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Abstract

Background: Pancreatic adenocarcinoma (PAC) is one of the most intractable malignancies. In order to search for potential
new therapeutic targets, we relied on computational methods aimed at identifying transcription factor binding sites (TFBSs)
over-represented in the promoter regions of genes differentially expressed in PAC. Though many computational methods
have been implemented to accomplish this, none has gained overall acceptance or produced proven novel targets in PAC.
To this end we have developed DEMON, a novel method for motif detection.

Methodology: DEMON relies on a hidden Markov model to score the appearance of sequence motifs, taking into account all
potential sites in a promoter of potentially varying binding affinities. We demonstrate DEMON’s accuracy on simulated and
real data sets. Applying DEMON to PAC-related data sets identifies the RUNX family as highly enriched in PAC-related genes.
Using a novel experimental paradigm to distinguish between normal and PAC cells, we find that RUNX3 mRNA (but not
RUNX1 or RUNX2 mRNAs) exhibits time-dependent increases in normal but not in PAC cells. These increases are
accompanied by changes in mRNA levels of putative RUNX gene targets.

Conclusions: The integrated application of DEMON and a novel differentiation system led to the identification of a single
family member, RUNX3, which together with four of its putative targets showed a robust response to a differentiation
stimulus in healthy cells, whereas this regulatory mechanism was absent in PAC cells, emphasizing RUNX3 as a promising
target for further studies.
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Introduction

Pancreatic adenocarcinoma (PAC) is one of the most aggressive

cancers. Although 10th in incidence, it is the fourth leading cause

of cancer deaths in the Western world. PAC is characterized by

late diagnosis, rapid progression and extensive metastasis and is

almost completely refractory to all therapeutic regimens. Although

10–15% of PAC tumors can be treated by partial pancreatectomy,

the mean time between diagnosis and death is 3–6 months and the

5 year survival rate is under 5%. In the US, approximately 30,000

new cases are diagnosed each year and virtually the same number

of PAC patients die each year of the disease[1,2]. This grim

picture makes this cancer a worthy subject for searching for novel

therapeutic targets. However, published gene expression studies,

so far, have failed to identify useful therapeutic targets.

Identification of transcription factors (TFs) involved in key

biological processes and various pathological conditions, particu-

larly cancer and inherited disorders, has gained popularity in

recent years. TFs are master controllers of changes in expression of

multiple genes and thus may serve as preferred targets for

therapies of human diseases. A relatively large number of methods

for identifying enriched TF binding sites (TFBSs) exist [3–5] but

no single method has gained universal preference over the others.

Application of the state-of-the-art PRIMA algorithm [4] to data

sets reflecting differential expression of genes in PAC pointed to

ZNF350 as an important TF in PAC biology (unpublished).

However, qRT-PCR experiments showed only modest changes in

ZNF350 expression upon serum removal of PAC cells (see Fig. S1).

In view of the importance of this methodology, we sought to

develop a novel method aimed at achieving better predictive value

in biological experiments.

A relatively large number of PAC gene expression studies have

been performed, using both healthy and diseased pancreatic

tissues and PAC lines in vitro. Brandt et al. [6] reviewed data from
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10 expression studies and identified close to 1000 genes the

expression of which change in PAC; 148 of these genes were

identified in two or more studies. The list compiled by Brandt et al.

includes genes that are expressed in a high proportion of PAC

studies and had been associated with many types of cancers, such

as Ras, Ink4, P53, etc. None, however, appear to explain the

‘‘catastrophic’’ [7] progression of this disease. Although individual

proteins may serve as promising targets for drug development, the

search for therapeutic targets in PAC has failed, so far, to produce

novel promising drug leads. Conceptually, therapies targeted at

TFs that are master regulators of expression of a large number of

genes, are potentially more likely to affect cancer cell biology and

are particularly attractive.

