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Abstract: Despite Artificial Intelligence (AI) being a leading technology in biomedical research, real-
life implementation of AI-based Computer-Aided Diagnosis (CAD) tools into the clinical setting is
still remote due to unstandardized practices during development. However, few or no attempts have
been made to propose a reproducible CAD development workflow for 3D MRI data. In this paper,
we present the development of an easily reproducible and reliable CAD tool using the Clinica and
MONAI frameworks that were developed to introduce standardized practices in medical imaging. A
Deep Learning (DL) algorithm was trained to detect frontotemporal dementia (FTD) on data from
the NIFD database to ensure reproducibility. The DL model yielded 0.80 accuracy (95% confidence
intervals: 0.64, 0.91), 1 sensitivity, 0.6 specificity, 0.83 F1-score, and 0.86 AUC, achieving a comparable
performance with other FTD classification approaches. Explainable AI methods were applied to
understand AI behavior and to identify regions of the images where the DL model misbehaves.
Attention maps highlighted that its decision was driven by hallmarking brain areas for FTD and
helped us to understand how to improve FTD detection. The proposed standardized methodology
could be useful for benchmark comparison in FTD classification. AI-based CAD tools should be
developed with the goal of standardizing pipelines, as varying pre-processing and training methods,
along with the absence of model behavior explanations, negatively impact regulators’ attitudes
towards CAD. The adoption of common best practices for neuroimaging data analysis is a step
toward fast evaluation of efficacy and safety of CAD and may accelerate the adoption of AI products
in the healthcare system.

Keywords: deep learning; computer aided diagnosis; artificial intelligence; MONAI; Clinica;
frontotemporal dementia; neurodegenerative diseases; neuroimaging; 3D MRI

1. Introduction

Computer-Aided Diagnosis (CAD) tools aim to help improve physicians’ performance
in disease detection, with the main objective of detecting early pathological signs that
humans may fail to find [1]. CAD applications have been developed for numerous medical
imaging modalities and diseases [1,2] and they provide diagnosis probabilities by analyzing
the data. As such, CAD tools would help the radiologists to draw their conclusions,
supporting their interpretation and decision-making processes [3]. Interestingly, it has
been shown that the performance of the radiologist can be equalized by CADs and even
improved by joining human collective reasoning with machine predictions [2,4].
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CAD on medical imaging data relies on image processing methods and Artificial
Intelligence (AI) classification systems. Deep Learning (DL) is the best suited AI technique
for this purpose, strong in its role in computer vision. Highly difficult tasks requiring
human or superhuman ability have been solved by DL over the last few years, defining
new standards in protein structure prediction [5], image generation from natural language
description [6], and general-purpose learning in complex domains [7]. Applications of DL
methods in the medical field mainly include systems for an earlier or more accurate disease
diagnosis, assessment for the risk of conversion to a more severe disease status and disease
subtypes identification [8]. DL is based on Artificial Neural Networks that analyze input
data by mimicking brain functioning, with several layers of nodes as neurons applying
complex transformation functions to data [9]. In the case of a CAD tool, the information is
processed and the model produces an output response, such as the prediction of a class
probability (e.g., case or control). Implementation and investment in DL for medicine have
been growing over the past few years [10]. This is due to its potential of providing new
reliable methods to enhance healthcare practices and finally foster precision medicine.

Nonetheless, the acceptance of AI in standard clinical settings is still lagging [11]. One
of the factors hindering AI-based CAD spread in hospitals is that DL models have a lack of
interpretability, which is a primary concern for medical practitioners. Not knowing how the
model made its choice weakens AI trustability. DL models are considered uninterpretable
due to the complexity of the transformation they apply when processing the data, and
for this reason they are often called black-box models. Recently, the development of
explainable AI methods has been tackling this issue. In fact, explainable AI aims to enhance
its interpretability by providing insights about models’ behavior [12]. Attention maps are
visual tools that help explain deep convolutional neural networks, showing which input
regions are the most influential for the network when making a prediction. Producing and
interpreting attention maps when developing DL-based CAD tools could strongly enhance
their acceptance and finally their diffusion.

