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Abstract Secondary bacterial infections (SBIs) exacerbate

influenza-associated disease and mortality. Antimicrobial

agents can reduce the severity of SBIs, but many have

limited efficacy or cause adverse effects. Thus, new treat-

ment strategies are needed. Kinetic models describing the

infection process can help determine optimal therapeutic

targets, the time scale on which a drug will be most

effective, and how infection dynamics will change under

therapy. To understand how different therapies perturb the

dynamics of influenza infection and bacterial coinfection

and to quantify the benefit of increasing a drug’s efficacy or

targeting a different infection process, I analyzed data from

mice treated with an antiviral, an antibiotic, or an immune

modulatory agent with kinetic models. The results suggest

that antivirals targeting the viral life cycle are most effi-

cacious in the first 2 days of infection, potentially because

of an improved immune response, and that increasing the

clearance of infected cells is important for treatment later

in the infection. For a coinfection, immunotherapy could

control low bacterial loads with as little as 20 % efficacy,

but more effective drugs would be necessary for high

bacterial loads. Antibiotics targeting bacterial replication

and administered 10 h after infection would require 100 %

efficacy, which could be reduced to 40 % with prophylaxis.

Combining immunotherapy with antibiotics could sub-

stantially increase treatment success. Taken together, the

results suggest when and why some therapies fail, deter-

mine the efficacy needed for successful treatment, identify

potential immune effects, and show how the regulation of

underlying mechanisms can be used to design new thera-

peutic strategies.
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Introduction

Influenza virus infections result in 15–65 million infec-

tions, over 200,000 hospitalizations, and over 30,000

deaths each year in the U.S. [32, 45]. This is in part due to

the number of antigenically distinct influenza virus strains,

the lack of comprehensive strain coverage in the vaccines,

and the complications arising from underlying health

conditions and/or secondary bacterial infections (SBIs).

SBIs, in particular, have accounted for 40–95 % of

influenza-related mortality in past pandemics

[4, 17, 29, 48]. Vaccines against bacterial pathogens can

reduce the coinfection component [15, 25, 27], but their

efficacy is limited to the vaccine strains and some bacterial

vaccines have reduced effectiveness in influenza virus-in-

fected hosts [25, 27]. Treatment with antimicrobial agents

may also improve disease outcome and reduce SBI inci-

dence [7, 8, 12, 13, 18, 21, 26], but many provide only

partial protection, have time dependent efficacy, and/or

cause adverse effects. Thus, new preventative and thera-

peutic strategies are needed. These may require utilizing

current antimicrobial agents on different time scales and/or

exploiting the mechanisms that regulate disease to increase

the efficacy of treatment or to develop new targets.
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Antivirals for use against the influenza virus slow disease

progression and reduce symptoms by preventing new host

cells from being infected [9]. However, this does not typi-

cally result in a significant reduction in viral burden

[1, 18, 21], and the efficacy is reduced if therapy is initiated

more than 2–3 days after symptom onset [1, 21]. The

decreased efficacy late in infection occurs because the

antivirals target stages in the viral life cycle (i.e., infection

of cells, and virus replication and production) that are

dominant only during the first 2 days post-influenza infec-

tion (pii) [40]. Although the duration and severity of the

viral infection are not reduced with late antiviral treatment,

treatment as late as 5 days pii can slow the progression of

pneumonia and decrease SBI mortality [21]. The mecha-

nism(s) underlying this effect are unclear, but the nominal

reduction in viral loads may have sufficient downstream

consequences on the immune response. Antiviral treatment

may also reduce the post-bacteria viral load rebound that is

observed during some SBIs [39, 43, 47], which may be due

to an increase in virus production/release [43, 46].

Antibiotics directly target the pathogen by causing lysis or

by inhibiting protein synthesis, but these drugs have limited

effects in coinfected hosts [7, 12, 13, 16]. Lytic antibiotics

(e.g., ampicillin) effectively reduce pathogen load during

SBIs, but do so at the expense of a robust inflammatory

response [7, 12]. In contrast, inhibitory antibiotics (e.g.,

clindamycin and azithromycin) have reduced bactericidal

effects but limit tissue damage and inflammation [12, 13, 16].

Although this class of drugs can provide a clinical cure pri-

marily through their anti-inflammatory effects and are bene-

ficial in treating coinfected animals, the high pathogenic

burden is problematic and may lead to drug resistance.

Combining a drug that rapidly eliminates bacteria (e.g.,

ampicillin) with one that has anti-inflammatory effects

(e.g., corticosteroid) seems optimal and does reduce

immunopathology during severe pneumonia; however, pro-

phylactic use of corticosteroids impairs viral clearance [7].

Because traditional therapeutic agents like antivirals and

antibiotics are suboptimal, targeting specific inflammatory

pathways may increase the probability of success. However,

this approach requires knowledge about the underlying

mechanisms of disease. Several factors affect the likelihood

of SBI-associated pneumonia developing, including viral and

bacterial strains, transmitted dose size, timing of bacterial

exposure, and host immune status (reviewed in

[3, 20, 24, 33–35, 37]). In addition, different mechanisms are

likely involved in the various stages of SBIs, e.g., bacterial

invasion, pathogen kinetics, inflammation, and mortality.

Therefore, various therapeutic approaches may be possible.