Here we have applied a new method, DEMON, for detecting

enriched TFBSs and a new paradigm for comparing normal

pancreatic and PAC cells. Applying DEMON to a PAC

experimental data set predicted that binding sites for the RUNX

subfamily of TFs are highly enriched in the pertinent differentially

expressed gene sets. qRT-PCR confirmed RUNX3 as a

differentially expressed TF. In conclusion, DEMON proved to

be a helpful predictive tool in TFBSs analysis and, together with

experimental results, suggests that RUNX3 may prove to be an

important target TF in pancreatic cancer research.

Results

Detecting Enriched MOtifs in co-regulated geNes
(DEMON)

Given a target set of promoters of co-regulated genes and a set of

known TFBS motifs (represented as position weight matrices from the

TRANSFAC database [8], see Methods), DEMON seeks motifs that

appear in those promoters more frequently than expected by chance

(i.e., motifs that are enriched in the target set). The algorithm utilizes a

hidden Markov model (HMM) to describe the probabilistic process

that generates the promoter sequences, and to estimate how likely it is

that any given motif is enriched in the target set.

Each HMM contains states for a unique motif, and background

states that model inter-motif segments (Fig. 1). DEMON scores

each promoter for the appearance of any given motif. This score

reflects the probability that the sequence was generated based on

the HMM describing the motif, vs. the probability that it was

generated based on a simple background model. Given a target set

of co-regulated genes, the scores of the promoters are summed up

for each HMM, and compared to sums of scores obtained with

random target sets. This comparison is used to assign a p-value for

each motif that reflects its abundance in the promoter regions of

the target set (see Fig. 2 and Methods).

Figure 1. The structure of DEMON’s HMM. The HMM is comprised of motif states (in pink), background states (in blue) and a start state. A
background state is defined for each nucleotide (four states), and a motif state is defined for every position along the PWM corresponding to the
TFBS of interest. The emission probabilities of the motif states are defined according to the PWM, and those of the background states are set to 1 for
the corresponding nucleotide. Transition probabilities between the background states reflect the distribution of dinucleotides across all putative
promoter regions in human. The transition probability from each motif state to the next is set to 1. Remaining transitions include moving to the
background states (dashed arrows) or moving to the first motif state (solid arrows). These transitions are learned using the Baum-Welch algorithm.
doi:10.1371/journal.pone.0014423.g001
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Performance evaluation on simulated and real data
To test our approach, we first benchmarked DEMON on

simulated data. To this end we simulated sets of 100 random

promoters, whose sequences were selected according to the

background probability of dinucleotides in real promoter regions

(Methods). We then planted a real motif in x% (10#x#90) of the

promoters in each set (three instances of the motifs were planted in

each promoter). We repeated this procedure for all the vertebrate

position weight matrices (PWMs) in the TRANSFAC database [8]

(see Methods).

Figure 3 compares the performance of DEMON to that of the

PRIMA algorithm. We chose PRIMA as a representative of a

group of methods that use a hard threshold to identify putative

appearances of motifs in any given promoter. Such methods may

fail to identify ‘‘weak’’ occurrences of the motif and often do not

take into account the actual number of occurrences of the motif

(for instance, in PRIMA, promoters are categorized to those

having 0, 1, 2, or more than 2 occurrences of the motif).

Evidently, in all cases DEMON achieves better results both in

terms of specificity and sensitivity. We conducted additional

simulations, varying the number of promoters in each set, or the

number of planted motifs in each promoter. The results remained

qualitatively similar (Figs S2 and S3).

Prima has a marginal advantage over DEMON on small data

sets (for 30 promoters, DEMON false positive rate (FPR) is 0.0006

versus 0.0004 for PRIMA, see Fig. S3). However, these very low

numbers make the FPR of both methods essentially equal.

