samples at 180 mins at a 5% false 
discovery rate when probe filtering is applied or not applied

Normalization Without filtering With filtering

Before normalization After normalization

Array-level 140 159 159
Strip-level 290 312 312

Table 7: Functional analysis for DE genes at Tpl2-/- 180 mins obtained from different normalization strategies when probe filtering is 
applied

Array-level Strip-level

Source Term Count FDR Count FDR

INTERPRO Four-helical cytokine, core 7 1.7E-4 9 2.0E-6
SP_PIR_KEYWORDS cytokine 8 2.9E-4 10 3.7E-5
KEGG_PATHWAY Cytokine-cytokine receptor interaction 8 0.019 11 2.8E-4
KEGG_PATHWAY Toll-like receptor signaling pathway 6 0.01 9 5.3E-5
KEGG_PATHWAY Jak-STAT signaling pathway 6 0.054 9 5.7E-4
GOTERM_MF_ALL cytokine activity 8 9.9E-3 10 1.1E-3
GOTERM_CC_ALL extracellular region part 19 3.2E-3 24 5.6E-3
GOTERM_CC_ALL extracellular space 18 4.1E-3 23 4.8E-3
GOTERM_CC_ALL extracellular region 20 3.7E-3 25 0.01
KEGG_PATHWAY Regulation of autophagy 3 0.4 5 2.8E-3
INTERPRO Interferon alpha 3 0.81 4 0.037
GOTERM_MF_ALL receptor binding 10 0.1 13 0.016
SMART IFabd 3 0.57 5 1.2E-3
SP_PIR_KEYWORDS glycoprotein 20 0.021 24 0.23
SP_PIR_KEYWORDS Secreted 13 0.017 14 0.21
GOTERM_BP_ALL response to other organism 6 0.24 8 0.013
SP_PIR_KEYWORDS antiviral defense 3 0.38 5 4.1E-3
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array is made up of a number of strips (currently 2, 3 or 6
depending on the array type). Beads manufactured
together in the same pool are located on a particular strip
on each array and are normalized separately using a
between channel/allele affine transformation [23]. The
need for normalization at the strip-level rather than at the
array-level is therefore essential for data from both geno-
typing and expression BeadChips.

Methods
Sample preparation and hybridization
Mice were obtained from three inbred lines, C57BL/6
(wild-type), an NF-κB1 knockout line (Nfkb1-/-) [24] and
a Tpl2 knockout line (Tpl2-/-) [25]. Bone marrow-derived
macrophages (BMDMs) were generated as previously
described [26]. BMDMs were stimulated with lipopolysac-
charide (LPS) in culture to simulate response to a patho-
gen. Total cellular RNA was purified at different time
points over a 3 hr period (0, 60 and 180 minutes) using
the RNeasy Plus kit from Qiagen. Hybridization to Illu-
mina Mouse-6 Version 1.1 BeadChips was conducted at
the Australian Genome Research Facility using standard
Illumina protocols. There were two biological replicates of
the entire experiment, making a total of eighteen arrays on
three BeadChips.

Data processing
All analysis was undertaken using the R programming
environment http://www.r-project.org. Probe summary
profiles output by Illumina BeadStudio Version 3.0.14
software were read into R using the lumiR function of the
lumi Bioconductor software package [18].

The position of each probe on first or second strip was
determined by probe ID number. For MouseWG-6 Ver-
sion 1 BeadChips, all probes on the second strip have
probe ID numbers greater than 108.

Raw summary expression data was log2 transformed and
quantile normalized [27]. In array-level normalization,
quantile normalization is applied to all the probes simul-
taneously. In strip-level normalization, quantile normali-
zation is applied separately to (i) probes on the first strip
of each array and (ii) to probes on the second strip. In
other words, the first strips are normalized together as if
the second strips did not exist, and then vice versa for the
second strips.

Probe annotation, including gene symbols and Entrez
Gene IDs, were obtained from the most recent Illumina
bead manifest file for the MouseWG-6 BeadChips (Ver-
sion 1.1, revision 3).

Differential expression analysis was conducted by fitting a
linear model to the 18 microarrays and comparing the
knockout genotypes with wild-type using empirical Bayes

moderated t-statistics from the Bioconductor software
package limma [6,7]. The probe-wise pooled standard
deviations discussed in the results section were obtained
as a by-product of the linear model, as the unmoderated
residual standard deviations from the linear model.

DAVID analysis
The National Institute of Health's DAVID tool (Database
for Annotation, Visualization, and Integrated Discovery)
uses a variant of Fisher's Exact test to test for enrichment
of Gene Ontology terms or KEGG pathways in a list of
genes [8]. DAVID reports false discovery rates (FDR) for
each term or pathway, obtained by adjusting the p-values
from Fisher's exact test by a method similar to that of Ben-
jamini-Hochberg [28]. In this analysis, the enrichment
test for each particular term in a list of DE genes is based
on the number of DE genes associated with this term, the
total number of DE genes, the number of background
genes associated with this term and the total number of
background genes. In our analysis, Entrez gene IDs were
used as gene identifiers. A total of 19,482 Entrez gene IDs
on the MouseWG-6 BeadChips were recognized by
DAVID, and these were set as the background genes for
the analysis. A FDR cutoff of 0.05 was used to identify sig-
nificantly enriched categories.

Ingenuity analysis
Ingenuity Pathway Analysis software [9] was used to find
genes interacting with Nfkb1 or Tpl2. No interacting genes
were found for Tpl2 from the list of DE genes either from
array-level normalization or strip-level normalization.
Genes found to be interacting with Nfkb1 can be found in
Table 4, which were broken into four groups. Totally,
20,200 Entrez gene IDs from the chip were recognized by
Ingenuity. 350 of them were found to be interacting with
Nfkb1, which include both directly interacting genes and
indirectly interacting genes. Fisher's Exact test was used to
test the enrichment of Nfkb1 interacting genes.
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