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Abstract

Synchronization of neural oscillations as a mechanism of brain function is attracting increas-

ing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by

noninvasive electroencephalography (EEG). Neural oscillations show the same frequency

and cross-frequency synchronization for various cognitive and perceptual functions. How-

ever, it is unclear how this neural synchronization is achieved by a dynamical system. If neu-

ral oscillations are weakly coupled oscillators, the dynamics of neural synchronization can

be described theoretically using a phase oscillator model. We propose an estimation

method to identify the phase oscillator model from real data of cross-frequency synchro-

nized activities. The proposed method can estimate the coupling function governing the

properties of synchronization. Furthermore, we examine the reliability of the proposed

method using time-series data obtained from numerical simulation and an electronic circuit

experiment, and show that our method can estimate the coupling function correctly. Finally,

we estimate the coupling function between EEG oscillation and the speech sound envelope,

and discuss the validity of these results.

Author summary

In this paper, we propose an estimation method to identify a dynamical system from

rhythmic time-series data. Rhythmic activities have been observed frequently and are syn-

chronized in various fields, and synchronization is an important topic in nonlinear sci-

ence. It is well known that such synchronization can be described theoretically by a phase

oscillator model under the condition that the rhythmic activities can be considered weakly

coupled limit-cycle oscillators. Based on this theory, we propose a method to identify the

interaction between rhythmic activities as a network of phase oscillators. A practical

advantage of the proposed method is that, without detailed modeling, we can extract the

phase oscillator model directly from time-series data. For the above theoretical and practi-

cal reasons, this method can be applied to rhythmic data from a wide range of fields. In

this study, we have focused on human brain activities in which electroencephalography

(EEG) signals are often synchronized with each other and with external periodic stimuli.

We demonstrate that the proposed method can successfully estimate the interaction
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between EEG activity and speech rhythm. Consequently, the proposed method can reveal

the role of neural synchronization.

Introduction

Synchronization of neural oscillations is considered an important activity that can help reveal

the mechanisms underlying various cognitive functions. Neural oscillation is a rhythmic neu-

ral activity and is usually observed by electroencephalography (EEG). Neural oscillations are

classified into a few frequency bands (e.g. delta, theta and alpha frequency bands) and are syn-

chronized within the same-frequency band between different brain areas during various cog-

nitive tasks [1–4]. Synchronization of oscillations of the same frequency is considered to

integrate distributed brain activities [5] and regulate communication between distant neural

groups [6, 7].

Synchronization between slow and fast oscillations (cross-frequency synchronization) also

appears during a few cognitive tasks [8–11]. In particular, 1:p phase synchronizations (p is an

integer) can be observed in the resting state, mental arithmetic tasks, and working memory

tasks [12–17], and may integrate activities over different time scales [18]. 1:p phase synchroni-

zation refers to phase locking of a single cycle of one oscillation to p cycles of the other oscilla-

tion. Although 1:p phase synchronization is considered important from the perspective of

brain function, to the best of our knowledge, there is no effective and practical method to ana-

lyze the 1:p phase synchronization mechanism.

Various methods to identify this synchronization have been used in EEG studies. For exam-

ple, the phase locking index is used frequently to identify phase synchronization. This index

measures the temporal consistency or intertrial variability of the phase difference between dif-

ferent brain areas or cross-frequency oscillations [2, 19–22]. In addition, the directional con-

nectivity between neural oscillations has been evaluated in terms of transfer entropy [23, 24].

Transfer entropy evaluates the directed transfer of information between two random pro-

cesses. Many previous studies have examined the roles of neural oscillation using these meth-

ods. However, these methods could not reveal how neural synchronization is achieved by a

dynamical system. Therefore, we have developed a method to identify a dynamical system for

synchronization.

It is widely believed that the dynamical system of EEG activity can be described by the

neurophysiological model of a cortical column [25, 26]. If this dynamical system can be

explained by a weakly coupled oscillator, the corresponding neurophysiological model can be

described using the phase oscillator model in which each oscillator is described by only one

variable, i.e., the phase [27]. Some previous studies have provided estimation methods to

derive the phase oscillator model directly from time-series data without detailed modeling

[28–34]. However, such methods cannot be applied to cross-frequency synchronization data.

Therefore, we extend previous methods to make them applicable to 1:p phase synchronization.

In this paper, we describe an extended method to explain 1:p phase synchronization based

on the phase oscillator model and verify the reliability of the estimation method through

numerical simulation and an electronic circuit experiment. Then, we apply the proposed

method to EEG oscillation and speech sound. Speech rhythms are synchronized with neural

activity in a listener’s brain [35], and speech rhythm consists of a few important linguistic com-

ponents (e.g., syllable and prosody). It is believed that synchronization between neural oscilla-

tion and linguistic rhythm contributes to parsing continuous speech [36] and predicting the

timing of linguistic component production [35] [37]. Furthermore, the causality between EEG
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activity and speech sound is clear, whereas the causality among neural activities is generally

unknown in advance. Therefore, we estimate interactions between EEG activity and speech

sound to confirm the validity of the estimation results and demonstrate that the proposed

method can successfully estimate the dynamical system based on EEG data.

Materials and methods

Ethics statement

The scalp EEG experiment was approved by the ethics committee of the Unit of the Integrated

Studies of the Human Mind, Kyoto University (24-p-19). Participants provided written

informed consent according to the Declaration of Helsinki and were paid for their

participation.

Estimation of phase coupling functions for cross-frequency

synchronization

Neural oscillations can be observed easily from EEG data, and many EEG studies have reported

various types of synchronization [8, 38], which can be roughly divided into same- and cross-fre-

quency synchronization. A few experimental results suggest that same-frequency phase-phase

synchronization plays a role in modulating neuronal interaction [6, 7]. In contrast, cross-fre-

quency synchronization is considered to play a role in the integration of activities over different

time scales [18]. However, it is unclear how these synchronizations, particularly 1:p phase syn-

chronization, are achieved by a dynamical system. Therefore, we developed an effective method

to identify the dynamical system that performs these synchronizations.