Next, we compared the two methods on the recently published

Amadeus metazoan benchmark, which is a collection of TF and

microRNA target gene sets derived from high-throughput

Figure 2. Schematic of the DEMON’s algorithm work flow. a. Retrieving a list of co-expressed genes from high-throughput experiments. b. For
each HMM-promoter pair a score is computed as the ratio between the probability to emit the promoter sequence using the TFBS HMM and the
probability to emit the promoter sequence using a background HMM. The sum of scores for each TF is used for computing a single score reflecting
the TF’s overall abundance in the input promoter set. c. Randomly selecting 100 promoter data sets with the same size as the original data set. Scores
are calculated as before for those data sets. d. Each TF is assigned with an empirical p-value defined as the percentage of random cases in which it
scored higher.
doi:10.1371/journal.pone.0014423.g002

RUNX3 in Pancreatic Cancer

PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e14423



experiments (gene expression microarray and ChIP-on-chip

experiments) [9]. We downloaded all human and mouse entries

of this collection, where each entry contains a single TF and a list

of target genes (ranging from 25 to 2238 genes).

Table 1 presents the results of DEMON and PRIMA over all

the examined data entries. DEMON identified the true TF in

70.3% of the cases (where in 51.8% of the cases the true TF is

ranked in first or second place) while PRIMA identified it in

55.5% of the cases (in 48.1% of the cases, the true TF is ranked in

first or second place). Moreover, in 37% of the cases DEMON

ranked the correct TF higher than PRIMA whereas PRIMA

ranked the right TF higher than DEMON in only 18.5% of the

cases.

Detecting TFs involved in the transcriptional regulation
in PAC

We initially used a list of differentially expressed genes in PAC

compiled by Brandt et al. [6] from 10 studies. We obtained from

that list a smaller list of 45 genes that were identified as

differentially expressed in 3 or more studies, of which 38 (30 that

exhibited increased and 8 that exhibited decreased expression)

matched our collection of human promoters (see Table S1). We

analyzed this list using DEMON and found significant enrichment

of 6 motifs, of which the most highly enriched motifs were for the

RUNX sub-family of TFs (also called the AML sub-family). When

we limited the consensus data set to the 30 genes that exhibited

increased transcription, DEMON found significant enrichment of

8 motifs, of which the most highly enriched motifs were also for

RUNX.

The TFs of the RUNX sub-family, are binding partners of

heterodimeric transcriptional regulators denoted as CBFs (core-

binding factors) of which the CBFa (RUNX) members bind

directly to DNA and the two alternatively-spliced CBFb (also

known as PEBP) members bind to the CBFa subunit and enhance

its DNA binding [10]. It is noteworthy that PEBP appears as a

third and a second most enriched TF, respectively (see Table 2).

We used PRIMA to analyze the same lists, and found a

significant enrichment of one motif, ZBRK1, also called ZNF350

(see Table S2). However, qRT-PCR experiments showed only

modest changes in ZNF350 expression in PANC-1s upon serum

withdrawal (unpublished results, see Fig. S1).

The three highly homologous human RUNX TFs (RUNX1, 2,

and 3) have been implicated in developmental processes and,

notably, in cancer. RUNX1 (also known as AML1) has been

extensively documented as an important factor in hematopoiesis

and in the etiology of acute myelogenous leukemia (for review see

[11]). RUNX2 has been shown to be involved in bone

development (for review see [12]) and RUNX3 was documented

as an important TF in development of T-lymphocytes [13–15] and

has been associated with the pathogenesis of several malignancies

[16], including PAC [17,18]. Hence, the DEMON analysis

predicts that RUNX TF family members are top candidates

responsible for altered transcription of genes in the PAC consensus

data set.

RUNX experimental validation
Most of the experimental data in cancer compare gene

expression of cancer tissues with that of healthy tissues of human

donors. This comparison filters out the variability of gene

expression due to sex and age of the patient, stage of the disease,

involvement of unrelated pathological conditions, different

(cancer-targeted and other) drug therapies, as well as ethnic

genetics and lifestyles. Thus, only the genes common to PAC on

the background of all the above sources of variability are

represented. It is noteworthy that Brandt’s et al. [6] list of close

to one thousand differentially expressed genes shrinks to 148 and

45 when one adds a requirement that it must appear in at least two

or three studies, respectively.