Frontotemporal dementia (FTD) is a neurodegenerative clinical syndrome where
behavior, executive functions, and language show progressive deficits [13]. FTD ranks
third in the prevalence of dementia, after Alzheimer’s disease (AD) and dementia with
Lewy bodies [14]. FTD encloses clinical syndromes whose histopathological characteristics
are the neuronal loss, gliosis, and progressive neurodegeneration predominantly affecting
the frontal and temporal lobes [15–17]. Diagnosing FTD is a difficult task and requires
a longer period of time compared to AD. This is due to a subtle and insidious onset for
FTD, as memory problems, typically the first sign of dementia, are often lacking and
the majority of FTD patients have no initial complaints [18,19]. Moreover, FTD is highly
heterogeneous in its manifestations and multiple disease variants have been identified, for
which international diagnostic criteria have been proposed [20–22]. Differential diagnosis of
FTD with other forms of dementia such as AD is even harder, and investigations of how long
it takes to make a diagnosis of FTD have shown that a comprehensive assessment is essential
to differentiate FTD from other diagnoses [23,24]. Even if there is currently no disease-
modifying treatment for FTD, its early diagnosis has the potential to improve patient
management by timely planning useful pharmacological treatment strategies for symptom
control [25]. These are useful in helping caregivers cope with the high levels of distress
they are experiencing due to the high prevalence of psychopathology in FTD patients [26].
Understanding how FTD leads to cognitive and behavioral symptoms is critical, and
non-invasive brain stimulation methods such as Transcranial Magnetic Stimulation (TMS)
and transcranial Direct Current Stimulation (tDCS) have been used to shed light on the
mechanisms involved [27–29].

Brain imaging in vivo has been crucial to unraveling FTD pathophysiology, as it made
it possible to identify several biomarkers associated with the disease. Neuromorphological
hallmarks of FTD are gray matter volume loss of the prefrontal cortex, insula and anterior
cingulate cortex [30,31]. Additionally, there is a white matter integrity loss over time, and
brain atrophy increases with disease progression [32,33]. Magnetic resonance measure-
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ments of ventricular volumetric changes in FTD patients showed that their size increases
with time, and this correlates with cognitive impairment severity [34]. In particular, ven-
tricular expansion has been found to represent an informative marker to discriminate the
behavioral variant of FTD from other FTD variants and from other forms of dementia [35].

The development of a reliable CAD tool needs the data to be carefully annotated,
organized, and managed, especially when it is based on Magnetic Resonance Imaging
(MRI). Classification systems exploiting brain imaging have been successfully used to
capture structural changes in the human brain [36,37] and detect dementia up to flawless
performance [38]. Extensive datasets improve the solidity of AI algorithms’ training
and many data-sharing initiatives have grown in the field of neurodegenerative disease
research in the last 20 years [39]. Such initiatives foster neurodegenerative disease research,
by putting aside the need for years-long data collection and providing reliable data. This
speeds up both hypothesis testing and data-driven research that exploits AI for data
analysis. A key element that enables the use of such techniques is the adoption of academy
and industry-wide data standards. In order to make the shared data productive, the
FAIR (Findable, Accessible, Interoperable, Reusable) principles have been proposed to
promote Open Science practices for data sharing initiatives [40,41]. FAIR data can be highly
precious, especially when hundreds of subjects are available and the methods for data
acquisition are standardized and reliable. The spread of research-useful data is aided by
database management initiatives such as the Image and Data Archive (IDA), hosted by the
Laboratory of NeuroImaging (LONI), that contains data from more than 160 studies. IDA
shares the Neuroimaging in Frontotemporal Dementia (NIFD) database, which is one the
biggest data sharing initiatives on FTD to date.

To date, few attempts have been made to discriminate FTD from Normal Controls (NC)
using AI methods [36,37,42–47]. Most of the studies used MRI-derived numerical features,
such as gray/white matter volume or cortical thickness quantification, with traditional
ML algorithms such as Support Vector Machine (SVM) and logistic regression. To the
best of our knowledge, there is only one published study that used 3D MRI data for FTD
classification with a pretrained Convolutional Neural Network (CNN) achieving high
accuracy [42]. Given that only a few of the previous classification attempts used NIFD
data, sample sizes usually ranged from 12 to ~450 subjects, and preprocessing and data
augmentation methods, as well as AI algorithms choice and cross-validation strategies,
were highly heterogeneous. This heterogeneity in methodology resulted in unstable and
potentially unreliable CAD performances, achieving accuracies ranging from 0.66 to 1.