To help tease apart the contribution of different mechanisms

on bacterial acquisition and pathogen titer trajectories, my

colleagues and I developed a kinetic model [38, 43] that

suggested bacterial invasion is due to the virus removing the

protective effect of alveolar macrophages (AMs) with 85–

90 % efficiency at 7 days pii. Although the underlying

mechanism was thought to be a functional inhibition medi-

ated by interferon-c [28, 44], another study better identified

the kinetics of these cells and found that AMs are depleted

during influenza virus infection [8]. Remarkably, these data

validated our model predictions and the maximum amount of

depletion, which occurs at 7 days pii [8] and corresponds to

the greatest lethality [22], matched our parameter estimate of

85–90 % [43]. Because the AM population is tightly con-

nected to early bacterial clearance, therapeutically replen-

ishing the AM population through immunotherapy during

influenza virus infection can improve the pathogenic burden

and significantly reduce pneumonia [8].

Knowing the model accuracy and the kinetics of AM

depletion allowed us to mathematically derive and exper-

imentally validate a nonlinear relationship between bacte-

rial dose/load and AM depletion that regulates bacterial

invasion and kinetics during the initial stages of infection

[38]. Understanding these dynamics and their regulation

with mathematical precision provides important insight

into the possibility of using therapeutics to alter each

component and the efficacy necessary for the treatment to

be successful. That is, therapeutically reducing the bacte-

rial load (e.g., via antibiotics) will have the same result as

increasing the number of AMs (e.g., via immune modula-

tory drugs or by reducing virus with antivirals), but the

nonlinearity of the relationship indicates differential and

time-dependent therapeutic requirements.

To further understand the viral and bacterial kinetics

under therapy, I used mathematical models [41, 43] and

published data on the dynamics after therapy in BALB/cJ

mice [8, 12, 21] to investigate the efficacy of an antiviral, an

antibiotic, and an immune modulatory agent in the preven-

tion and treatment of influenza and influenza-associated

SBIs. The models were used to predict how pathogen

dynamics would change under each therapy and to quantify

the therapeutic benefit for various intervention efficacies and

timing, the minimum therapeutic requirement to achieve a

clearance or resolution phenotype, and the potential of

combination therapy. The results provide insight into the

failure of current therapies, the time-scale of the greatest

therapeutic benefit, the efficacy of mono-therapy versus

combination therapy, the potential immune consequences of

some drugs, and the possibility of new therapeutic targets.

Methods

Influenza virus infection model

To describe the kinetics of influenza virus infection, a target

cell limitedmodel [2] was used. Themodel tracks populations
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of susceptible epithelial (‘‘target’’) cells (T), newly infected

cells that are not yet producing virus (I1), infected cells that

have undergone an eclipse phase and are producing virus (I2),

and free virus (V). Target cells become infected with virus at

rate bV . Infected cells (I1) first enter an eclipse phase at rate

k then transition to produce virus at rate p. Productive infected

cells (I2) are lost at rate d and virus is cleared at rate c. Equa-
tions (1–4) represent these dynamics and the model parame-

ters are provided in Table 1. The model schematic and fits to

viral titers frommice infectedwith influenzaA/PuertoRico/8/

34 (PR8) are shown in Fig. S1.

dT

dt
¼ �bTV ð1Þ

dI1

dt
¼ bTV � kI1 ð2Þ

dI2

dt
¼ kI1 � dI2 ð3Þ

dV

dt
¼ pI2 � cV ð4Þ

Influenza-pneumococcal coinfection model

To describe the kinetics of influenza-pneumococcal coin-

fection, a model that couples single infection models for

influenza virus (Eqs. (1–4)) [2] and pneumococcus [42]

Table 1 Parameter values of the influenza virus infection model (Eqs. (1–4)) [41], the pneumococcal model (Eq. (9) with V ¼ 0) [42], the

coinfection model (Eqs. (5–9)) [38, 43], and under therapy with antimicrobial agents.

Parameter Description Value Units

Influenza A virus

b Virus infectivity 2.8� 10�6 ðTCID50Þ�1
day�1

k Eclipse phase 4.0 day-1

d Infected cell death 0.89 day-1

p Virus production 25.1 ðTCID50Þ day�1

c Virus clearance 28.4 day-1

T(0) Initial uninfected cells 107 cells

I1ð0Þ Initial infected cells 0 cells

I2ð0Þ Initial infected cells 0 cells

V(0) Initial virus 2.0 TCID50

Pneumococcus

r Bacterial growth rate 27.0 day-1

KP Carrying capacity 2.3� 108 CFU

cMA
Phagocytosis rate 1.35� 10�4 cell�1 day�1

n Maximum bacteria per AM 5.0 ðCFUÞcell�1

x Nonlinearity in f ðP;MAÞ 2.0

M�
A Number of AMs 106 cells

P0 Initial bacteria See text CFU

Coinfection

/ Decrease in phagocytosis rate 0.87 (7 days), 0.646 (3 days)

KPV Half-saturation constant 1.8� 103 TCID50

a Increase in virion production/release 1:2 � 10�3 ðCFUÞ�z

z Nonlinearity of virion production/release 0.50

w Increase in carrying capacity 1.2� 10�8 ðTCID50Þ�1

l Toxic death of infected cells 5.2� 10�10 ðCFUÞ�1

Therapy

ev Efficacy of antiviral treatment See text

et Rate of target cell protection by antivirals 0.68 day-1

eg Efficacy of rGM-CSF treatment See text

ec Efficacy of clindamycin treatment See text

ea Bacterial death rate from ampicillin treatment 11.35 day-1

ei Bacterial death rate from additional immune responses

under clindamycin treatment

3.0 day-1
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and includes terms that describe their interactions [43] was

used. In this model, the pneumococcal population (P) is

tracked in addition to the four populations in Eqs. (1–4).

