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Abstract

Background: Detecting objects is an important task when moving through a natural environment. Flies, for example, may
land on salient objects or may avoid collisions with them. The neuronal ensemble of Figure Detection cells (FD-cells) in the
visual system of the fly is likely to be involved in controlling these behaviours, as these cells are more sensitive to objects
than to extended background structures. Until now the computations in the presynaptic neuronal network of FD-cells and,
in particular, the functional significance of the experimentally established distributed dendritic processing of excitatory and
inhibitory inputs is not understood.

Methodology/Principal Findings: We use model simulations to analyse the neuronal computations responsible for the
preference of FD-cells for small objects. We employed a new modelling approach which allowed us to account for the
spatial spread of electrical signals in the dendrites while avoiding detailed compartmental modelling. The models are based
on available physiological and anatomical data. Three models were tested each implementing an inhibitory neural circuit,
but differing by the spatial arrangement of the inhibitory interaction. Parameter optimisation with an evolutionary
algorithm revealed that only distributed dendritic processing satisfies the constraints arising from electrophysiological
experiments. In contrast to a direct dendro-dendritic inhibition of the FD-cell (Direct Distributed Inhibition model), an
inhibition of its presynaptic retinotopic elements (Indirect Distributed Inhibition model) requires smaller changes in input
resistance in the inhibited neurons during visual stimulation.

Conclusions/Significance: Distributed dendritic inhibition of retinotopic elements as implemented in our Indirect
Distributed Inhibition model is the most plausible wiring scheme for the neuronal circuit of FD-cells. This microcircuit is
computationally similar to lateral inhibition between the retinotopic elements. Hence, distributed inhibition might be an
alternative explanation of perceptual phenomena currently explained by lateral inhibition networks.
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Introduction

Moving through an environment requires gathering informa-

tion about the spatial properties of the surroundings. Collisions

with obstacles have to be avoided and objects that may serve as

landmarks for orientation need to be detected. Collision avoidance

does not require detailed information about the object properties.

Rather, it may be sufficient to know that there is an object no

matter what it is.

In a wide range of species visual interneurons have been found

which preferentially respond to small objects in their receptive

field (see for instance: [1–5] cat, [6–8] monkey, [9–11] pigeon,

[12] toad, [13,14] locust, [15] hoverfly, [16,17] hawkmoth, [18–

20] dragonfly, [21,22] blowfly). These cells differ in the size of

their receptive fields and the preferred size of the objects. For

instance, object sensitive cells in dragonflies or hoverflies respond

most strongly to objects as small as 1–2 degrees. With increasing

object size, the response vanishes almost completely [20,23,24].

Other cells like the so-called FD-cells of blowflies respond best to

objects with a width in the range of 6–12 degrees and still may

respond, although at a considerably lower level, during wide-field

motion [21,22,25,26,27].

FD-cells are assumed to obtain their sensitivity for small objects

through inhibition from another cell with a large receptive field.

The assumption is based on laser-ablation experiments that

revealed for at least one type of FD-cell, the FD1-cell, that its

object preference disappears after eliminating an inhibitory wide-

field neuron in its input circuitry [28]. Although the receptive field

of the inhibitory neuron is larger than that of the FD-cell,

inhibition from outside the receptive field borders of the FD-cell is

not necessary for tuning FD-cells to objects. This is because the

width of the excitatory visual field of an FD-cell is much larger
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than the optimum object size [21,25]. Although the mechanisms

underlying object sensitivity of the FD-cell have not yet been

unravelled in detail, simple models have been proposed that can

explain a preference for objects comparable to that of FD-cells.

These models comprise an output neuron, the FD-cell that

receives retinotopic input, as well as input from an inhibitory

neuron. The synaptic transmission between retinotopic input

elements and the FD-cell was assumed to be nonlinear [25,29,30].

After these models were put forward, the mechanisms

underlying object sensitivity have been further constrained by

new anatomical and electrophysiological data: (1) There is now

good evidence for spatially distributed interactions in the input

circuit or on the dendrite of the FD-cells [31,32], (2) the responses

of FD-cells were found to depend on object and background

velocity in a very peculiar way, in addition to the already known

preference for objects [26].