To deepen our understanding of neurodegenerative diseases in general, and FTD in
particular, standardized practices are needed when preprocessing and analyzing MRI data
with DL, in order to make studies easier and more reproducible. Several initiatives have
approached this problem. The Nipype (Neuroimaging in Python—Pipelines and Interfaces)
package, an open-source Python project, provides functions where the interaction with
neuroimaging software tools or algorithms can be performed in a single workflow, partly
handling the heterogeneity of image processing [48]. NiftyTorch is a DL framework for
neuroimaging in Python, giving users an interface for PyTorch modeling with the aim of
providing a package to easily perform AI-based operations on neuroimaging data [49]. In
the same fashion, MedicalTorch is an open-source framework for PyTorch, implementing
an extensive set of loaders, pre-processors and datasets for medical imaging [50]. In
2016, efforts to increase data standardization and experiment reproducibility led to the
proposal to the neuroimaging community of the Brain Imaging Data Structure (BIDS) as an
organization format for clinical and imaging data [51]. Despite the scientific community’s
acceptance of the BIDS standard, not all public neuroimaging datasets provide BIDS
versions of their data.

Clinica, a set of automatic pipelines for the management of multimodal neuroimaging
data, pursues the community effort of reproducibility and aims to make clinical research
studies easier [52]. This project is developed and maintained from the Aramis Lab and
consists of a set of automatic pipelines for neuroimaging data processing and analysis.
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The aim of Clinica is to make clinical neuroimaging studies easier and reproducible by
providing standardized methods for data processing. Clinica includes converters of public
neuroimaging datasets to BIDS, along with processing pipelines, and organization for
processed files, statistical analyses, and Machine Learning algorithms.

One of the latest and most extensive initiatives for the standardization of AI applica-
tions to medical imaging is “project MONAI”, that originally started in 2020 by NVIDIA
and King’s College London and brought to the MONAI framework [53]. It is an open-
source PyTorch-based framework for DL in healthcare imaging. The aim of the project
is developing and sharing best practices for AI in healthcare imaging, creating state-of-
the-art, end-to-end training workflows for healthcare imaging and providing researchers
with the optimized and standardized way to create and evaluate Deep Learning models.
The MONAI framework provides workflows for using domain optimized networks, loss
functions, metrics, and optimizers.

Considering the high heterogeneity in CAD tools development methodology, there
is a need to foster standardized practices to spread the benefits of AI strategies adoption
in the diagnosis pipeline. Here, we present a proof-of-concept of Clinica and MONAI
application on the NIFD database to train and test a CAD tool on FTD data with the
application of shared practices. Our aim was testing the efficacy of only using standardized
frameworks for neuroimaging data preprocessing and DL modeling on medical imaging
as main steps in CAD development. The achieved performance is comparable to that
of other FTD classification systems, showing the appropriateness of this methodology.
Explainable AI methods reveal that the model mimics human behavior when making its
decision, mainly relying on morphological changes in hallmarking brain areas for FTD.
The adoption of academy and industry-wide data standards coupled with standardized
practices for neuroimaging data management will provide more reliable results upon the
application of less biased procedures.

2. Materials and Methods
2.1. Neuroimaging in Frontotemporal Dementia Database

This study was performed on data from the NIFD database, hosted by the Laboratory
of NeuroImaging from the University of Southern California. NIFD is the nickname
for the frontotemporal lobar degeneration neuroimaging initiative (FTLDNI). FTLDNI
was funded through the National Institute of Aging and started in 2010. The primary
goals of FTLDNI were to identify neuroimaging modalities and methods of analysis for
tracking frontotemporal lobar degeneration (FTLD) and to assess the value of imaging
versus other biomarkers in diagnostic roles. The Principal Investigator of NIFD was
Dr. Howard Rosen, MD, at the University of California, San Francisco. The data are the
result of collaborative efforts at three sites in North America. For up-to-date information
on participation and protocol, please visit http://memory.ucsf.edu/research/studies/
nifd (accessed on 25 May 2022). NIFD includes data from 346 subjects followed over
time including FTD and NC all with a careful assessment through interviews, physical
examinations, cognitive testing and blood and/or CSF testing, along with brain MRI and
PET acquisition. FTD patients included in this database are diagnosed with one of the
following disease variants: behavioral variant, semantic variant, progressive non-fluent
aphasia, progressive supranuclear palsy, or cortico-basal syndrome.