Figure 3. Results from the simulation benchmark. A comparison between DEMON’s and PRIMA’s performance on data sets with various
percentage of promoters with planted motifs.
doi:10.1371/journal.pone.0014423.g003
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To avoid the inter-patient variability, we chose to study the

differential gene expression patterns observed in two cell types in

culture: hIPCs, pancreatic precursor cells that outgrow from

cultured human islets of Langerhans of healthy cadaveric donors,

and PANC-1 cells, an established line of human PAC. Impor-

tantly, both types of cells undergo mesenchymal-to-epithelial

transition (MET) and partially differentiate to a neuroendocrine

phenotype when allowed to aggregate in serum-free medium

[19,20]. While hIPCs cease to proliferate and some of them die,

PANC-1 cells continue to proliferate under these conditions.

The primary assumption of our paradigm is that the response to

a differentiation stimulus will reveal changes of gene expression

that distinguish normal from PAC cells. To the best of our

knowledge, there is no proof in the literature that comparing

processes in normal and cancer cells of similar origin under

conditions that induce partial differentiation will yield insight into

cancer-related gene expression. Continuous proliferation of cells in

serum-free medium could be attributed to mutations of key genes

(e.g., K-Ras). However, not all cancer cell traits (e.g. migration,

invasiveness, stimulation of angiogenesis, resistance to cytotoxic

agents) can be directly related to their ability to proliferate in the

absence of growth factors. It is possible that this paradigm will

yield genes that were missed in the traditional healthy vs. diseased

tissue methods. We have, therefore, cultured both hIPCs and

PANC-1 cells in serum-free medium for 24 h and compared

changes in gene expression in both cell types. This comparison

yielded a manually-curated set of 30 genes, whose expression

changed significantly in one cell type and either did not change or

exhibited change in the opposite direction in the other (see Table

S3). We analyzed this set with DEMON (see Table S4). Although

PEBP (CBFb) was only marginally enriched (p,0.1) in this list, it

appeared among the ten top TFBSs exhibiting the lowest p-values

both in the lists derived by DEMON from consensus data sets

(ranked 2nd and 3rd) and from the hIPCs vs. PANC-1 cells

experiment data set (ranked 6th). This finding supported the

prediction that RUNX sub-family members may be involved in

PAC. Analysis of the same data set with PRIMA did not find any

enriched motifs (see Table S5).

To obtain experimental evidence for RUNX distinguishing

between normal and PAC cells, we monitored expression of

RUNX1, 2 and 3 mRNAs by qRT-PCR as a function of time of

serum deprivation of hIPCs and PANC-1 cells (Fig. 4). There was

little change in the expression of RUNX1 and 2 transcripts in

either cell type. The expression of RUNX3, however, was

markedly increased in a time-dependent manner in hIPCs while

there was virtually no change in PANC-1 cells. It appears,

therefore, that the expression of RUNX3 is regulated in hIPCs

during differentiation but fails to respond to the differentiation

stimulus in PANC-1 cells.

To further validate this finding, we assayed in hIPCs the

expression of five putative RUNX targets, ECM2, DUSP2,

ESAM, PECAM, and ITGB4, that were chosen from a list of

putative RUNX targets generated based on a procedure similar to

the method described in [4]. Four of these mRNAs exhibited

marked changes in expression (see Fig. 5A), while the fifth, ITGB4,

exhibited only a transient two-fold increase. By comparison, the

expression of these genes did not change in PANC-1 cells (see

Fig. 5B). When the expression of the same genes was examined on

the microarray data, none (including RUNX3) were high enough

for meaningful analysis, confirming the superior sensitivity of

qRT-PCR.

Table 2. Top 10 TFBSs that were found by DEMON in the
consensus data set and in the 30 consensus genes that
exhibited increased transcription.