The above mentioned models were recently modified to allow a

simulated fly to track a small moving target in a virtual

environment [33]. Note that this modified model was tuned to

target tracking rather than to account for the electrophysiologically

determined responses of FD-cells. Moreover, it did not take into

account the evidence for the spatially distributed interactions in

the input circuit of the FD-cells.

Using model simulations we analyse three different wiring

schemes with respect to their ability to comply with the two above

mentioned experimentally established constraints. For all wiring

schemes we assume the same receptive field for the inhibitory

neuron and the FD-cell. To adjust the models to the constraints

imposed by the electrophysiological data, we optimised the model

parameters by means of an optimisation method.

The aim of the study is to unravel fundamental computational

principles underlying object sensitivity of FD-cells and putting

forward electrophysiologically checkable predictions, but not to

mimic the detailed neuronal circuitry. Therefore, we chose a

new paradigm which relies on only few free model parameters

and allows us to model dendritic signal spread within a dendro-

dendritic wiring scheme at a relatively abstract level by spatial

lowpass convolution (compare with [34]). This enables us to

avoid the many assumptions that are required for detailed

compartmental modelling of nerve cells (e.g. [35]).

Methods

Constraints
The analysed models are constrained by the available

experimental data on the wiring of the input circuitry of the

FD-neuron and the responses of the FD-cell to different

conditions of object and background motion. In the following

we will focus on the FD1-cell, the member of the FD-cell

ensemble which has been characterised most thoroughly. For

the sake of simplicity we will use the term FD-cell in the

modelling part of this study without explicit reference to a

specific FD-cell.

Constraints imposed by the structure of the circuitry
The FD-cells are assumed to receive excitatory retinotopic

input via their large dendritic trees from cells with small

receptive fields encoding local motion information [21]. As

assumed by Reichardt et al. [29] and Egelhaaf [25] and

experimentally verified by Warzecha et al. [28], the FD1-cell is

inhibited by a motion-sensitive cell with a large receptive field,

the so-called ventral centrifugal horizontal cell (vCH-cell) (fig. 1).

The interaction between the FD1-cell and the vCH-cell is likely

to be spatially distributed (compare figs. 1A with 1B and 1C),

because the vCH-cell’s output area is large and has a profuse

arborisation which largely overlaps the dendritic tree of the FD1-

cell [32]. Until now it is not known whether the vCH-cell

contacts the FD1-cell directly (fig. 1B) or whether the inhibition

is presynaptic and thus indirect via the input elements of the

FD1-cell (fig. 1C). The vCH-cell receives its ipsilateral excitatory

input from dendro-dendritic electrical synapses from HS-cells

(Horizontal System) [31]. The HS-cells are also motion-sensitive

cells with a large receptive field and the same preferred direction

as the FD1-cell but without a preference for small objects

[36,37]. Similar to the FD-cells, the HS-cells receive retinotopic

input from local motion detectors. Hence, the ipsilateral

inhibitory input of the FD1-cell is expected to be mediated via

HS-cells and the vCH-cell.

Characteristic response properties of FD-cells
The response of the FD1-cell to an object moving in front of a

stationary background increases initially with an increasing object

size. Beyond the optimum size of the object the response decreases

again [25]. We will refer to this distinguishing property of FD-cells

as ‘‘size dependence’’.

Since both the FD1-cell and the inhibitory vCH-cell are

motion- sensitive neurons, the velocities of object and background

have a strong impact on the FD1-cell response [26]. For example,

when the difference between the velocities of the background and

the object decreases, the FD-cell response decreases. Moreover, a

fast background and a slow object elicit stronger FD1-cell

responses than an object with a moderate velocity in front of a

stationary background. In the following, we will refer to the FD-

cell’s dependence on the object and background velocities as

‘‘velocity dependence’’.
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Figure 1. Schematics of potential circuits of the input
organisation of an FD-cell. The small-field selective FD-cell receives
excitatory retinotopic input from motion sensitive elements. Inhibitory
input of the FD-cell is mediated by the vCH-cell via HS-cells. For
simplicity, only one of the two HS-cells that provide input to the vCH-
neuron is shown in this sketch. The coupling between the HS-cells and
the vCH-cell is shown to be dendro-dendritic and occurs via gap
junctions. A The vCH inhibits the FD-cell after spatial pooling (‘direct
pooled inhibition’ DPI). B The vCH inhibits the FD-cell dendro-
dendritically in a distributed way (‘direct distributed inhibition’, DDI).
C The vCH inhibits the retinotopic input elements of the FD-cell in a
distributed way (‘indirect distributed inhibition’, IDI).
doi:10.1371/journal.pone.0003092.g001
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Components of the model
Input organisation and receptive fields. As an input to the

model FD-cell and the inhibiting element we used, as a first

approximation, the one-dimensional velocity profile of the

stimulus pattern along the horizontal extent of the visual field.