2.2. Clinica: An Open-Source Software Platform for Reproducible Clinical Neuroscience Studies

We used Clinica [52] functions to manage NIFD data. In particular, we applied the nifd-
to-bids function to convert NIFD data to BIDS format, in order to be ready for processing.
Next, we used the t1-linear pipeline to affinely align T1-weighted MR images to the MNI
space. With this standardized preprocessing applied, we were ready for model training.

http://memory.ucsf.edu/research/studies/nifd
http://memory.ucsf.edu/research/studies/nifd


Life 2022, 12, 947 5 of 16

2.3. MONAI: Medical Open Network for Artificial Intelligence

We followed the MONAI workflow for 3D classification based on DenseNet. MONAI
proposes to use the DenseNet121 architecture stored in PyTorch, a model from [54]. MONAI
made importing and transforming the images easy, and provided useful functions to train
and test the DL model. Such standardized and community-based practice makes data
and model management more solid, increasing the robustness and reproducibility of CAD
building practice.

2.4. Workflow Overview

The next sections describe the methodology for the proposed workflow, which is
shown in Figure 1. NIFD data was downloaded from the IDA and filtered as specified
in Section 2.5. Data preprocessing was performed with the standardized pipeline from
Clinica, as specified in Section 2.6. Data augmentation was applied only on the train set
and preceded model training and test phases, which were all performed in the MONAI
framework. These two are described in Sections 2.7 and 2.8, respectively. Finally, the
behavior of resulting CAD is evaluated by extracting attention maps as explained in
Section 2.9.

Life 2022, 12, 947 5 of 17 
 

 

2.2. Clinica: An Open-Source Software Platform for Reproducible Clinical Neuroscience Studies 
We used Clinica [52] functions to manage NIFD data. In particular, we applied the 

nifd-to-bids function to convert NIFD data to BIDS format, in order to be ready for pro-
cessing. Next, we used the t1-linear pipeline to affinely align T1-weighted MR images to 
the MNI space. With this standardized preprocessing applied, we were ready for model 
training. 

2.3. MONAI: Medical Open Network for Artificial Intelligence 
We followed the MONAI workflow for 3D classification based on DenseNet. MONAI 

proposes to use the DenseNet121 architecture stored in PyTorch, a model from [54]. 
MONAI made importing and transforming the images easy, and provided useful func-
tions to train and test the DL model. Such standardized and community-based practice 
makes data and model management more solid, increasing the robustness and reproduc-
ibility of CAD building practice. 

2.4. Workflow Overview 
The next sections describe the methodology for the proposed workflow, which is 

shown in Figure 1. NIFD data was downloaded from the IDA and filtered as specified in 
Section 2.5. Data preprocessing was performed with the standardized pipeline from 
Clinica, as specified in Section 2.6. Data augmentation was applied only on the train set 
and preceded model training and test phases, which were all performed in the MONAI 
framework. These two are described in Sections 2.7 and 2.8, respectively. Finally, the be-
havior of resulting CAD is evaluated by extracting attention maps as explained in Section 
2.9. 

 
Figure 1. Graphical representation of the main steps of the workflow. 

2.5. Data Collection 
To perform the present study, we filtered the data to include only 3D T1-weighted 

Magnetization-Prepared Rapid Acquisition with Gradient Echo (MPRAGE) MRI scans at 

Figure 1. Graphical representation of the main steps of the workflow.

2.5. Data Collection

To perform the present study, we filtered the data to include only 3D T1-weighted
Magnetization-Prepared Rapid Acquisition with Gradient Echo (MPRAGE) MRI scans at
the first visit for cases and controls, as this was the most frequent acquisition modality
among many others available in NIFD. Subjects were labeled as cases or controls following
the diagnosis reported in the clinical data table. When the diagnosis was missing in the
clinical data table, the “patient/control” label available in the MRI metadata was used. This
resulted in a final dataset of 182 FTD and 130 NC.
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2.6. Preprocessing Pipeline

Subjects were randomly assigned to train, validation, and test sets with a 70/30
proportion calculated on the group with the highest n (Table 1). This splitting propor-
tion is most indicated for small sample sizes and it required ~40 subjects for validation
and test [55]. Random sampling without replacement resulted in each participant being
uniquely assigned to one of the three sets, avoiding data leakage.

Table 1. Data splitting before augmentation.

Group Train (n) Validation (n) Test (n)

FTD 143 19 20

NC 91 19 20

The 3D T1 MPRAGE MRI scans underwent BIDS formatting with the application of
the nifd-to-bids converter from Clinica [52]. Data preprocessing for the affine registration
of T1w images to the MNI standard space was performed using the t1-linear pipeline
of Clinica [52,56]. More precisely, bias field correction was applied using the N4ITK
method [57]. Next, an affine registration was performed using the SyN algorithm [58] from
ANTs [59] to align each image to the MNI space with the ICBM 2009c nonlinear symmetric
template [60,61]. The registered images were further cropped to remove the background
resulting in images of size 169 × 208 × 179, with 1 mm isotropic voxels.