Consensus data
set (38 genes)

Consensus data
set (30 genes)

TFBS P-value TFBS P-value

AML 0.00004 AML 0.000005

CP2 0.00019 PEBP 0.00008

PEBP 0.00025 PAX6 0.00028

PAX6 0.00035 CACCCBF 0.00038

MAZR 0.0008 CP2/LBP1C/LSF 0.00059

CACCCBF 0.0011 MAZR 0.0014

NFY 0.0026 PAX 0.0014

AHR 0.0028 LFA1 0.0016

LFA1 0.0059 AHR 0.0042

PAX 0.0061 NFY 0.0055

Enriched TFBSs that pass a 0.05 FDR threshold appear in bold.
doi:10.1371/journal.pone.0014423.t002

Table 1. DEMON and PRIMA results on the Amadeus
metazoan benchmark.

Organism TF # of genes
DEMON’s
rank

PRIMA’s
rank

Human CREB 2334 1 2

E2F4 201 2 3

E2F4 79 2 1

ER 495 16 –

ETS1 1189 5 10

E2F 264 1 1

NF-Y 343 1 1

HNF1a 206 1 1

HNF4a 1471 14 –

HNF6 211 1 –

HSF1 328 – 1

IRF/NF-kB 563 2 1

Nanog 710 – –

NF- kB 270 – 1

Nrf1 672 1 1

OCT4 239 1 2

p53 38 – –

SOX2 537 – –

SRF 172 1 1

YY1 708 4 1

Mouse FOXP3 1053 – –

IRF/NF-kB 322 1 1

MEF2 25 2 –

MyoD 102 2 –

MyoD 102 – –

MyoG 106 – –

MyoG 78 (MyoD) – –

The higher rank for each TF is marked in bold.
doi:10.1371/journal.pone.0014423.t001
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Discussion

We have presented a new algorithm for detecting enriched

TFBSs in a given set of promoters. The algorithm uses an HMM-

based score to take into account all possible parses of a promoter

sequence into binding sites and background nucleotides. It weighs

in a principled manner all the potential binding sites along the

promoter, making it possible to consider multiple weak binding

sites that would not have passed a significance threshold. This is

the first use of such a method for enrichment tests. We show that it

outperforms a previous approach (PRIMA) to the problem, which

uses a threshold to make binary decisions on actual binding sites.

Three aspects of the experimental results presented in this

report appear to be of major importance. First, they experimen-

tally validate the power of the DEMON analysis to predict TFs

(and their target genes) from a small number of differentially

expressed genes in PAC. Although DEMON proved to be superior

to PRIMA in simulation experiments, its value can be proven only

by its experimental predictive ability. In our case, the power of

DEMON was not only validated for RUNX3, but also by the

intrinsically consistent identification of CBFb, the heterodimeric

partner(s) of the RUNX sub-family.

Second, our results strongly suggest that RUNX3 and its

heterodimeric partner CBFb should be further investigated

Figure 4. Kinetics of changes in expression of RUNX genes. hIPCs and PANC-1 cells were either cultured in serum-containing medium (t = 0) or
for the indicated times in serum-free medium. RNA was extracted and qRT-PCR performed as described in Materials and Methods. Results are
presented as % change in mRNA levels of the three RUNX genes as a function of time in serum-free medium.
doi:10.1371/journal.pone.0014423.g004

Figure 5. Kinetics of changes in expression of RUNX-controlled genes. A. hIPCs and B. PANC-1 cells were either cultured in serum-containing
medium (t = 0) or for the indicated times in serum-free medium. RNA was extracted and qRT-PCR performed as described in Materials and Methods.
Results are presented as % change in mRNA levels of the indicated genes as a function of time in serum-free medium.
doi:10.1371/journal.pone.0014423.g005
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regarding their potential role(s) in PAC etiology. Aberrations in the

expression of RUNX1 were identified in a significant proportion

of leukemias [11]. RUNX2 and 3 genes have been extensively

studied as developmental TFs. RUNX2 was shown to be crucial

for bone and skeletal development [12]. RUNX3 was shown to be

directly involved in the commitment of CD4+/CD8+ cells into

CD8+ T-cells and in the maturation of dendritic T-cells [15,21].