Bacteria replicate logistically with maximum rate r and tis-

sue carrying capacity KP. The model considers the initial

interaction between pneumococci and the first arm of the

immune system, AMs (MA), which phagocytose bacteria at

rate cMA
f ðP;MAÞ per cell. This rate decreases as the number

of pneumococci increases according to f ðP;MAÞ ¼ nxMA=

ðPx þ nxMAÞ, where each AM is able to phagocytose a

maximum of n bacteria and x is the shape parameter that

describes the consumption rate of pneumococci. Virus fur-

ther decreases this clearance rate according to /̂ðVÞ ¼ /V=
ðKPV þ VÞ. This term drives bacterial invasion [43] and

matches the percentage of AM depletion [8, 38]. Once bac-

teria invade, virus production/release from infected epithe-

lial cells (pI2) is increased by a factor of âðPÞ ¼ aPz. This

term drives the viral rebound (Fig. S2) [43], whichmay result

from IFN inhibition as a consequence of bacterial attachment

to infected cells [43, 46]. The model also assumes that virus

infection increases the tissue carrying capacity bywV , which
may facilitate bacterial adhesion to cells, and that bacteria

increase infected cell death by lP. However, these two

effects were shown to have minimal influence on the

dynamics [43]. Altering other processes in the model,

such as the rates of viral infection (bV) and clearance (c),

produced minimal effects on model dynamics. Equa-

tions (5–9) represent these dynamics and the model param-

eters are provided in Table 1. The model schematic and fits

of the model to viral and bacterial titers frommice infected 7

days after PR8 with pneumococcal strain D39 are shown in

Fig. S2 [43].

dT

dt
¼ �bTV ð5Þ

dI1

dt
¼ bTV � kI1 � lPI1 ð6Þ

dI2

dt
¼ kI1 � dI2 � lPI2 ð7Þ

dV

dt
¼ pI2 1þ âðPÞð Þ � cV ð8Þ

dP

dt
¼ rP 1� P

KP 1þwVð Þ

� �
� cMA

f ðP;M�
AÞM�

AP 1� /̂ðVÞ
� �

ð9Þ

Model simulations and parameters

MATLAB ordinary differential equation (ODE) solver

(ode45) was used to simulate all equations. The parameter

values used in this study are given in Table 1 or are stated

in the text. The influenza model parameters were obtained

by fitting Eqs. (1–4) to viral titer data from individual mice

infected with 100 TCID50 (50 % tissue culture infectious

dose) PR8 [41]. The pneumococcal model parameters were

obtained by matching Eq. (9) with V ¼ 0 to bacterial titer

data from individual mice infected with 104, 105, or 106

colony forming units (CFU) pneumococcal strain D39 [42].

The coinfection model parameters were obtained by fitting

Eqs. (5–9) to viral and bacterial titer data from individual

mice infected with 100 TCID50 PR8 followed by 1000

CFU D39 at 7 days pii [43]. The coinfection model and

parameters also matched the bacterial titer data from mice

infected with pneumococcal strain A66.1 [43], which is the

strain used in the studies described below.

Initial dose threshold

Equations (5–9) were previously used to derive an initial

dose threshold that describes the relationship between

bacterial dose/load and AM depletion [38]. This threshold

is defined by Eq. (10), which is the unstable steady state

solution (T�, I�1 , I
�
2 , V

�, P�) = (0,0,0,0,P�) when /̂[ 0. P�

satisfies P3 þ BP2 þ CPþ D ¼ 0. This state separates the

two stable steady states (0,0,0,0,0) and (0,0,0,0,KP) and is

constant when virus-induced AM depletion is absent (i.e.,

when /̂ ¼ 0) and dynamic when virus-induced AM

depletion is present (i.e., when /̂[ 0). The threshold,

shown in Fig. 2b, dictates whether bacteria exhibit a

growth phenotype (to stable state P� = KP) or a clearance

phenotype (to stable state P� = 0). That is, bacterial loads

decrease for dose-depletion pairings below the threshold

and increase for dose-depletion pairings above the thresh-

old. Additional details can be found in Ref. [38] along with

the experimental validation of these dynamics.

P� ¼ � 1

2
ðM1 þM2Þ �

ffiffiffi
3

p

2
ðM1 �M2Þi�

B

3
ð10Þ

where

M1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3

27
þ q2

4

r
3

s

u ¼ C � B2

3

q ¼ Dþ 2B3 � 9BC

27

B ¼ �KP

C ¼ n2MA

D ¼ n2MAKP

cMA
MA

r
ð1� /̂Þ � 1

� �

For the parameter values in Table 1, P� is real if
cMA

MA

r
ð1�

/̂Þ[ 1 (i.e., D[ 0). However, P� is complex when
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cMA
MA

r
ð1� /̂Þ\1 (i.e., D\0). The point where P� switches

from being a real root to a complex root with real part less

than 1 is found by solving D ¼ 0 for /̂ or r, which gives the

critical values

/̂crit ¼ 1� r

cMA
MA

ð11Þ

rcrit ¼ ð1� /̂ÞcMA
MA ð12Þ

Therapeutic benefit

The area under the curve (AUC) is used to quantify the

benefit of administering a particular drug. To estimate the

therapeutic benefit, the pathogen load was estimated at

discrete time points by the numerical solution to Eqs. (5–9)

or to Eq. (10) and the trapezoidal rule is used to estimate

the AUC.

Data

To investigate infection kinetics under therapy, data from

three published studies were used [8, 12, 21]. These studies

use the same experimental model system that was employed

to parameterize the viral infection model (Eqs. (1–4)) and

the coinfection model (Eqs. (5–9)) [41, 43]. The data from

each study was digitized using PlotDigitizer [31].