2.7. Data Augmentation Pipeline

MRI scans from subjects in the train set underwent augmentation procedures to
generate new observations and enlarge the training set. Data augmentation was performed
using MONAI randomized data augmentation transforms. The specs of the applied
transformations are described in Table 2. Each image was augmented 5 times.

Table 2. Transformations applied to perform data augmentation.

Transformation Description Probability of
Application Specs

Translation
Translate voxels for

every spatial
dimension.

1 ±2 voxels

Rotation Randomly rotate the
input arrays. 1 ±5 degrees on the x-axis

Gaussian noise Add Gaussian noise
to the image. 0.5

Mean = 0; standard
deviation = 2.5% of the

range of activation values
in the image

Contrast
adjustment

Randomly updates
each voxel intensity

by gamma.
1 Gamma range = (0.0, 3.0)

This process enlarged the train set to 1170 images (715 FTD, 455 NC). In order to build
the final train set, all the original images were kept for both groups and the augmented
images were sampled to set the n of each group to 400. A summary for the composition of
the final train set is shown in Table 3.
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Table 3. Train set after data augmentation.

Group Original Images (n) Augmented Images (n) Total

FTD 143 257 400

NC 91 309 400

Total 234 566 800

2.8. Deep Learning Pipeline

A train set of 440 images per group was used to train a classifier following the indica-
tions reported in MONAI [53]. A DenseNet121 was trained with default parameters for 3D
images for 10 epochs and using a batch size of 2 (Figure 2). The Cross-Entropy loss was
used for training with Adam optimizer, setting the learning rate to 1 × 10−5. DenseNet121
is a Dense Convolutional Network, where each layer is connected to every other layer and
uses all preceding layers’ feature-maps as inputs [54]. When the images were imported in
the PyTorch environment they underwent intensity scaling between 0 and 1, a channel was
added to make the image in the channel-first format, then it was resized with scaling to
150 the longest dimension, keeping the aspect ratio of the initial image. The model with
the best performance on the validation set was saved. Predictions on the test set were
performed following MONAI indications and results were evaluated by computing the
following evaluation metrics: accuracy, sensitivity, specificity, F1-score, and Area Under
the Curve (AUC).
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connected layers. In fact, within a dense block each layer is directly connected to every other layer in
a feed-forward fashion.

2.9. Explainable AI Using the Attention Map Method

In order to investigate where the DL model focused to make its prediction, we applied
the Guided Gradient-weighted Class Activation Mapping (Guided Grad-CAM) algorithm
using the M3d-CAM tool [62]. M3d-CAM simplifies the interpretability of PyTorch-based
models by providing an easy-to-use library for generating attention maps. The application
of the Guided Grad-CAM algorithm generated attention maps as new images to visualize
important voxels, finally providing insights into model’s behavior [63]. In particular, the
neuron importance weights (αc

n) are computed as the global average pooling of the gradients
via backpropagation, before the softmax layer of the DL network. The gradient of the score
for the output is computed with respect to feature map activations of a convolutional layer,
as shown in Equation (1).

αc
n =

1
z ∑

i
∑

j
∑
k

∂yc

∂An
ijk

(1)

where y is the model output before sigmoid function application, c is the class of interest,
A is the feature map activation, i, j, and k are the width, height, and depth dimensions,
respectively. To obtain a tensor heatmap of feature importance (LGrad−CAM) representing
the activation map of the network Guided Grad-CAM executes a weighted combination of
the obtained αc

n with An using the Rectified Linear Unit (ReLU) function, represented in
Equation (2) [62].

LGrad−CAM = ReLU (∑
n

αc
n An) (2)
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The obtained tensor heatmap was then rendered as a pseudocolor image with grayscale
colormapping. The areas contributing the most to the model’s output emerged with the
greatest variation in grayscale.