In general, synchronization of neural oscillation is thought to be described by a network of

limit-cycle oscillators, which can be described generally by the multidimensional differential

equation
dXi
dt ¼ Fi Xið Þ þ

PN
j6¼iGijðXi;XjÞ, where Xi denotes the multidimensional state of the i-

th oscillator, such as membrane voltages and gate variables of ionic channel. We assume that a

system Xi can generate a limit-cycle oscillation by itself without external interaction. An EEG

signal is thought to be generated by some neuronal system consisting of many interacting neu-

rons. In this context, it is plausible that the neuronal system of an EEG signal can be repre-

sented by the Xi system. According to the phase reduction method, the limit-cycle oscillator

can be characterized theoretically by a phase ϕ as a simple dynamical system with one degree

of freedom. If the oscillators are weakly coupled, the dynamics of the networks among N oscil-

latory systems can be described by [27, 39]:

d�i
dt
¼ oi þ

PN
j6¼iGi;jð�j � �iÞ; ð1Þ

where ωi is the natural frequency of the oscillator and Γi,j is a phase coupling function repre-

senting the influence from the j-th oscillator to the i-th oscillator. It is known theoretically that

the phase coupling function depends only on the phase difference ϕj−ϕi. When the phase dif-

ference is constant over time, these oscillators are said to be synchronized. Specifically, the syn-

chronization of same-frequency oscillators is referred to as 1:1 phase locking. Eq (1) can

describe the 1:1 phase-locking state between rhythms in real systems.

Various synchronizations between slow and fast oscillators, e.g., theta (4–8 Hz) and gamma

(>30 Hz) EEG activities, have been observed ubiquitously, and they appear to play an impor-

tant role in brain function [8–11]. In fact, 1:p phase locking has been observed ubiquitously in

human EEG experimental studies during the resting state, mental arithmetic tasks, and work-

ing memory tasks [12–15]. However, 1:p phase synchronizations cannot be described by the
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model expressed by Eq (1). Therefore, we consider the 1:p phase-locking state among slow and

fast oscillators. If 1:p phase locking occurs, the value of the phase difference ϕ2−pϕ1 is constant

over time, where ϕ1 and ϕ2 are slow and fast phases, respectively. Using the phase reduction

theory, we found that 1:p phase locking can be described as follows [39–41]:

o1 : o2 ffi 1 : p; ð2Þ

d�1

dt
¼ o1 þ G1;2 �2 � p�1ð Þ; ð3Þ

d�2

dt
¼ o2 þ G2;1 p�1 � �2ð Þ: ð4Þ

Here, we explain a simple case of two coupled oscillators described by Eqs (2)–(4). Note that

many real rhythmic systems generally consist of many oscillators. We assume that the ratio of

the natural frequencies of the two oscillators is close to some integer p. Note that, in this situa-

tion, the coupling function Γ1,2 depends on only the phase difference ϕ2−pϕ1.

In our approach, to investigate the nature of interactions between neuronal rhythms, we

directly estimate both the natural frequencies ωi and the phase coupling functions Γi,j from

experimental time-series data. In addition, considering unavoidable sources of uncertainty

(e.g., observational error or additional unknown disturbance to the system), we introduce

independent Gaussian white noise ηi(t) into the phase oscillator model as follows:

oi : oj ffi pi : pj; ð5Þ

d�i
dt
¼ oi þ

PN
j6¼iGi;jðpi�j � pj�iÞ þ Zi tð Þ: ð6Þ

Here, we assume that the independent Gaussian white noise ηi(t) satisfies hηi(t)i = 0,hηi(t)
ηj(t0)i = 2Diδijδ(t − t0), where δij and δ(t) are the Kronecker delta and the Dirac delta functions,

respectively. Di indicates the noise strength and piϕj−pjϕi denotes the phase difference, where

the p values are integers. Note that this phase oscillator model can explain pi:pj synchronization

(e.g., 2:3 phase synchronization and 2:7 phase synchronization). We estimate the phase oscilla-

tor model (Eq (6)) using almost periodic time-series data. In the following, we employ a

straightforward extended version of a previously proposed method [28] and explain the out-

line of our method.

First, we transformed the experimentally-recorded signal s(t) into the phase time-series θ(t)

by computing the analytic signal as follows:

AðtÞeiyiðtÞ ¼ siðtÞ þ isHi ðtÞ; ð7Þ

where sHi ðtÞ denotes the Hilbert transformation of the recorded signal si(t) [42], and θ(t) is the

phase of the analytic signal. However, the variable θ is generally different from the phase ϕ in

Eq (1) because, according to phase reduction theory, ϕ evolves linearly over time without inter-

action and noise. It is therefore necessary to transform θ into ϕ, as follows [30, 31]:

�ðyÞ ¼ 2p
R y

0
f ðy0Þdy0; ð8Þ

where f(θ) denotes the probability density distribution of θ.

Second, Bayesian linear regression [43, 44] is applied to estimate the parameters of the

phase oscillator model given by Eq (6). Because the coupling function is periodic, we consider
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Fourier series expansion of the coupling function as:

GijðcijðttÞÞ ¼ að0Þij þ
PMij

m¼1fa
ðmÞ
ij cosðmcijðttÞÞ þ b

ðmÞ
ij sinðmcijðttÞÞg; ð9Þ

where ψi,j(tτ) is the extended version of the phase difference piϕj(tτ) − pjϕi(tτ) at time tτ. The

times tτ are discrete points, tτ = t1 + (τ − 1)Δt for τ = 1,2,� � �,T, and Δt is the sampling interval.

In this expansion, Mij denotes the Fourier series order for each coupling function, and the

parameters Mij control the complexity of the coupling function. The parameters Mij can be

determined by a model selection method based on logarithmic evidence, as explained later.

Finally, the proposed method estimates the model as follows:

d�i
dt

ttð Þ ¼ ô i þ
PN

j6¼i

PMij
m¼1fa

ðmÞ
ij cosðmcijðttÞÞ þ b

ðmÞ
ij sinðmcijðttÞÞg þ Zi ttð Þ; ð10Þ

where ô i ¼ oi þ
PN

j6¼ia
ð0Þ

ij . Thus, the unknown model parameters are fôi; a
ðmÞ
ij ; b

ðmÞ
ij gi and Di.