Data under antiviral therapy

The viral titer data used to investigate the dynamics under

antiviral therapy was taken from Ref. [21]. In this study,

groups of 6–8 weeks old female BALB/cJ mice (Jackson

Laboratory, Bar Harbor, ME) were lightly anesthetized

with 2.5 % inhaled isoflurane and infected intranasally

with 50 TCID50 PR8 in 100 ul. Mice were then mock-

treated with PBS or given a neuraminidase inhibitor (NAI)

(oseltamivir, 5 mg/kg) twice daily by oral gavage for 5

days beginning 4 h before infection (prophylaxis) or 5 days

pii (late administration). Mice were euthanized by CO2

inhalation at 3 days pii or 7 days pii and the viral titers

were enumerated.

Data under GM-CSF therapy

The bacterial titer used to investigate the dynamics under

GM-CSF therapy was taken from Ref. [8]. In this study,

groups of 6–8 weeks old female BALB/cJ mice (Jackson

Laboratory, Bar Harbor, ME) were given 25 lg recombi-

nant granuloctye macrophage colony stimulating factor

(rGM-CSF) intranasally in 100 ll 1 day before and 1 day

after infection with PR8 at a dose of 25 TCID50 in 100 ul.

Groups of mice were then mock-infected with PBS or

infected with 200 CFU pneumococcus A66.1 at 3 days pii.

For all infections, mice were lightly anesthetized with

2.5 % inhaled isoflurane. After euthanasia by CO2 inhala-

tion at 3 h post-bacterial infection (pbi), bronchoalveolar

lavage fluid (BALF) was collected and the bacterial titers

were enumerated.

Data under antibiotic therapy

The bacterial titer data used to investigate the dynamics

under antibiotic therapy was taken from Ref. [12]. In this

study, groups of 6–8 weeks old female BALB/cJ mice

(Jackson Laboratory, Bar Harbor, ME) were lightly anes-

thetized with 2.5 % inhaled isoflurane and infected with 37

TCID50 PR8 in 100 ll then with 200 CFU pneumococcus

A66.1 in 100 ll at 7 days pii. Bioluminescent imaging was

used to monitor the development of pneumonia. At the

onset of pneumonia, mice were mock-treated with PBS or

treated with ampicillin (100 mg/kg) or clindamycin

(15 mg/kg) administered by intraperitoneal injection twice

daily. The bacterial titers were enumerated by biolumines-

cent imaging in live mice at 0, 12, and 24 h after treatment

initiation. The data are reported as relative light units (RLU)

per minute. To explore these data with a model that has

parameters with units in CFU, a log-log correlation between

CFU and RLU (Fig. S3) is used and defined by Eq. (13).

log10 ðRLUÞ ¼ 0:448 log10 ðCFUÞ þ 2:1068 ð13Þ

Results

Dynamics under antiviral therapy

Antivirals reduce the viral load and, in turn, lessen the

disease severity. This is sufficient to reduce the morbidity

and mortality caused by SBIs [18, 21]. Prophylaxis with

NAIs can reduce viral titers by 2.5–3.0 log10 TCID50 and

SBI mortality by 50 %, whereas late administration (be-

ginning at 5 days pii) results in 0:8 log10 TCID50 lower

viral loads and 33 % less SBI-associated mortality (see

’Methods’ section) [21].

The differential efficacy of early versus late adminis-

tration has been explained by using Eqs. (1–4), where

approximate solutions of the model define the contribution

of each infection process (e.g., virus infection, production,

clearance, etc.) [40]. In brief, the model solution during the

growth phase of the virus (first 2 days pii) indicates that the

processes dominating the kinetics are those that are tar-

geted by antivirals, i.e., VðtÞ ¼ aekt, where k is a combi-

nation of all model parameters. However, the slower rate of

virus growth after this time suggests that the infection

processes are changing and that this is the point where
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antivirals that target the viral life cycle begin to lose their

efficacy. The later stages of infection ([3 days pii) are

dominated by a single process, i.e., infected cell clearance

(VðtÞ ¼ ge�dt). With a single parameter controlling the rate

of virus load decay, an antiviral that targets this process

may be more efficacious. These dynamics are summarized

in Fig. 1a.

To further illustrate the time-dependent changes in

antiviral efficacy, Eqs. (1–4) were simulated assuming that

NAIs inhibit the rate of virus production (p) with efficacy

ev (i.e., pð1� evÞ). When therapy is initiated at 0d pii

(prophylaxis), setting ev=60 % matches the viral titer data

at 3 days pii but fails to capture the lower titer at 7 days pii

(Fig. 1b). When therapy is initiated at 5 days pii (late

administration), there is little change in the viral titers and

an efficacy of ev=60 % overestimates the decline (Fig. 1d).

Using the same efficacy (ev=60 %) to investigate thera-

peutically targeting other infection processes suggests that

there is little difference between targeting virus production

(p) and infection (b), that increased efficacy is needed for

therapies directed against virus replication (k) or clearance

(c), and that a therapy designed to increase the rate of

infected cell clearance (d) could result in faster clearance

(Fig. 1b–d). Perturbing any of these processes with the

exception of the eclipse phase (k) also resulted in fewer

cells becoming infected if the antiviral is given prophy-

lactically (Fig. 1c). However, there is no effect on target

cells with late administration due to these cells being

depleted by 5 days pii (not shown).

The model in Eqs. (1–4) excludes specific host respon-

ses, which may be altered when virus production (p) is

inhibited by NAIs. Increasing the rate of virus clearance (c)

in addition to the rate of virus production could not

reproduce the data. Increasing the rate of infected cell

clearance (d) could capture the dynamics under NAI pro-

phylaxis but not under late administration (not shown).

Alternatively, innate immune responses (e.g., interferons)

or other host factors may remove target cells (T) from the

susceptible pool altogether, which is modeled with the

Eq. (14).

dT

dt
¼ �bTV � etT; ð14Þ

where et is the rate that these cells become protected.