3. Results
3.1. CAD Train and Test

A DenseNet121 architecture in PyTorch was trained to discriminate between FTD and
NC T1 3D MRI following the MONAI framework guidelines. To ensure the model was
not performing well only on the data it was trained on, we measured its performance on a
separated validation set. In fact, the model was tested on the validation set after each epoch
and the model with the best accuracy (0.92) was saved. After training, this saved model was
tested on an independent test set to assess prediction performance. The model achieved
0.80 accuracy (95% confidence intervals: 0.64, 0.91), 1 sensitivity, 0.6 specificity, 0.83 F1-
score, and an AUC of 0.86. Testing if the accuracy was higher than the no information rate
achieved a p-value < 0.0001. The confusion matrix is reported in Figure 3, showing that the
model only misclassified NC samples, achieving max sensitivity.
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Figure 3. (A) The confusion matrix indicates classification results for both classes. Rows indicate true
labels and columns indicate predicted labels. (B) Receiver Operating Characteristic (ROC) curve of
the DenseNet121 classifier obtained when predicting disease status (FTD/NC) using 3D T1w MRI.
Area Under the Curve (AUC) was calculated as the definite integral between 0 and 1 on the x-axis
and provides an aggregate measure of performance.

3.2. Comparison with Previous FTD Classification Approaches

We collected the performance metrics of the studies attempting to discriminate FTD
from NC or AD to demonstrate that a reproducible DL powered CAD tool performs sim-
ilarly (Table 4). Our application achieved 0.80 accuracy, which is in line with the results
obtained by other research groups in the FTD vs. NC classification (Accuracymean = 0.84,
sd = 0.08) while showing high reproducibility. Notably, only a few of the previous classifi-
cation attempts used NIFD data, and their sample size, AI algorithms, and cross-validation
strategies were highly heterogeneous. Most of the published DL applications to FTD were
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designed to discriminate FTD from AD, making it difficult to compare their performance
with ours.

Table 4. FTD classification results.

Citation Comparison Sample Size Classification
Method Features Metric

Proposed application FTD vs. NC 182 FTD
130 NC

HOTS
DenseNet121 3D T1 MRI scans Acc = 0.80

Hu et al., 2020 [42] FTD vs. NC 552 FTD
354NC HOTS CNN Raw 3D T1 MRI

images Acc = 0.93

Bron et al., 2017 [43] FTD vs. NC 33 FTD
34 NC 4-fold CV SVM Whole-brain VBM

volume of GM AUC = 0.95

Zhang et al., 2013 [44] FTD vs. NC 25 FTD
19 NC 4-fold CV SVM

VBM GM volume
on frontotemporal

ROI
Acc = 0.66

Muñoz-Ruiz et al.,
2012 [45] FTD vs. NC 37 FTD

26 NC HOTS regression VBM GM volume Acc = 0.85

Dukart et al., 2011 [46] FTD vs. NC 14 FTD
13 NC LOOCV SVM ROIs GM Acc = 0.85

Davatzikos et al.,
2008 [36] FTD vs. NC 12 FTD

12 NC LOOCV SVM
PCA on RAVENS

GM and WM
volume

Acc = 1

Du et al., 2007 [37] FTD vs. NC 19 FTD
23 NC LOOCV LR Frontal

volume Acc = 0.89

Chagué et al., 2021 [64] FTD vs. Late Onset
AD

39 FTD
34 AD 10-fold CV SVM GM and WM

volumes Acc = 0.72

Chagué et al., 2021 [64] FTD vs. Early
Onset AD

39 FTD
34 AD

10-fold CV
SVM

GM and WM
volumes Acc = 0.80

Bron et al., 2017 [43] FTD vs. AD 33 FTD
24 AD 4-fold CV SVM Whole-brain VBM

volume of GM AUC = 0.78

McMillan et al.,
2014 [65] FTD vs. AD 72 FTD

21 AD
HOTS linear
regression

Global ventricles
volume AUC = 0.83

Dukart et al., 2011 [46] FTD vs. AD 14 FTD
21 AD LOOCV SVM ROIs GM Acc = 0.60

Lehmann et al.,
2010 [66] FTD vs. AD 23 FTD

17 AD CV SVM Whole brain
cortical thickness Acc = 0.79

Davatzikos et al.,
2008 [36] FTD vs. AD 12 FTD

37 AD LOOCV SVM

PCA on
RAVENS GM and

WM
volume

Acc = 0.84

Klöppel et al.,
2008 [67] FTD vs. AD 19 FTD

18 AD LOOCV SVM GM volume Acc = 0.89

Acc: Accuracy; AUC: Area Under the Curve; CV: Cross-Validation; GM: Grey Matter; HOTS: held-out test set;
LOOCV: Leave-One-Out Cross-Validation; LR: Logistic Regression; SVM: Support Vector Machine; VBM: Voxel-
Based Morphometry; WM: White Matter. In the case that a paper presents multiple classification results based on
different feature sets (e.g., comparing classification performance on hippocampus volume vs. VBM-GM volume),
only the best result was reported in this table. Moreover, only results obtained with brain morphometry data
were considered. Accuracy was reported where available, otherwise AUC was reported. The table is arranged by
Comparison (descending) and year of publication (descending).
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3.3. Attention Maps