Here, fô i; a
ðmÞ
ij ; b

ðmÞ
ij gi denotes fôi; a

ðmÞ
ij ; b

ðmÞ
ij jj ¼ 1; 2; � � � ;N;m ¼ 1; 2; � � � ;Mijg. The phase

velocity
d�i
dt is a dependent variable in a standard linear regression problem that is computed

from phase time-series data as {(ϕi(tτ+1) − ϕi(tτ))/Δt}. Furthermore, an independent variable is

computed by the phase difference as {cos(mψij(tτ)),sin(mψij(tτ))}i. Here, ηi is an independent

and identically distributed random variable. This linear regression problem corresponds to

maximizing the following likelihood function:

Lðf�iðttÞgjfô i; a
ðmÞ
ij ; b

ðmÞ
ij gi;DiÞ ¼

QT
t¼1
N _� iðttÞjô i þ

PN
j6¼iĜ i;j ci;jðttÞ

� �
;
2Di

Dt

� �

; ð11Þ

where Ĝ i;j equals Gij � a
ð0Þ

ij , and N(x|μ,σ2) denotes Gaussian distribution, where μ and σ2 are

the mean and variance of x, respectively. Using Bayesian theory, the product of the likelihood

function and the prior distribution p ðfô i; a
ðmÞ
ij ; b

ðmÞ
ij gi;DiÞ is proportional to the posterior dis-

tribution p ðfô i; a
ðmÞ
ij ; bðmÞij gi

;Dijf�iðttÞgÞ:

p ðfô i; a
ðmÞ
ij ; b

ðmÞ
ij gi;Dijf�iðttÞgÞ / L ðf�iðttÞgjfô i; a

ðmÞ
ij ; b

ðmÞ
ij gi;DiÞ p ðfô i; a

ðmÞ
ij ; b

ðmÞ
ij gi;DiÞ: ð12Þ

Here, we adopt a Gaussian inverse gamma distribution for the prior distribution

p ðfô i; a
ðmÞ
ij ; b

ðmÞ
ij gi;DiÞ. This prior distribution is a conjugate to the likelihood function (the so-

called conjugate prior):

p
�
fôi; a

ðmÞ
ij ; b

ðmÞ
ij gi;Di

�
¼ N

�

fô i; a
ðmÞ
ij ; b

ðmÞ
ij gijw

old
i ;

2Di

Dt
Sold
i

�

IG
2Di

Dt
jaoldi ; b

old
i

� �

; ð13Þ

where IG(x|α,β) denotes the inverse gamma distribution with shape parameter α and scale param-

eter β. woldi and
2Di
Dt Sold

i are the mean and covariance of model parameters ô; aðmÞ, and b(m), respec-

tively. Note that the prior parameters woldi ; Sold
i ; aoldi , and b

old
i are referred to as hyperparameters.

We can easily calculate the posterior distribution parameters from the conjugate prior distribution

and the likelihood function in Eq (12) (S3 File). The posterior distribution with the updated

parameters takes the form of a Gaussian inverse gamma distribution: wnewi ; Snew
i ; anewi , and b

new
i .

The estimated model parameters are the mean ofN ðfô i; a
ðmÞ
ij ; b

ðmÞ
ij gijw

new
i ;

2Di
Dt Snew

i Þ. The estimated

noise level is the mean of IG 2Di
Dt ja

new
i ; b

new
i

� �
. Using the posterior, prior, and likelihood functions,
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we can compute the logarithmic evidence log p({ϕi(tτ)}):

log pðf�iðttÞgÞ ¼ log
Lðf�iðttÞgjfô i; a

ðmÞ
ij ; b

ðmÞ
ij gi;DiÞpðfô i; a

ðmÞ
ij ; b

ðmÞ
ij gi;DiÞ

pðfô i; a
ðmÞ
ij ; b

ðmÞ
ij gi;Dijf�iðttÞgÞ

: ð14Þ

Thus, we find Mij with the largest logarithmic evidence among all models.

Electronic circuit of van der Pol oscillator

To test the proposed method, we conducted an experiment in which an electronic circuit was

used to implement two coupled van der Pol oscillators [45]. The coupling function Γi,j between

the oscillators can be obtained theoretically from the corresponding differential equations.

In this experiment, we recorded the rhythmic signals of the electronic circuit. Each os-

cillator consisted of two multipliers U1 (AD633, Low Cost Analog Multiplier) and three

operational amplifiers U2 (TL082, ½ Dual BiFET Op Amp) (Fig 1A). We conducted two exper-

iments under different conditions. In the first experiment, two same-frequency oscillators

were coupled directly. In this experiment, 1:1 phase locking was expected to occur. The param-

eters of the electronic component were set to R1 = 100kO, R2 = 1kO, Rcoupling = 1MO, C1 = C2 =

0.01μF, V1 = 0.115V, and V2 = 0.12V. Rk and Ci are the parameters of the resistor and capaci-

tor, respectively. Voltages Vi were monitored using a digital voltmeter. In the second experi-

ment, a slow oscillator was coupled to a fast oscillator. In this experiment, 1:2 phase locking

was expected to occur. The natural frequencies of the slow and fast oscillators were set to sat-

isfy a nearly 1:2 ratio. The parameters of the electronic components were the same as those in

the first experiment, except that C1 was changed to C1 = 0.02μF to reduce the natural frequency

by one-half. In both cases, the electric potentials xi and yi were recorded using an I/O device

(NI SCB-68, National Instruments, US). The sampling rate of the electric potential was 15,000

Hz, and the data size was 180 s.