Including this effect in Eqs. (1–4) in addition to the inhi-

bition of virus production (pð1� evÞ) and setting

ev = 10 % and et = 0.68 d�1 can simultaneously repro-

duce the data under NAI therapy at both 0 days pii and 5

days pii (Fig. 1e).

Dynamics under immunotherapy

Because AM depletion drives pneumococcal establishment

during influenza virus infection [8, 38, 43], restoring the

AM population or preventing the depletion reduces bacte-

rial burden [8] and may be able to prevent pneumococcal

invasion altogether. Mice treated with rGM-CSF 1 day

before and 1 day after infection with PR8 (Fig. 2a, see

Fig. 1 Breakdown of viral kinetics and effects of antiviral therapy.

a Fit (black line) of Eqs. (1–4) to viral titers in the lungs of mice

infected with 100 TCID50 PR8 (black squares) [41]. The equations

and time scale that characterize the phases of exponential growth

(shaded in gray), the transition from growth to clearance (shaded in

white), and the exponential decay (shaded in blue) [40] are shown

along with the most effective antiviral target. b–d Simulation of

Eqs. (1–4) against viral load data under NAI therapy given prophy-

lactically (Panels b–c) or at 5 days pii (Panel d) [21] for no therapy

(black line) and for different antiviral targets [virus infection (b, cyan

line), eclipse phase (k, magenta line), virus production (p, blue line),

virus clearance (c, green line), or infected cell clearance (d, orange
line)] with efficacy ev = 60 %. e Simulation of Eqs. (1–4) against

viral load data under NAI therapy given prophylactically (green bars)

or at 5 days pii (black bars) [21] assuming that NAIs inhibit virus

production (pð1� evÞ) with efficacy ev = 10 % and protect target cells

from being infected (Eq. (14)) at rate et = 0.68 day�1. The param-

eters values used for all simulations are provided in Table 1 (Color

figure online)
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’Methods’ section) exhibited an average increase of

� 20 % in the AM population 2 days after the end of

treatment (at 3 days pii) [8]. This correlated to an average

decrease of � 16 % in the bacterial loads within 3 h pbi

with 2 out of 10 mice achieving resolution within 3 h pbi,

and a 60 % reduction in pneumonia.

In the absence of treatment, AMs are depleted by

64.6 ± 13.2 %, on average, at 3 days pii [8]. This corre-

lates to a threshold value (Eq. (10)) of 4:4� 2:1 � 103

CFU [38]. Because the inoculating dose was 200 CFU,

which is well below this threshold value (Fig. 2b), bacteria

clear rapidly and � 24 % of the inoculum remains at 3 h

pbi (Fig. 2c) [8]. Using the percentage of AM depletion as

the value of /̂, Eqs. (5–9) were simulated across the data

range (/̂ ¼ 51:4� 77:8 % AM depletion) and found to

capture the empirical measurements accurately (Fig. 2c).

Under rGM-CSF therapy, AM depletion is reduced by

eg ¼ 18:7� 15:7 % [8] (i.e., /̂ð1� eg), where eg is the

efficacy of rGM-CSF), which moves the position on the

dose-depletion curve to a location further away from the

threshold (Fig. 2b). This suggests that the bacteria will

clear at a faster rate for the same dose [38]. Indeed, only

� 8 % of the inoculum remains at 3h pbi compared to

24 % in the absence of treatment. These dynamics are

accurately predicted by Eqs. (5–9) with values of /̂
between 33.7 % and 75:5% (Fig. 2c). The additional

clearance potential (the additional area of green in Fig. 2c)

corresponds to a 33 % decrease in the AUC, which is used

to quantify the therapeutic benefit. The reduction in AM

depletion is sufficient to allow for resolution in some mice,

which the model suggests may have occurred as early as 2h

pbi as indicated by the lower green line in Fig. 2c.

Although two mice resolved the infection and presum-

ably had lower levels of AM depletion, the other eight mice

had bacteria remaining at 3 h pbi. These individuals may

have been among the 40 % that progressed to pneumonia

because bacterial growth can be restored if clearance is

incomplete within 3–4 h pbi [38]. Using the numerical

solution to Eqs. (5–9) to find the minimum number of AMs

(1� /̂) needed to achieve resolution (log10ðPÞ ¼ 0) by 3 h

pbi indicated that at least 51 % of the AM population is

required to clear a dose of 200 CFU (Fig. 3a). This cor-

responds to an efficacy of eg ¼ 24 % (i.e., /̂ ¼ 64:6

! 49 %) (Fig. 3b). Interestingly, the critical number of

AMs needed to resolve the infection is conserved across

coinfection timings (3 vs 7 days pii) (Fig. 3a), but the

percentage of AM replenishment required is larger at 7

days pii because the baseline value of AM depletion is

greater at this time (/̂ ¼ 87 %) than at 3 days pii

(/̂ ¼ 64:6 %) (Fig. 3b). This can also be seen by simu-

lating the coinfection model (Eqs. (5–9)) for other per-

centage increases in the AM population (Fig. 3c, d).

Calculating the therapeutic benefit (AUC) for various

increases in the AM population for a coinfection at 3 days

pii or 7 days pii suggests that the greatest benefit occurs

when AM depletion is high (large /̂, more severe infection)

and, thus, later in the infection (7 vs 3 days pii) (Fig. 3e).

Similarly, the therapeutic benefit is greater if the infection

is more severe as a result of a high inoculating dose

(Fig. 3f). The more robust response to therapy is due to the

greater slope of the threshold with large /̂ (high degree of

AM depletion), as illustrated in Fig. 3g.