Attention maps help visually explain DL models for image processing, showing which
parts of the image contributed to the classification. We generated attention maps using
the Guided Grad-CAM algorithm that provided an image with the same size as the test
image, where relevant points have a highly perturbed value, thus emerging from the
background and showing where the model focused to perform its prediction. Attention
maps for the FTD and the NC subjects with the most accurate prediction are shown in
Figure 3. Emerging areas concentrate around the ventricles, where the difference is clearly
noticeable, as the FTD subject has expanded ventricles. It also seems that the model partly
focuses on the skull. Figure 4 shows a single slice where the difference is evident, yet an
animation of the full brain scans and attention maps is available in the Supplementary
Materials.
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4. Discussion

In this work, we showed the use of a standardized workflow to build a CAD tool for
FTD. Data preprocessing was made easily reproducible by using the Clinica library [40],
while an optimized state-of-the-art DL model was trained within the standardized MONAI
framework [53]. The proposed workflow resulted in a CAD with max sensitivity, correctly
identifying all FTD samples. Some NC samples were missed, leading to 0.8 accuracy, yet
this result is in line with the previous FTD classification approaches based on MRI, whose
accuracy in discriminating FTD from controls is around 0.8 [47,68]. Notwithstanding,
most of the available papers on FTD classification with AI-based methods used Machine
Learning on quantitative variables that, although from MRI brain scans (e.g., cortical
thickness), have to be managed differently from 3D MRI data (Table 4). A few works
were published where DL is used to detect FTD from 3D imaging, but their focus was
on discriminating it from AD, making their results incomparable to ours (Table 4) [42,69].
There is only one published work really comparable to ours [42], but their trained DL
model takes raw images as input and uses a non-standard architecture. On such a basis, we
found this method built on standardized frameworks to be new in FTD research. Moreover,
our work is one of few based on the NIFD database. We believe that our standardized
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methodology makes our work useful for benchmark comparison in FTD classification.
Experiments based on neurodegenerative disease classification need large sample sizes and
to the best of our knowledge NIFD offers the largest FTD cohort to date with neuroimaging
and clinical data available. Finally, we found that several studies were underpowered,
with few participants for each experimental group. Small sample sizes usually lead to
unstable results and/or inflated performances of the models used for classification. This
bias is worsened when coupled with misused Cross-Validation strategies such as k-fold
Cross-Validation that are unreliable with ~20 subjects per group. A standardized workflow
following data science best practices protects from data leakage or overfitting, ensuring
reproducibility and reliability.

The performance of the CAD presented here could be further enhanced by train-
ing the model with a higher number of epochs, as other works show convergence after
100 epochs [42]. Additionally, tuning the model hyper-parameters such as learning rate
and batch size could have yielded higher accuracy, along with choosing a different DL
architecture, finally identifying the best performing combination. Moreover, we could have
taken a data-centric approach to boost the effectiveness of the training phase, possibly
improving test performance. As it has been shown, a data-centric approach counters the
challenges of training with a small dataset and improves accuracy [70]. Nonetheless, our
approach aimed at simplicity and reproducibility, showing that a CAD tool can be set up by
using open-source and easy-to-use software platforms providing state-of-the-art methods
for data preprocessing and analysis.

One of the biggest flaws in DL-based CAD tools is their lack of interpretability. In
fact, DL neural networks are black boxes, meaning that highly complex data processing
makes it unintelligible how the model comes to its final output (a class probability). To
the extent of making black boxes more interpretable, a few methods for explaining model
behavior have been developed, contributing to the realization of the explainable AI [12,71].
Neurodegenerative disease research is only recently approaching explainable AI [72–75]
and there are only a few works available where Guided Grad-CAM has been used to
generate attention maps for DL neural networks [76–79]. To the best of our knowledge,
this is the first work where a DL model for FTD detection is studied with explainable AI
methods. As reported in the results section, ventricular spaces were the most influential
areas for the model output, and it has also been observed that the model was influenced by
skull parts too. The AI presented in this work has a good performance, and attention maps
showed that it seems to rely mostly on gross characteristics accounting for large differences
in the images, as a human might do. To this extent, this model seems to be reliable as it
shows to mimic human behavior when choosing, and this might make this CAD trustable
by groups of physicians aiming to find aids from automated analysis methods when
evaluating patients. We argue that the model might have misclassified the NC samples due
to noise in the signal introduced by the skull parts. Evaluating the influence of skull parts
in the model decision was out of the scope of this work; it would take specific experiments
in order to determine how influential they were in the model decision.