For convenience, we did not explicitly model the properties of the

retinotopic local movement detectors that are known to project

onto the motion-sensitive tangential cells, such as FD-cells (review:

[38]). The data of Kimmerle and Egelhaaf [26] suggest that the

velocities used in their experiments were mostly restricted to the

rising part of the velocity tuning curve. Hence the amplitude of the

retinotopic input was assumed in our model simulations to be

proportional to stimulus velocity. Since the objects used in the

electrophysiological experiments which served as constraints for

this study covered the entire vertical extent of the receptive field

and were only moved horizontally, velocity differences were

limited to the horizontal direction. Thus, taking only one spatial

dimension into account does not represent a limitation. As we

were mainly interested in finding a solution for the challenging

problem of small-field tuning where the FD-cell and the inhibiting

element have the same receptive field size, both elements were

modelled with the same receptive field size which covered the

entire pattern. For simplicity we neglected the experimentally

determined spatial sensitivity distributions of the FD1- and vCH-

cells, such that in our model both cells have the same sensitivity

irrespective of the spatial location of the stimulus.

Distributed dendritic interaction as a lowpass

filter. The distributed dendritic inhibition of the FD-cell’s

dendrites or its retinotopic input elements has been hypothesised

to play an important role for the function of the FD-circuit [30]. If

the dendrite is not only the input region of a neuron but also its

output region, the activation pattern at the output reflects the

input activation pattern to some extent. To get an intuition of the

consequences of a dendritic arborisation for the retinotopic input

activation pattern, one may imagine the dendrites of a neuron as

an electric wire with a limited longitudinal conductance. A

spatially localised input activity spreads to both sides along the

dendrite (fig. 2). The signal amplitudes decrease with the distance

from the input side and thus become spatially blurred [34]. This

intuition may easily be generalised to two dimensions, if the fine

dendritic branches show basically random orientations. The

anatomy of vCH-cells appears to be not in contrast to this

assumption [31,39,40]. Thus, the overall dendritic output of the

vCH-cell can be described as a kind of spatially lowpass filtered

version of its retinotopic input pattern. The spatial blurring of the

retinotopic input pattern is further enhanced by the

dendrodendritic interaction between the HS-cells und the vCH-

cell.

Accordingly, we implemented the spatially distributed process-

ing of the retinotopic input in the inhibitory part of the FD-cell

circuit, consisting of HS-cells and the vCH-cell, as a single spatial

lowpass filter. In the model these two cells are lumped into a single

inhibitory element. In a first approximation, a rectangular filter

kernel was used to spatially convolve the input signal. This

approximation saves computation time since the filter can be

calculated as a running average:

I ið Þ~
X

n[N ið Þ

V nð Þ
cardinality N ið Þð Þ ð1Þ

with a neighbourhood N(i): = {n:i2s/2#n#i+s/2; 1#n#W}

V is the input signal and I the convolved output signal. i and n

denote the position along the dendrite. W is the width of the

receptive field and s is the width of the filter kernel.

Spatial Integration. To unravel the significance of the

spatially distributed processing in the neural circuit

presynaptic to the FD-cell, the FD-cell is considered to be

isopotential. The equivalent electrical circuit of a one-

compartment passive membrane patch is used to calculate

the membrane potential Um of the FD-cell that results from

spatial dendritic pooling:

Um~
gI EIzgEEEzg0E0

gIzgEzg0

ð2Þ

EI and EE denote the reversal potentials of ion channels with

the associated inhibitory (gI) and excitatory (gE)

conductances, respectively. E0 is the resting potential of the

cell. The inhibitory and excitatory conductances will be

calculated from the respective input using functions

specifying synaptic transmission between the presynaptic

input and the corresponding postsynaptic cell (see below).