Dynamics under antibiotic therapy

The bacterial burden, which can be reduced directly by

antibiotics, contributes to pathogenicity of SBIs during

influenza virus infections. Treating coinfected mice with a

cell wall active agent (ampicillin) or a protein synthesis

inhibitor (clindamycin) at the onset of pneumonia (see

’Methods’ section) showed that ampicillin could reduce

bacterial titers considerably, whereas clindamycin had a

limited ability to reduce titers but lessened the disease

severity by reducing inflammation [12]. This correlated to a

50 % increase in survival in the ampicillin treated mice and

Fig. 2 Effect of rGM-CSF therapy. a Therapeutic schedule used to

evaluate rGM-CSF therapy in mice infected with PR8 (‘‘Flu’’)

followed by 200 CFU A66.1 (‘‘Spn’’) [8]. b Simulation of Eq. (10)

with the parameters in Table 1 and various values of /̂. Dose-AM
depletion pairing and distance from the threshold are illustrated for no

therapy (black) and rGM-CSF therapy (green). c Simulation of

Eqs. (5–9) against bacterial load data under no therapy (black) or

rGM-CSF therapy (green). The parameters used are those in Table 1

with the indicated range of AM depletion (/̂) (Color figure online)
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an 80 % increase in survival in the clindamycin treated

mice.

To examine the effect of antibiotics on coinfection

kinetics, I assume that pneumococci are killed at rate ea d�1

by ampicillin, which directly lyses bacteria, and that the

replication rate (r) is reduced with efficacy ec by clin-

damycin, which inhibits replication. Adding these effects

to Eq. (9) yields

dP

dt
¼ ð1� ecÞrP 1� P

KP

� �
� cMA

f ðP;MAÞPMAð1� /̂ðVÞÞ

� eaP: ð15Þ

To match the model output to the data, it was first neces-

sary to estimate the time at which therapy was initiated

because the authors of the study reported only that therapy

began at the onset of pneumonia as visualized by biolu-

minescent imaging. A reasonable value for the start time

was obtained by simulating Eqs. (5–9) in the absence of

antibiotics (ea ¼ 0, ec ¼ 0) until the numerical solution

[adjusted to RLU with Eq. (13)] matched the first data

point. This resulted in a start time for mock treated mice of

10 h pbi, with the respective start times for the clindamycin

and ampicillin treated mice being 48 min and 91 min later.

With six mice per group, these times correlate to a process

time of 7–8 min per mouse, which is a reasonable length of

time to identify the onset of pneumonia through biolumi-

nescent imaging and administer treatment.

Simulating Eq. (15) together with Eqs. (5–8) beginning

at the times indicated above suggests that the mock treated

mice may have also had altered bacterial kinetics (Fig. 4a).

For the mock treated group (ea ¼ 0, ec ¼ 0), the model

could reproduce the data if the replication rate (r) was

reduced to 6.5 d�1. When this value was used to simulate

antibiotic treatment, ampicillin could eliminate bacteria at

a rate of ea ¼ 11:35 d�1.

For clindamycin therapy, setting ec ¼ 1 (i.e., 100 %

efficacy) inhibited growth but did not result in decreased

bacterial loads (not shown). Incorporating additional

clearance at a rate of ei ¼ 3 d�1 [i.e., replacing ea with ei in
Eq. (15)] could produce the decline seen in the data during

the first 12 h after therapy. However, the data at 24 h

post-treatment showed a rebound in the bacterial titers,

and, thus, the model deviates from the data after 12 h

post-treatment when antibiotic effects are included (not

Fig. 3 Differential therapeutic benefit of decreasing AM depletion.

a Minimum percentage of AMs (1� /̂) needed to achieve resolution

(P ¼ 0 log10 CFU) by 3 h pbi for coinfections at 3 days pii (black) or

7 days pii (blue) and for bacterial doses of 200 CFU, 1000 CFU, or

5000 CFU. b Percent efficacy (eg) needed to achieve resolution by 3 h

pbi for a coinfection at 3 days pii or 7 days pii and for a bacterial dose

of 200 CFU (black), 1000 CFU (cyan), or 5000 CFU (magenta). c–
d Simulation of Eqs. (5–9) for different percentage increases in AMs

calculated from baseline for a coinfection at 3 days pii (Panel c) or 7

days pii (Panel d). e–f Calculated therapeutic benefit (change in

AUC) for different percentage increases in the AM population (/̂)

(Panel e) or for different dose increases (Panel f) for a coinfection at

3 days pii (squares) or 7 days pii (circles). Green indicates a positive

therapeutic benefit and red indicates a negative therapeutic benefit

(Panel e). g Schematic showing how the slope of the threshold and,

thus, the therapeutic benefit increases more rapidly for higher degrees

of AM depletion. Baseline values of AM depletion at 3 days pii

(square) and 7 days pii (circle) are shown for a dose of 200 CFU.

Unless otherwise noted, the numerical solution to Eqs. (5–9) with the

parameters in Table 1 was used. Baseline is /̂ ¼ 64:6 % for a

coinfection at 3 days pii and /̂ ¼ 87 % for a coinfection at 7 days pii

(Color figure online)

88 J Pharmacokinet Pharmacodyn (2017) 44:81–93

123



shown). Removing the entire effect of antibiotics and the

additional immune-mediated clearance (i.e., setting

ec;i ¼ 0) at 12 h post-treatment could restore the model

accuracy for later time points. The growth in bacterial titers

at this point occurs at the same rate as in the mock treated

mice, suggesting a complete loss of efficacy of the

antibiotic.