The corresponding theoretical equation of the electronic circuit is given as:

dx1

dt
¼

1

R1C1

y1; ð15Þ

dy1

dt
¼

1

100R2C1

10V1 � x
2

1

� �
y1 �

1

R1C1

x1; ð16Þ

dx2

dt
¼

1

R1C2

y2 �
1

10RcouplingC2

x2

1
; ð17Þ

dy2

dt
¼

1

100R2C2

10V2 � x
2

2

� �
y2 �

1

R1C2

x2 þ
1

R1C2

b; ð18Þ

where xi and yi are the corresponding theoretical electric potentials of the i-th oscillator. The

trajectories of the van der Pol oscillator are shown by the xi and yi signals in Fig 1B–1E. Note

that only xi was used to estimate the coupling function. The experimental parameters (Rk and

Ci) and those in Eqs (15–18) were the same as the parameters of the electronic components.

Note that the term b does not exist in the original van der Pol oscillator. In the case of b = 0,

the theoretical trajectory and coupling function do not agree with the experimental data and

the estimated coupling functions, respectively. Note that the original van der Pol oscillator

generates a symmetrical trajectory. However, in the electronic circuit experiment, the trajec-

tory was not exactly symmetrical due to small additional disturbances in the system or the
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uneven quality of the electronic components. By introducing parameter b (b = 0.4), the simu-

lated trajectory can be adjusted to the experimental data (Fig 1B–1E).

The corresponding theoretical coupling functions were calculated based on Eqs (15–18)

using the adjoint method [46]. In this method, the zero phase is defined as the peak point of xi
(green crosses in Fig 1B–1E represent the zero-phase reference points on the theoretical

orbits). From the experimental data, the zero-phase reference points were determined based

on electric potentials xi using Hilbert transformation (blue dots denote the point of zero-phase

reference on the experimental data). As shown in Fig 1B–1E, a small gap exists between the

zero-phase reference points of the theoretical and experimental orbits. In principle, an arbi-

trary point on the limit-cycle orbit can be defined as the zero-phase point. However, to com-

pare theoretical and estimated results, the zero-phase reference point of the theoretical model

Fig 1. Electronic circuit of a pair of van der Pol oscillators and recorded electric potential. (a) Schematic of electronic circuit of two coupled van der Pol

oscillators, where xi and yi are positions for recording electric potential, Rk denotes resistors, and Ci denotes condensers. Electronic units U1 and U2

represent the multiplier and operational amplifiers, respectively. Rcoupling is a resistor whose resistance is the parameter of the strength of connectivity. (b)

Experimental data of electric potentials x1 and y1 show the limit-cycle oscillator under the same-frequency (129.1 Hz) coupling condition (gray dots and

line). The black trajectory shows the theoretical value computed by the van der Pol oscillator Eqs (15–18). Here, the frequency is 142.1 Hz. Blue dots

represent the zero-phase reference points on the experimental data, which were determined automatically via Hilbert transformation. Green crosses

represent the theoretical zero-phase reference points defined as the peak points of xi. Red dots denote the adjusted zero-phase reference points. (c) x2 and y2

show the oscillators under the same-frequency oscillator condition. The frequency of the experimental data is 132.5 Hz and that of the theoretical trajectory

is 146.4 Hz. (d) Recorded electric potentials show the slow limit-cycle oscillator under cross-frequency coupling conditions (experimental frequency, 64.1

Hz; theoretical frequency, 71.1 Hz). (e) x2 and y2 denote the fast oscillator (experimental frequency, 131.1 Hz; theoretical frequency, 146.4 Hz).

https://doi.org/10.1371/journal.pcbi.1005928.g001
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should be consistent with that of the experimental data. Therefore, the zero-phase reference

points of the experimental orbits were adjusted to coincide with those of the theoretical model

by shifting the experimental reference points to the theoretical points as �1 ¼ �1 þ
p

6
; �2 ¼

�2 þ
p

10
(red dots denote the revised zero-phase reference points), where ϕ1 is the experimental

phase based on the electric potential x1 (Fig 1B and 1D) and ϕ2 is the experimental phase

based on the electric potential x2 (Fig 1C and 1E). We estimated the coupling function from

the shifted phase data and compared the theoretical coupling function with the estimated

function.

Scalp EEG experiment

We applied the proposed method to scalp EEG data. The method can estimate the coupling

functions for same-frequency and cross-frequency synchronization assuming that EEG activi-

ties can be considered weakly coupled oscillators. However, it is unclear whether EEG activity

can be considered a weakly coupled oscillator system. Thus, we must confirm that the pro-

posed method can estimate the dynamical system from the EEG data successfully.

We used EEG data recorded during a speech recognition task. Note that detailed informa-

tion is provided in our previous paper [37]. The participants categorized what they heard as a

target or distractor as soon and as accurately as possible. Four-letter Japanese words were used

as speech sounds, and the words were uttered within approximately 1 s. The sampling rate of

the speech sound was 48,000 Hz. The speech envelopes on each frequency were high-pass fil-

tered with a cutoff frequency of 3 Hz to avoid phase-resetting. Furthermore, the speech sounds

were masked with pink noise. The noise volume was increased linearly over 0.5 s after onset to

avoid the phase-resetting effect by noise onset. The speech sound always started 2 s after the

onset of noise and lasted approximately 1 s. The noise sound was terminated 1.5 s after speech

onset. The EEG experiment consisted of four sessions for each participant. Each session con-

sisted of 100 trials.

A 32-channel EEG amplifier (Brain Amp MR, Brain Products, Germany) with an interna-

tional 10% standard electrode cap with a sintered Ag/AgCl ring electrode (Easy Cap, Falk

Minow Services, Germany) was used for the EEG recording (sample rate, 5 kHz). Four elec-

trodes were used for the vertical and horizontal electrooculogram (VEOG and HEOG) chan-

nels. The VEOG and HEOG were used to remove ocular artifacts. The measurement reference

was linked earlobes, and the ground was on the inion. The EEG signal was filtered using a

1-Hz high-pass software filter, a 250-Hz low-pass hardware filter, and a 60-Hz notch filter. In a

preprocessing step, ocular artifacts were corrected using EEG analysis software (Brain Vision

Analyzer, Brain Products, Germany) and the VEOG/HEOG signals [47]. The reference was

changed to the average of all electrodes, except VEOG and HEOG. The preprocessed EEG data

were then downsampled to 500 Hz.