Some reports demonstrate the role of RUNX3 in the development

of the sensory neuronal system [22,23]. Hypermethylation of the

RUNX3 promoter region has been correlated with various

metastatic malignancies, such as breast, non-small cell lung,

gastric, pancreatic, colorectal, or hepatocellular carcinomas [24].

Importantly, restoration of RUNX3 expression in cancer cell lines

leads to apoptosis or decreased proliferation of cancer cells and to

their differentiation [25–28]. These, and similar reports, estab-

lished that RUNX3 appears to function as a tumor suppressor.

They are further confirmed by our finding that untransformed

mesenchymal hIPCs respond to a differentiation stimulus by

increased RUNX3 transcription and proliferation arrest, while

malignant PANC-1 cells appear to have lost this regulatory

response and continue to proliferate. In human PAC, hyper-

methylation and loss of heterozygosity of RUNX3 were found in a

large proportion of PAC tissues and correlated with worse

prognosis [17,18]. These findings place RUNX3 as another

PAC-associated gene product. DEMON analysis, however, places

RUNX and its partner, PEBP, as putatively very important TFs

controlling the expression of many PAC-related genes.

Third, our results confirm the hypothesis that the differences

between normal pancreatic and PAC cells are revealed following a

differentiation stimulus. This assumption is further strengthened by

a recent analysis of transcriptomes involved in cancer and

development [29]. In proliferating hIPCs and PANC-1 cells, both

exhibiting mesenchymal phenotypes [19], few RUNX3 transcripts

are present (thresholds of 31.5 and 30 cycles, respectively). By 24 h

in differentiation medium, however, the levels of RUNX3 mRNAs

in hIPCs increased more than 1000-fold whereas there was virtually

no response in PANC-1 cells. Likewise, putative RUNX3 target

genes exhibited altered transcription in hIPCs but no changes in

PANC-1 cells. Importantly, Li et al. [30] have found that RUNX3 is

expressed only in islets and a proportion of PAC tissues. Our

experimental data demonstrate that while RUNX3 mRNA

expression may not be different in proliferating normal and PAC

cells, its role is revealed only following differentiation stimulus, thus

explaining the apparent disagreement between the findings of Wada

et al. and Nomoto et al. [17,18] and those of Li et al. [30].

Importantly, the differentiation-induced response of RUNX3

and its five putative targets in hIPCs cannot be gleaned from

microarray analysis due to the absence of signal or their very low

levels. Although PECAM1 and CBFA2T1 signals increased more

than two-fold, their signals were too low to be significant. This

justifies the use of computational methods, such as DEMON or

PRIMA, to identify gene targets and their validation by the more

sensitive qRT-PCR technique. Admittedly, qRT-PCR cannot

reveal epigenetically-controlled regulations of cell phenotype.

Our results suggest loss of response of the RUNX3 gene in PAC

and suggest further studies, such as investigation of methylation of

its promoter, and a more extensive expression study of putative

RUNX target genes.

Materials and Methods

The DEMON Algorithm
The DEMON algorithm uses HMMs for representing TFBSs.

Each HMM is comprised of two types of states: motif states and

background states (Fig. 1). A background state is defined for each

nucleotide (four states), and a motif state is defined for every

position along the PWM corresponding to the TFBS of interest.

The emission probabilities of the motif states are defined according

to the PWM, and those of the background states are set to 1 for the

corresponding nucleotide. Transition probabilities between the

background states reflect the distribution of dinucleotides across all

putative promoter regions in human. The transition probability

from each motif state to the next is set to 1. Remaining transitions

include moving to the background states (Fig. 1, dashed arrows) or

moving to the first motif state (Fig. 1, solid arrows). These

transitions are learned using the Baum-Welch algorithm [31]

(Supporting Information S1).