While clindamycin works to eliminate bacteria through

non-lytic mechanisms, other antimicrobial agents that tar-

get pathogen replication could also be efficacious. In

addition, earlier administration of the drug should be

beneficial. To quantify how much a drug would need to

reduce the growth rate in order to be effective, Eqs. (5–8)

and (15) were simulated for various values of ec assuming

that therapy begins at 0d pbi (prophylaxis) or at 5 h pbi

(delayed). The model solution indicated that prophylactic

administration would require increasing the doubling time

from 37 min to 56 min (ec ¼ 33:7%) to enable AMs to

control the infection and achieve an immediate clearance

phenotype (Fig. 4b). Delaying treatment to 5 h increased

this doubling time to 61.5 min (ec ¼ 40%; Fig. 4c). If

treatment is delayed even further, the minimum efficacy

required to result in a clearance phenotype increases

rapidly and 100 % efficacy is required at 10 h pbi (Fig. 4d),

which is consistent with the results above that indicated the

efficacy (ec) of clindamycin therapy initiated after 10 h pbi

was 100 %.

The nonlinearity of the required efficacy in Fig. 4d and

the dynamics in Fig. 4b–c illustrate that the replication rate

(r) is a bifurcation parameter, similar to the AM depletion

parameter (/̂). That is, differential dynamics occur

depending on the value of r. Indeed, the threshold solution

(Eq. (10)) is dependent on two parameters other than /̂, the
rates of bacterial replication (r) and clearance (cMA

) (see

’Methods’ section) [38]. Because cMA
would be difficult to

therapeutically manipulate, the remaining analyses focus on

r. Plotting the solution to Eq. (10) for various values of

r while keeping all other parameters fixed to the values in

Table 1 illustrates the response to inhibiting the growth rate

(Fig. 4e). That is, the increasing area under the threshold for

decreasing values of r indicates a greater opportunity for

bacterial clearance. The critical value (Eq. (12)) where

clearance potential is gained is rcrit ¼ 0:74 h�1, which cor-

responds to a doubling time of 56.2 min.

Potential for combination therapy

Thus far, I have examined how different therapeutic

approaches can alter two different parameters of the coin-

fectionmodel that drive the dynamics [i.e., the degree of AM

depletion (/̂) and the bacterial growth rate (r)]. Because the
coinfection dynamics are sensitive to changes in both

parameters, it is possible that they can be altered

Fig. 4 Effect of antibiotic therapy and potential for combination

therapy. a Simulation of Eqs. (5–8) and (15) against bacterial load

data (obtained by bioluminescent imaging, RLU) under mock therapy

(magenta) or antibiotics [ampicillin (green) or clindamycin (cyan)]

[12]. The parameters used are those in Table 1 with ea;c;i ¼ 0 (for no

therapy and mock therapy), r = 6.5 d-1 (for mock (PBS) and

antibiotic therapy), ea ¼ 11:35 d�1 (for ampicillin), and ec ¼ 1 and

ei ¼ 3 d�1 until � 8 days pii and ec;i ¼ 0 thereafter (for clindamycin).

The model output was adjusted to RLU with Eq. (13). b–c Simulation

of Eqs. (5–8) and (15) for various values of antibiotic efficacy (ec) for
prophylactic treatment (beginning at 0d pbi, Panel b) or delayed

treatment (beginning at 5 h pbi, Panel b). d Minimum efficacy (ec)
needed to achieve a clearance phenotype found by simulating

Eqs. (5–8) and (15) for treatment beginning at various times pbi. e–
f Simulation of the threshold solution (Eq. (10)) with various values

of the bacterial growth rate (r) alone (Panel e) or in addition to the

degree of AM depletion (/̂) (Panel f) (Color figure online)
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simultaneously through combination therapy with, for

example, an antibiotic (e.g, clindamycin) and immunother-

apy (e.g., rGM-CSF) or an antiviral (e.g., NAI), if reducing

the viral load also reduces AM loss. Plotting the threshold

solution (Eq. (10)) for different values of /̂ and r shows how

the threshold increases as the rate of bacterial replication is

reduced (i.e., increasing the efficacy, ec; Fig. 4f). The larger
distance below the threshold, which correlates to the rate of

bacterial clearance, with increasing antibiotic efficacy (ec)
suggests a significant gain in clearance potential with com-

bination therapy. If the AUC of the threshold is used as a

measure of therapeutic potential, an antibiotic efficacy of

40 %, 60 % or 80 % increases the chances of successful

treatment with immunotherapy and/or antivirals by 49 %,

95 %, or 194 %, respectively.

Discussion

Given the severity of influenza virus infections and

influenza-associated secondary bacterial infections, effec-

tively preventing both infections is crucial. The limited

protection and availability of vaccines, together with the

inadequacies of antimicrobial agents, make treating SBIs

challenging. Although suboptimal efficacy may be

unavoidable to some extent, a detailed understanding of

how infection processes change over time and the feedbacks

between various pathogen and host factors aids our ability

to develop new therapeutic strategies and/or targets that

effectively abrogate influenza infections and SBIs.