The participants were 16 healthy adults (five females; 11 males; 21–32 years; mean age, 25

years). One participant was excluded due to a low response rate, and another participant was

excluded due to an excessive artifact that could not be removed during preprocessing. Note

that these participants were also excluded in our previous study [37].

We estimated the phase oscillator model between the 3–6 Hz EEG (theta oscillation) and

the speech envelope. The theta oscillation is synchronized with the envelope of speech sound,

and it plays an important role in speech processing [35, 48, 49]. Speech rhythm consists of lin-

guistic components, e.g., syllabic and prosodic rhythms. A syllable is a unit of speech that sepa-

rates a word into sound chunks. For example, the Japanese word “KaKuShiKi” (“formality” in

English) is composed of four syllables “/Ka/Ku/Shi/Ki/,” and its sound envelope appears in the

4–5 Hz frequency range in the current speech stimulus. Prosody is the stress and intonation
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patterns of an utterance. The envelope of prosodic rhythms appears in the 1–3 Hz frequency

range. We estimated the coupling function between the EEG oscillation and these speech

rhythms. To obtain the theta oscillations, the preprocessed EEG signals were bandpass filtered

within 3–6 Hz. The syllabic and prosodic rhythms were computed from the sound stimulus

consisting of the noise and speech sounds (Fig 2A). The sound envelope was computed as the

absolute value of the Hilbert-transformed sound data (Fig 2B). To compute the syllabic and

prosodic rhythms, the envelope signal was bandpass filtered within 3–6 Hz and 1–3 Hz,

respectively (Fig 2C and 2D). The syllabic and prosodic signals were downsampled to 500 Hz.

The instantaneous phases of these rhythms were computed using both Hilbert transformation

and correction (Eq 8). We estimated the coupling functions of 1:1 phase locking (syllable and

theta oscillation) and 1:2 phase locking (prosody and theta oscillation).

Results

Numerical simulation of phase oscillator model

First, we applied our Bayesian method to numerical simulation data which was generated

from three cross-frequency oscillators with somewhat complicated connections, to evaluate

the validity of the proposed method. Simulation data were generated from a network compris-

ing one fast oscillator and two slow oscillators (Fig 3) based on the Euler–Maruyama method

[50] using the following differential equations:

d�1

dt
¼ o1 þ 0:1sin �3 � �1ð Þ þ Z1 tð Þ; ð19Þ

d�2

dt
¼ o2 þ 0:1sin 2�1 � �2ð Þ þ 0:05 sinð2�3 � �2Þ þ sinð2ð2�3 � �2ÞÞf g þ Z2 tð Þ; ð20Þ

d�3

dt
¼ o3 þ 0:05cos �2 � 2�3ð Þ þ Z3 tð Þ: ð21Þ

Fig 2. Syllable and prosody rhythms in speech sound. (a) Example of speech stimulus. The stimulus consisted of noise and a

four-syllable Japanese word. The red line represents a speech wave. The blue line represents the presented sound wave, which

consists of speech plus noise sounds. (b) Speech envelope was computed as the absolute value of Hilbert-transformed speech

sound. (c) Syllabic rhythms were computed from the speech envelope through the bandpass filter within 3–6 Hz. (d) Prosodic

rhythms were computed from the speech envelope through the bandpass filter within 1–3 Hz.

https://doi.org/10.1371/journal.pcbi.1005928.g002
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We set the natural frequencies to ω1 = 0.9, ω2 = 2.1, and ω3 = 1.1. Here, ϕ2 is the phase of

the fast oscillator, and ϕ1 and ϕ3 are the phases of the slow oscillators. η is independent Gauss-

ian white noise with zero mean and a standard deviation of 0.1. Using the proposed method,

we estimated the coupling functions and the natural frequencies from the phase time-series

data generated in the experiment.

Fig 3 shows the estimated coupling functions and the correct coupling functions. In this

case, the correct coupling functions were defined explicitly by Eqs (19)–(21). Despite the com-

plicated connections, the results indicate that the estimated and correct coupling functions

agree fairly well. Furthermore, the complexity parameter of the coupling function was selected

correctly by optimizing the logarithmic evidence. Therefore, the proposed method works quite

well at estimating a nontrivial network of phase oscillators comprising oscillators with differ-

ent natural frequencies.

Electronic circuit experiment

Before applying the proposed method to EEG data, we recorded the electric potential of the

van der Pol electronic circuit and tested the ability of the estimation method using the experi-

mental data. Since the electronic circuit can be explained by the corresponding theoretical dif-

ferential equations (Eqs 15–18), we can derive the correct coupling function theoretically

using the adjoint method. We conducted two experiments. One involved coupling oscillators

of the same frequency (Fig 4A), and the other involved coupling slow and fast oscillators (Fig

4E). We transformed the x1 and x2 electric potentials of the first and second oscillators, respec-

tively, to phase time-series data and estimated the coupling functions from these data.

The estimated coupling functions with no interaction from the second to first oscillator

were identically zero in the experiments involving oscillators of the same frequency (Fig 4B)

and cross frequency (Fig 4F). When coupling existed, the estimated coupling function was the

same as the theoretical function under the same-frequency (Fig 4C) and cross-frequency con-

ditions (Fig 4G). Furthermore, to confirm whether the estimated phase oscillator model can

Fig 3. Estimated coupling function for numerical simulation data. Upper-left diagram shows the network structure.

The estimated coupling functions (red lines) were nearly identical to the correct functions (dashed black line). The

gray dots represent the phase time-series data. When the interaction did not exist, the estimated coupling function was

identically zero. The proposed method estimated all coupling functions correctly for the simulation data.

https://doi.org/10.1371/journal.pcbi.1005928.g003
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explain the experimental data, we compared the phase difference histograms for the experi-

mental phase data and the two types of simulated phase data. The experimental phase data

were computed from electric potentials by both Hilbert transformation and Eq (8). One set of

simulated phase data was computed in the phase oscillator model based on the estimated

parameters using the Euler–Maruyama method. The other was computed based on the theo-

retical coupling functions and natural frequency, which were determined by Eqs (15)–(18).