The inputs to DEMON are the list of genes of interest (Fig. 2a)

and a set of TFBS motifs represented by PWMs. The output is a

list of TFs whose binding sites are statistically over-represented in

the promoter regions of the given list of genes.

As a first step, we build an HMM from every given PWM, and

each HMM-promoter pair is assigned with a score reflecting the

likelihood that the respective TFBS appears in the respective

promoter region. This score is computed as the ratio between two

values (Fig. 2b): (i) the probability to emit the promoter sequence

using the TFBS HMM in Figure 1, and (ii) the probability to emit

the promoter sequence using an HMM comprised solely of the

background states. The probability values are computed using the

Forward algorithm [32]. The pairwise scores are then being used

for computing a single score for each TF, reflecting its overall

abundance in the input promoter set. This score is defined as the

sum over all scores assigned individually with each promoter.

In the second step, we use an empirical approach for evaluating

the statistical significance of the overall likelihood scores computed

for the TFs. We randomly select a similar number of promoters as

in the original data set from the pool of all human promoter

regions and compute a new score for each TF as before (Fig. 2c).

We repeat this procedure 100 times, ending up with an empirical

distribution of random likelihood scores. Each TF is then assigned

with an empirical p-value defines as the probability to see the

target set sum of scores, given the random sums which are

assumed to be normally distributed (Fig. 2d). i.e., we compute the

average and standard deviation of the random scores, and use the

normal cumulative distribution function to compute the probabil-

ity that an observation from a standard normal distribution will be

higher than the target set sum of scores. The p-values are

corrected for multiple hypotheses testing using the false discovery

rate procedure [33]. We report all findings with false discovery

rate under 5%.

Data Acquisition and PRIMA implementation
We obtained a set of nucleotide distribution matrices that model

vertebrate TFBSs from the TRANSFAC database (release 11.1)

[8]. A total of 588 vertebrate matrices were downloaded from the

database. The matrices were transformed to probability matrices

that delineate the probability of each nucleotide to appear in each

position in the TFBS. Since the database is redundant and some of

the matrices describe similar TFBS, we clustered the matrices in a

preprocessing step in a procedure similar to that used in [4]. To

this end, we built a PWM w from each probability matrix m, and

used a low pre-calculated threshold t to scan the human genome

promoters. The threshold is computed using two sets of

background promoters: (i) random promoters that are built based

on the nucleotide distribution in all the promoters, (ii) randomly

chosen segments of real promoters. The two sets are scanned by

each PWM w and the threshold t is defined as the maximum

between the 100th highest score from each of the two background

RUNX3 in Pancreatic Cancer
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data sets (which implies an FPR of 0.01). Each subsequence that

had a similarity score to the PWM w above the threshold t was

marked as a putative instance of w. Then, each pair of matrices

that x% of their appearances on the promoter set were overlapping

was clustered and the matrix with the lower information content

(i.e., the matrix which is less different from a uniform distribution)

was removed. As the value of x grows, the clustering criterion

becomes more stringent and the resulted matrices set grows, and

vice versa. We used x = 0.2 to obtain a set of 219 matrices to use in

our analysis.

We downloaded the complete set of human promoters from the

UCSC Genome Browser database [34,35]. Based on preliminary

testing and recent studies claiming that most of the TFBSs in

human promoters are located near the transcription start site [36],

we define the promoter regions of the genes as the 500 bp

sequence upstream to the transcription start site.

We have implemented PRIMA as described in [4].

Cell cultures
Human islet-derived pancreatic precursor cells (hIPCs) were

isolated and propagated in modified CMRL medium as previously

described [20]. Human pancreatic adenocarcinoma cell line

PANC-1 was purchased from American Tissue Type Collection

and maintained in Dulbecco-modified minimal Eagle’s Medium

(DMEM) as previously described [20]. Partial differentiation of

either cell type was achieved by culturing cells in serum-free

medium, essentially as described previously [20]. Cells were grown

and maintained in 95:5% air:CO2 atmosphere at 37u.