This paper presents how the use of Clinica and MONAI for data preprocessing and
analysis facilitates reproducibility in developing a CAD tool for FTD detection. We believe
that having standardized, reproducible and trustable CAD tools would ease their inclusion
in patient’s clinical management practices. In fact, although thousands of AI-based tools
have been developed with the potential of smoothing disease detection or outcome predic-
tion, their real practical application is lagging [11,80,81]. The stability of Clinica methods
for data preprocessing well couples with the flexibility of the procedures proposed by
MONAI, setting up a highly versatile system for CAD development. We believe that such
practices should be applied on data adhering to the FAIR principles when developing an
AI model to study a neurodegenerative disease. Additionally, we believe that explainable
AI practices such as using and interpreting attention maps should be necessary steps in
building a CAD tool, in order to bring the AI realm into standard clinical practice.
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5. Limitations

This work has some limitations. First, we used only a subset of all the images available
in NIFD, in essence the T1w MPRAGE MRI at T0 (patient’s first visit). NIFD includes
many more MRI modalities and other timepoints. Using all images with appropriate data
management strategies could improve classification performance. Second, our CAD was
built on DenseNet121, the architecture that MONAI proposes for 3D classification, without
hyper-parameter tuning. It is probable that a better performance could have been yielded
with different parameters and it may also be that a different architecture among those
available in MONAI could have performed better on our data, yet it was outside of the
scope of this work to yield max performance on the test set, as performing as good as others
was enough for this application. Third, images were resized when imported in the MONAI
environment; thus, possibly reducing signal quality within the MRI brain scans and finally
partially hindering the model discriminative performance. Nonetheless, attention maps
evaluation revealed that the model focused on gross characteristics, probably disqualifying
this limitation.

6. Conclusions

Although AI is now a leading technology in medical research, the real-life implementa-
tion of AI-based CAD tools in daily clinical practice is still facing obstacles. To be approved
by regulators, AI-based decision support systems must be able to consistently reproduce
their results on multiple sites or cohorts, while integrating with electronic health record
systems. Similarly, the DL models powering the statistical engine of the CAD should be
consistently updated over time to keep up with evolving clinical standards [11,80,81]. In
particular, the high complexity of neurodegenerative diseases poses tough challenges for
the development of reliable CAD tools, since complex diseases such as FTD, AD, and PD are
characterized by a strong heterogeneity in their manifestation and underlying pathological
mechanisms. Here, we presented a workflow for FTD detection based on a standardized
preprocessing framework of 3D brain images, coupled with a reproducible protocol of
data augmentation and Deep Learning model training and evaluation. Moreover, we used
explainable AI methods to demonstrate how AI behavior can be understood by regulators
and physicians. We found out that our standardized workflow for AI-based CAD tool
development is comparable to other classification approaches in FTD, without compromis-
ing on reproducibility and interpretability of the DL model. Interestingly, we observed
that methodological heterogeneity in FTD classification is not limited to development
practices but also extends to data sources and cross-validation strategies with the latter
being potentially harmful for generalizability of the results (Table 4).

Thus, we believe that health informaticians should develop AI-based CAD tools with
pipeline standardization in mind, as these objectives cannot be achieved without it. In par-
ticular, we need standardized data management strategies during collection, preprocessing,
and sharing, especially in case of a cross-site contribution to a database. The adherence
to FAIR principles for shared data is pivotal to enhance their reusability by researchers
worldwide. We believe that the widespread adoption of stronger standardization principles
would foster the stability of the techniques and the reliability of findings in AI research.
Within this setting, the application of explainable AI methods is required to overcome the
issue posed by black box models, in particular about physicians’ trust in CAD. Increasing
the understanding of AI behavior would weaken the hindering for CAD tools to be ap-
plied in real-world clinical settings, finally bringing us closer to a fruitful human–machine
interaction in the biomedical field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12070947/s1, Animation S1: full attention maps.
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