We computed the experimental, estimated, and theoretical histograms from these phase time-

series data. The experimental and estimated histograms of the phase difference were nearly the

same under each condition (Fig 4D and 4H). However, the theoretical histograms differed.

The difference among these histograms was caused by the difference of the natural frequency

between the theoretical and experimental oscillators (Fig 1B–1E) due to uncontrollable experi-

mental conditions. In other words, the electronic circuit experimental data did not follow the

theoretical equations exactly; however, the coupling functions between the experimental van

der Pol oscillators were the same as the theoretical coupling functions. In fact, when the theo-

retical histograms were computed based on the theoretical coupling functions and the esti-

mated natural frequencies rather than the theoretical natural frequencies, the experimental

and estimated histograms coincided relatively well with the theoretical histograms. These

results indicate that the proposed method works well with real data, even if the data contain

observational errors or additional unknown disturbances.

Human EEG experiment

Finally, we applied the proposed method to the EEG data. We estimated the coupling func-

tions between the theta oscillation and the envelope of speech stimulus. The theta oscillation

Fig 4. Estimated coupling function of electronic circuit. (a) The diagram shows the coupling direction between oscillators of the same frequency. The first

oscillator was coupled to the second oscillator. (b) The red line shows the estimated phase coupling function with the natural frequency in the same-frequency

coupling case. The dashed black line shows the theoretical coupling function. The coupling function from the second to first oscillator Γ12 is identically zero.

When there is no interaction, the coupling function is nearly zero. The gray dots show the experimental data points. (c) The coupling functions from the first

to second oscillator Γ21. (d) The blue line shows the phase difference histogram of the experimental data in the case of 1:1 phase locking (experimental

histogram). The red line shows the simulated histogram calculated in the phase oscillator model estimated from the experimental data (estimated histogram).

The dashed black line shows the simulated histogram calculated in the phase oscillator model using the theoretical natural frequencies and coupling functions

(theoretical histogram). (e) In the cross-frequency coupling case, the slow oscillator was coupled to the fast oscillator. (f) The coupling function from the fast to

slow oscillator is identically zero. (g) The coupling function from the slow to fast oscillator. (h) The experimental, estimated, and theoretical histogram in the

1:2 phase-locking case.

https://doi.org/10.1371/journal.pcbi.1005928.g004
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was observed to be synchronized with the speech envelope [35] and is considered to play an

important role in speech perception. Generally, the speech envelope consists of syllabic (3–6

Hz) and prosodic (1–3 Hz) rhythms. Thus, we estimated the phase oscillator model under the

same-frequency and cross-frequency conditions, i.e., theta oscillation and syllabic rhythm (Fig

5), and theta oscillation and prosodic rhythm (Fig 6). In these experiments, the phase-differ-

ence histograms between the EEG and the speech sound showed 1:1 and 1:2 phase locking

(Figs 5A and 6A). Note that there is obviously no interaction from EEG activity to speech

sound. Therefore, we can use this fact to confirm the validity of the estimation results.

In the theta oscillation and syllable data, we assumed that the syllabic rhythm modulated

the theta oscillation. The instantaneous phase of the theta oscillation is denoted ϕθ, and the

phase of the syllable is denoted ϕs. The phase difference between the theta oscillation and the

syllable is defined as ϕs − ϕθ. The phase-difference histogram of each participant showed 1:1

phase locking (Fig 5A). We estimated the phase oscillator models of 1:1 phase locking as fol-

lows:

d�y

dt
¼ oy þ Gy;s �s � �yð Þ þ Zy tð Þ; ð22Þ

d�s
dt
¼ os þ Gs;y �y � �sð Þ þ Zs tð Þ: ð23Þ

Fig 5. Estimated distribution of phase difference between EEG data and syllable envelope. (a) Experimental histogram of phase difference between the

theta oscillation on the Cz electrode and the syllabic rhythm (the histograms show phase locking). The gray lines represent histograms of individual

participants and the blue line represents the histogram averaged over all participants. (b) Histograms obtained from the simulated data in the estimated

phase oscillator model. The averaged histogram is similar to the experimental histogram. The gray lines represent the phase difference histograms of

individual participants. The red line represents the average of the simulated histograms. (c) Blue lines represent the averaged experimental histogram and the

standard error of mean (SEM). Red lines represent the averaged simulated histograms and the SEM. (d) Estimated coupling functions Γθ,s from syllabic

rhythm to theta oscillation. The gray and red lines represent the results of individual participants and the average results of all participants, respectively. (e)

Estimated coupling functions Γs,θ are considerably smaller than the opposite directional coupling functions. (f) Simulated histograms where the coupling

functions Γs,θ are removed. The effect on the original phase-locking state was negligible. (g) Histograms where Γθ,s were removed are nearly flat.

https://doi.org/10.1371/journal.pcbi.1005928.g005
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To confirm that the estimated dynamical system can explain the experimental data, we simu-

lated phase synchronization based on the estimated phase oscillator model. Fig 5B shows the

phase difference histograms obtained from the simulated data. Note that, for the simulated

data, phase differences were calculated by numerical simulation performed using the estimated

phase oscillator model (Eqs (22 and 23)). The histograms of the simulation data were similar

to those of the experimental data (Fig 5C), which indicates that the estimated phase oscillator

model can explain the experimental data. Furthermore, the estimated coupling functions Γθ,s

were consistent among all participants (Fig 5D). In contrast, the estimated coupling functions

Γs,θ had smaller amplitudes than Γθ,s (Fig 5E) and were not consistent among all participants.

These results are reasonable in terms of the relationship between EEG and speech sound

because direct interaction from theta oscillation to speech sound never exists. To examine the

effects of each coupling function on the dynamics, we computed the simulated histogram

under the condition that either Γs,θ or Γθ,s was set to identically zero. In the case of Γs,θ = 0 (Fig

5F), the resultant histogram shows that, compared to the original dynamics in Fig 5B, the syn-

chronized state is almost maintained. This implies that the coupling function Γs,θ does not con-

tribute to the realization of 1:1 phase locking. In the case of Γθ,s = 0, the synchronized state

disappeared, as shown in the flatter histograms (Fig 5G). Consequently, the results indicate

that the coupling function Γθ,s primarily contributed to 1:1 phase locking.