DNA Microarrays
Affymetrix GeneChip Human Genome U133 Plus 2.0 from

microarray (catalog # 900466) was used, yielding 12,760

sequences. hIPCs were assayed in triplicate, each of a separate

biological sample. PANC-1 cells were assayed in pentaplicate

arrays, two from separate biological replicates and another

biological replicate run in triplicate arrays. Each set was comprised

of samples isolated from proliferating cells (t = 0, in 10% fetal

bovine serum-containing medium) and cells after 24 h in serum-

free (differentiation) medium. RNA samples were isolated and

processed according to microarray manufacturer’s instructions.

The analysis, including normalization, was carried out using

Affymetrix proprietary software.

Genes, whose expression changed at least two-fold upon 24 h in

serum-free medium in either cell type, were compared. The

selected set included genes that either exhibited changes in a single

cell type, or genes that exhibited changes in the opposite direction.

This set was subsequently used for DEMON analysis (Table S4).

Quantitative real-time polymerase chain reaction (qRT-
PCR) assay

Cells of either type were grown or maintained either in serum

containing media (t = 0) or in serum-free media for the desired

time period in 100 mm diameter tissue culture Petri dishes.

RNeasy (Qiagen, Valencia, CA) RNA extraction kit was used

throughout. RNA was quantified and its purity assessed by

measurements of OD at 260/280 nm. Reverse-transcription was

performed using the Applied Biosystems (Carlsbad, CA) kit,

according to manufacturer’s instructions. PCR was performed

using TaqMan Assay-on-Demand kit, using the manufacturer’s

sequence-specific primers for each gene and Stratagene Mx3000P

QPCR System. The five putative RUNX3-control genes were

selected at random from the intersection of all putative RUNX3-

control genes (,1,000) and the list of primers reported to be

involved in differentiation and available in the laboratory.

Supporting Information

Supporting Information S1 A novel HMM-based method for

detecting enriched transcription factor binding sites reveals

RUNX3 as a potential target in pancreatic cancer biology.

Calculating the HMM motif entry probability.

Found at: doi:10.1371/journal.pone.0014423.s001 (0.14 MB

DOC)

Figure S1 Changes in ZNF350 mRNA level in PANC-1 cells in

serum-free medium.

Found at: doi:10.1371/journal.pone.0014423.s002 (0.01 MB TIF)

Figure S2 Results from the simulation benchmark. A compar-

ison between DEMON’s and PRIMA’s performance on data sets

with various number of planted motifs.

Found at: doi:10.1371/journal.pone.0014423.s003 (0.32 MB TIF)

Figure S3 Results from the simulation benchmark. A compar-

ison between DEMON’s and PRIMA’s performance on data sets

with various sizes.

Found at: doi:10.1371/journal.pone.0014423.s004 (0.38 MB TIF)

Table S1 The list of 45 genes that were identified as

differentially expressed in 3 or more studies out of a list of 10

studies compiled by Brandt, et al. [2].

Found at: doi:10.1371/journal.pone.0014423.s005 (0.08 MB

DOC)

Table S2 Top 10 TFBSs that were found by PRIMA in the

consensus data set and in the 30 consensus genes that exhibited

increased transcription.

Found at: doi:10.1371/journal.pone.0014423.s006 (0.03 MB

DOC)

Table S3 The list of 30 genes whose expression changed

significantly in one cell type, hIPCs or PANC-1.

Found at: doi:10.1371/journal.pone.0014423.s007 (0.05 MB

DOC)

Table S4 Top 10 TFBSs that were found by DEMON in the

PANC-1 vs. hIPCs data set.

Found at: doi:10.1371/journal.pone.0014423.s008 (0.03 MB

DOC)

Table S5 Top 10 TFBSs that were found by PRIMA in the

PANC-1 vs. hIPCs data set.

Found at: doi:10.1371/journal.pone.0014423.s009 (0.03 MB

DOC)
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