By utilizing kinetic models describing influenza virus

infection [2, 41] and bacterial coinfection [43] and

exploiting the tight correlation between two factors (i.e.,

bacterial dose/load and AM depletion) that regulate bac-

terial acquisition and initial bacterial titer trajectories

[8, 38, 43], the analysis here shows how infection kinetics

change when different processes are perturbed with

antimicrobial agents. Given that virus infection ! AM loss

! reduced bacterial clearance ! increased viral load,

therapeutically targeting these processes should have sim-

ilar effects (Fig. 5). However, the nonlinearity of the

relationship between AM depletion, the bacterial load/-

dose, and the bacterial growth rate (Figs. 4f, 5) illustrates

that the extent to which pathogen loads can be therapeu-

tically reduced is dependent on the time of administration

(i.e., location on the threshold axes) and the mechanism of

action of the drug (Figs. 3, 4, 5). In addition, the steeper

slope of the threshold for high values of AM depletion

(Fig. 3g) highlights the faster response to therapies that

decrease the depletion when the infection is more severe,

but this is complicated by a greater therapeutic efficacy

needed to resolve the infection (Fig. 3). The response to

therapy will be increased further when bacterial growth is

also inhibited (i.e., during combination therapy) because

Fig. 5 Summary of therapeutic strategies to combat SBIs during

influenza. Schematic of the regulating mechanism driving SBIs

during influenza virus infections and various therapeutic strategies

targeted at each process. Influenza virus infection results in the

depletion of alveolar macrophages (AMs), which in turn allows for

bacteria to invade and grow. This bacterial growth then increases the

viral load. Antiviral therapy (AV) can reduce virus growth, which

may in turn decrease AM depletion. AM depletion can be reduced by

immunotherapy (IM), which improves bacterial clearance. Antibiotics

(Abx) can reduce the bacterial loads and/or the bacterial growth rate,

which may reduce the post-bacterial viral load rebound. The figure in

the center shows the relationship between AM depletion (x-axis),

bacteria load (y-axis), and bacterial growth rate (colored lines), as

defined by Eq. (10). Values above/below the threshold lines support

growth/clearance phenotypes. Also depicted are the ways in which

each therapy can be used alone or in combination (i.e., by using Abx

to slow bacterial growth (from the black line to the blue line) or to

reduce bacterial loads, and by using IM or AV to reduce AM loss)

(Color figure online)
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the slope of the threshold is steeper (Fig. 4f). The addi-

tional area under the threshold with combination therapy

also suggests that it may be possible to decrease the amount

of drug used and/or the length of therapy. In contrast,

manipulating only the growth rate would require a higher

efficacy than manipulating the AM population because of

the slower rate of change of the curve in Fig. 4e.

Although the mechanism resulting in AM loss during

influenza is unknown, viral loads may be directly related

to AM depletion [38]. Data obtained by manipulating the

dose-depletion combination suggested that when bacterial

loads decline in the first 4 h pbi (i.e., dose-depletion

pairing below the threshold), but do not clear, bacteria can

overcome AMs and switch to a growth phenotype [38].

When this occurs, it results in a large degree of hetero-

geneity in bacterial loads at 24 h pbi, whereas little

heterogeneity results from dose-depletion pairings above

the threshold [38]. This observation provided insight into

the coinfection dynamics with the PR8-PB1-F2(1918)

virus, for which bacterial titers diverged by 24 h pbi [43].

In these mice, viral titers were also lower at the onset of

the coinfection [41, 43], which suggested a dose-depletion

pairing below the threshold. Although it is unknown if

there was less AM depletion with this virus, the correla-

tion led to the hypothesis that viral titers are linked to the

depletion of these cells. This may help explain why even

small reductions in the viral load as a result of antiviral

treatment can lead to substantial reductions in SBI mor-

bidity and mortality [21]. It is also possible that reducing

viral loads with antiviral treatment has additional effects

on host immune responses or other host factors (e.g., as in

Fig. 1e) that are beneficial in decreasing the incidence and

pathogenicity of SBIs. With several anti-influenza drugs

not yet licensed for use in the U.S. or under development

(reviewed in [11]), it will be important to test their effect

on immune components and their efficacy in animal

coinfection models.

Treatment with antiviral agents may prevent the detri-

mental effects on AMs during influenza virus infection, but

the cell population can also be restored by immunotherapy

with agents like rGM-CSF [8]. Even with a short treatment

regimen that resulted in � 20 % efficacy, bacterial clear-

ance for a low dose infection could be improved, gener-

ating a 33 % therapeutic benefit. However, the results

presented here suggest that more severe infections, such as

those initiated by larger doses, would require significantly

greater efficacy (Fig. 3a, b). It is unclear if another treat-

ment schedule with rGM-CSF or an alternate drug could

improve these figures. Because rGM-CSF therapy has some

drawbacks, such as increasing inflammation (reviewed in

[10]), that may inhibit its use during influenza-associated

diseases, developing other therapies that increase the AM

population is necessary.

Reducing the pathogen load is the goal of many thera-

peutics, including antivirals and antibiotics, but the

pathogen titers do not always correlate with disease. Fur-

ther, reducing inflammation directly or through reduction

of the pathogen burden often leads to a better outcome.

Protein synthesis inhibitors (e.g., clindamycin), which slow

bacterial replication in addition to having anti-inflamma-

tory effects [12, 13], are one example of such a treatment.

However, decreasing the inflammatory response leads to a

rebound in bacterial loads [12] (Fig. 4a), which has been

attributed to a lower neutrophil influx into the lungs

mediated by Toll-like receptor 2 (TLR-2) [13]. This may

explain why it was necessary to remove the effect of

antibiotics (ec) and the additional immune response (ei) in
Eq. (15) shortly after therapy initiation in order to match

the data (Fig. 4a). Although neutrophil dynamics are cur-

rently excluded from the model, ei reflects bacterial

phagocytosis by these cells. An understanding of the rela-

tive effects of neutrophils on pathogen kinetics and

inflammation/disease may aid the design of new thera-

peutic approaches, particularly given that these cells

undergo influenza-induced apoptosis and become dys-

functional during SBIs [5, 6, 14, 23, 30, 36] and that TLR-2

antagonists can protect against SBIs [26].

Kinetic models provide a robust means of evaluating

how infection kinetics change when different processes are

perturbed by therapeutics. These models yield important

information about the feasibility of attaining a particular

outcome (e.g., clearance within a distinct time frame), the

off-target effects of a drug (e.g., on immune responses),

and the time-scale on which a drug is most effective. In

addition, establishing how different mechanisms are related

pinpoints strategies that can simultaneously alter each

pathway and provides insight into the impact of using

multiple therapies. Determining how other pathogen and

host factors work together will undoubtedly identify new

therapies for these diseases.
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