In the theta oscillation and prosody data, we assumed that the prosodic rhythms modulated

the theta oscillation. Here, let ϕp denote the prosody phase. Considering the 1:2 phase-locking

state, the phase difference between theta oscillation and prosody is reasonably defined as 2ϕp −
ϕθ. The phase difference histograms of each participant showed 1:2 phase locking (Fig 6A).

Next, we considered the phase oscillator model for 1:2 phase locking as follows:

d�y

dt
¼ oy þ Gy;p 2�p � �y

� �
þ Zy tð Þ; ð24Þ

d�p
dt
¼ op þ Gp;y �y � 2�p

� �
þ Zp tð Þ: ð25Þ

We confirmed that the estimation result can explain the experimental data by calculating the

simulated phase difference histograms under the 1:2 phase-locking condition (Fig 6B). The

simulated histograms were similar to the experimental histograms (Fig 6C). The results indi-

cate that the estimation phase interaction functions can explain the experimental data, as well

as the 1:1 phase-locking condition. The estimated coupling functions of all participants were

consistent (Fig 6D and 6E). Furthermore, the estimated coupling functions Γp,θ showed small

amplitude or were identically zero (Fig 6E). These results clearly show that there were no cou-

pling function from EEG to speech sound, which is reasonable given the relationship between

EEG and speech sounds in the experiments. In the case of Γp,θ = 0, the simulated phase differ-

ence histograms also showed phase locking (Fig 6F), as well as Fig 6B. In contrast, phase lock-

ing disappeared for Γθ,p = 0 (Fig 6G). These results indicate that the coupling function Γθ,p

contributed to 1:2 phase locking.

In both cases, our method could estimate whether there was a relationship between the

EEG activity and speech sound even though there was some variance due to estimation inaccu-

racies. In the case of the theta oscillation and prosody data, the estimated coupling functions

Γp,θ showed small amplitudes or were identically zero, clearly demonstrating the asymmetry of

the relationship between the EEG activity and speech sound. In contrast, for the theta oscilla-

tion and syllable data, the estimated coupling functions Γs,θ showed somewhat larger ampli-

tudes than Γp,θ, giving no clear indication of an asymmetric relationship. Therefore, in order

to determine whether there was a asymmetry relationship, we estimated the coupling functions
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using surrogate data (S1 Fig). The surrogate data consisted of randomly time-shifted speech-

sound phase data and original EEG data that had not been time-shifted. Note that there was

no temporal relationship between the time-series, speech-sound phase data and the original

EEG signals. This random shifting process was repeated 100 times for each of the 14 partici-

pants. Then, we estimated the coupling functions using these 1,400 surrogate datasets and

computed histograms of the model selection results for the appropriate Fourier modes based

on the logarithmic evidence and the coupling function powers
R 2p

0
jGðcÞj

2dc. For the coupling

functions Γθ,s and Γθ,p, the model selection histograms showed that the M = 0 model was

selected more often than the other models (S1A and S1E Fig), while the original data results

showed that none of the participants selected the M = 0 model. Furthermore, the integrated

values of coupling function power showed that the original data results did not follow the

same histograms as the surrogate data results (S1B and S1F Fig). For the coupling functions Γs,
θ and Γp,θ, the model selection results for the original data were not largely different from those

that for the surrogate data (S1C and S1G Fig), and the integrated coupling function values

were relatively small (S1D and S1H Fig). Consequently, these results suggest that the coupling

functions, Γs,θ and Γp,θ, showed no relationship between the EEGs and speech sounds.

Discussion

We have proposed an estimation method to identify the phase dynamics of cross-frequency

synchronization using rhythmic time-series data. By identifying the dynamics, we can reveal

Fig 6. Estimated distribution of phase difference between EEG data and prosody envelope. (a) Experimental phase difference histograms for 1:2 phase

locking. (b) Simulated histograms based on the estimated phase oscillator model. (c) Blue lines represent the average and SEM of experimental phase

difference histograms. Red lines represent the average and SEM of simulated histograms. (d) Estimated coupling functions Γθ,p. (e) Estimated coupling

functions Γp,θ. (f) Simulated histograms where coupling functions Γp,θ are removed. (g) Simulated histograms where Γθ,p is removed are uniform.

https://doi.org/10.1371/journal.pcbi.1005928.g006
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the direction of coupling and the role of each coupling function in synchronization. To con-

firm the reliability of the proposed method, we estimated a dynamical system from time-series

data obtained by numerical simulation and experimentation using an electronic circuit, and

we showed that these results were estimated successfully. In addition, we applied the proposed

method to scalp EEG data and evaluated its validity based on the estimation results.

Validity of estimation method for cross-frequency synchronization

We can obtain the theoretical coupling function from the numerical simulation and data from

the electronic circuit experiment. To confirm the reliability of the proposed method, we com-

pared the estimated results to theoretical results. In the simulation, time-series data were gen-

erated by numerial simulation used in the given phase oscillator model. In this case, we knew

the true instantaneous phase of the time-series data and the correct coupling functions. The

proposed method worked well with the simulation data (Fig 3), and the complexity parameter

for the coupling function Mij was selected correctly.

We also estimated a dynamical system using electric potential data, i.e., real time-series

data. In this situation, the corresponding theoretical coupling function was computed using

the adjoint method from which we constructed a theoretical model of real electronic circuits.

The results demonstrated that the proposed method can correctly estimate the coupling func-

tions (Fig 4). Furthermore, to confirm that the estimated phase oscillator model can reproduce

real time-series data, we compared the phase difference histogram of real time-series data with

those of the simulated data. The results demonstrate that the estimated coupling functions and

the noise strengths can explain the real data, including any additional disturbance imposed on

the system.

In the EEG data, the correct coupling function to be compared to the estimated function is

unknown. Therefore, we must consider an alternative procedure to examine the validity of the

estimation results. To this end, we considered the following three steps. In the first step, we

focused on the coupling functions from the EEG activity to the speech stimulus (Figs 5E and

6E). Under this EEG experimental condition, EEG activity did not influence speech sound

because the timing of the external speech sound was given by a recorded sound. Our estimated

dynamics showed that the coupling function from EEG to speech sound had smaller amplitude

than the coupling function in the opposite direction (Figs 5D and 6D) and did not influence

the phase difference histograms (Figs 5F and 6F). Therefore, the estimated network structure

is consistent with the real EEG and speech system under this experimental condition. In the

second step, we confirmed whether the simulated phase difference histograms were similar to

the experimental histograms. Our estimation results and the experimental data both showed

phase locking (Figs 5A, 5B, 6A and 6B). In addition to results of the first step, these results sug-

gest that the phase oscillator model can explain the EEG and speech sound data. In the final

step, we confirmed that the estimated coupling functions were consistent across all partici-

pants to check whether the above results occurred by chance. Our results indicated that the

coupling functions and phase difference histograms were similar across all participants on the

Cz electrode (Figs 5 and 6). Furthermore, the estimation results for neighbor electrodes (e.g.,

FCz, Pz, CP, and CP2) showed results similar to those obtained on the Cz electrode. Based on

the results obtained by performing these three steps, the mechanism between EEG and speech

sound can be explained by the dynamical phase oscillator system.

Remarks on estimation method

To apply the proposed method to EEG data, it is necessary to consider whether the systems to

be estimated can be considered a weakly coupled oscillator system. It is well known that EEG
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phases are often locked by external input among trials [51, 52]. In addition, it is possible that

phase locking is generated by phase-resetting through strong external inputs. If phase-resetting

depends on the timing of external inputs rather than the phase difference, the interaction

between the EEG phase and the stimulus cannot be explained by the phase oscillator model.

Therefore, it is necessary to avoid phase resetting caused by sudden and strong external inputs.

Event related phase locking is often induced at stimulus onset. Therefore, to prevent such

phase-resetting, we presented noise (increased linearly over 0.5 s) prior to presenting speech

sound. Furthermore, to avoid a situation where a strong external input induces phase-resetting

at speech onset, we employed a bandpass filter to decrease the strong periodic speech sound

signals.

Note that the proposed method cannot estimate the coupling function if the EEG phase is

completely synchronized. Under such synchronization conditions, each phase difference

between the two oscillators takes only a specific value. Therefore, except for this specific value,

there is no information about the coupling function on the other phase difference value. To

obtain the full range of the coupling function, the phase differences in the data must be distrib-

uted in the range 0 to 2π, as shown in Fig 3.

This study focused primarily on 1:p phase synchronization; however, other types of cross-

frequency synchronization exist [8, 10], e.g., phase-amplitude, amplitude-amplitude, and

phase-frequency synchronization. These synchronizations are also important from a cognitive

function perspective; however, the proposed method cannot be applied to such dynamical sys-

tems. In future, we plan to construct a method that is applicable to the experimental data of

these synchronizations.

Methods to quantify the causality between different frequency rhythms [53–56] have been

proposed. Such methods, including transfer entropy and Granger causality, may reveal more

general causality than the proposed method, which can only estimate the coupling function

related to the pi:pj phase synchronization. However, the proposed method can reveal causality

and quantify the phase interaction function; thus, it can examine the role of connection in

phase synchronization from a dynamical system perspective.

The proposed method can estimate the coupling functions of simulation data and experi-

mental electronic circuit data accurately. In the EEG experiment, we estimated the dynamical

system of EEG and speech sound. Note that we examined the dynamics of phase synchroniza-

tion between a single EEG activity and speech sound rather than between two EEG activities.

We applied the proposed method to synchronization between EEG and speech because the

direction of causality between EEG and speech sound is clear, whereas that of EEG phases is

unknown. Therefore, EEG and speech data were used to verify the estimation results. It is

expected that the proposed method can serve as a useful tool to reveal the role of connectivity

and causality in neural oscillations.
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S1 Fig. Histograms of property of estimated coupling functions in surrogate data. We esti-

mated the coupling functions for surrogate data which have no temporal relationship between
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the EEGs and speech sounds for comparing the estimated results with the original data. The

surrogate data consisted of the original EEG phases and time-shifted speech sound phases. The

speech sound phases were randomly time-shifted for each trial so that there would be no tem-

poral relationship between the EEG and speech sound phases. This random shifting process

was repeated 100 times for each of the 14 participants. We then estimated the coupling func-

tions using these 1,400 surrogate datasets and computed histograms of the model selections

for the appropriate Fourier modes based on the logarithmic evidence and the coupling func-

tion powers
R 2p

0
jGðcÞj

2dc. If the coupling function did indeed exist, these coupling function

properties would be different between the original and surrogate data. All the surrogate data

histograms showed that the M = 0 and
R 2p

0
jGðcÞj

2dc = 0 cases were the high frequent. The

original coupling functions from speech sound to EEG activity, Γθ,s and Γθ,p, could not explain

the surrogate data histograms. In contrast, the coupling functions from EEG activity to speech

sound, Γs,θ and Γp,θ, were similar to the surrogate data results.

(a) Histograms of the M values which were selected based on logarithmic evidence for the

coupling functions Γθ,s. The blue line represents the model selection histogram for the 1,400

surrogate datasets, while the red line represents the model selection histogram for the 14 par-

ticipants’ original data. (b) Histogram of all coupling function powers for the surrogate data

(including M = 0,1,2,3). The red stars represent the coupling function powers for the original

data. (c) Model selection histograms for the coupling functions Γs,θ. (d) Histogram of powers

of the coupling functions Γs,θ. (e) Model selection histograms for the coupling functions Γθ,p.

(f) Histogram of powers of the coupling functions Γθ,p. (g) Model selection histograms for the

coupling functions Γp,θ. (h) Histogram of powers of the coupling functions Γp,θ.

(TIF)
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