The reversal potentials are fixed parameters. If the reversal

potential of an ion channel is more positive than the resting

potential E0 of the FD-cell, this channel is excitatory. A

reversal potential more negative than the resting potential

denotes an inhibitory channel.

We set the leak conductance g0 to 1. The other conductances

are thus given relative to the leak conductance. The electrical

equivalent circuit delivers a membrane potential Um as a result.

Function of synaptic transmission. Synapses were often

found to transform the presynaptic signal nonlinearly into

postsynaptic responses [41]. Accordingly, we selected a sigmoid

function which allows us to describe a broad range of

characteristics by using only three parameters.

syn xð Þ~ S

1ze a x{offsetXð Þð Þ{
S

1zea {offsetXð Þ ð3Þ

The parameter a describes the slope, S accounts for the level of

saturation and offsetX is used to specify which part of the function

is taken as the operating range. The input argument x is always

positive. For offsetX = 0 the function is approximately linear in the

beginning. For offsetX.0 it approximates a saturation

nonlinearity and for offsetX,0 initially a convex shape. The

A

B
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D

longitudanal resistance

postsynaptic dendriteresistance 
electric synapses

presynaptic dendrite

gap junction

Figure 2. Dendro-dendritic blurring. A Simplified electrical
equivalent circuit of dendro-dendritic coupling via electrical synapses.
B An injected signal in the presynaptic dendrite C spreads electroton-
ically to the sides and gets spatially blurred. D The distributed coupling
of both dendrites increases the blurring.
doi:10.1371/journal.pone.0003092.g002
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second part of the equation ensures that the function of synaptic

transmission begins in the point of origin (syn(0) = 0).

Direct Pooled Inhibition Model
The Direct Pooled Inhibition (DPI) model does not comply with

the anatomical constraint of the inhibitory element conveying its

signal in a distributed fashion to its postsynaptic targets.

Nonetheless, this model will serve as a reference to understand

the importance of a distributed processing. The FD-cell receives its

excitatory and inhibitory input as a one-compartment passive

membrane patch as described above. The FD-Cell is directly

excited by the vector V(i) of retinotopically distributed velocity

values (fig. 3B).

The stimulus velocity V(i) from each spatial position i is

transformed, via the synaptic transmission function synV, into a

conductance gV(i) (fig. 3A). All local ion channel conductances

with the reversal potential EV are pooled according to equation 2

and account for the activation of the FD-cell. The reversal

potential EV is a free parameter of the model, but it is more

positive than the resting potential E0.

The FD-cell receives its inhibitory input from a neuron which

has the same receptive field as the FD-cell itself (fig. 3B). After

complete spatial pooling of the motion information, the inhibitory

element directly controls the conductance gI of inhibitory FD-cell

ion channels. As these channels are supposed to be inhibitory,

their reversal potential has to be equal to or more negative than

the resting potential. The case of a reversal potential equal to the

resting potential represents so-called shunting inhibition. The

reversal potentials are free model parameters. Hence, optimisation

of the model will constrain the values of these potentials. gI is

calculated as the spatial average of V(i) transformed by the

synaptic transmission function synI() (equation 4). Therefore, all

spatial information is lost in the inhibitory signal. Note that in the

inhibitory pathway the synaptic transmission function is applied

after spatial integration, whereas this function is applied to the

excitatory input before integration.

In terms of spatial pooling this model is similar to a previous

model of the FD-cells [25,42].

Um~

gI EIz
P

i

gV ið ÞEV zg0E0

P
i

gIz
P

i

gV ið Þzg0
ð4Þ

with gI~synI V ið Þð Þ and gV(i ) = synV(V(i ))

The DPI model has 8 free parameters: the reversal potentials

EV, Ei and, for both functions of synaptic transmission, the three

parameters characterising saturation, slope and position of the

transmission characteristic (see above). For optimisation some

parameters had to be constrained to ensure they are within a

biologically realistic range. Thus, in the optimisation process, the

reversal potential Ee is kept smaller than 100 mV whilst the

reversal potential of the inhibitory ion channel Ei is held at the

level of the resting potential (shunting inhibition) or at a more

Figure 3. Direct pooled inhibition model (DPI). A Sketch of the DPI model: The motion picture (V(i)) provides the retinotopic visual input to the
model with an amplitude at each position proportional to stimulus velocity. V(i) is the input for the (left) inhibitory and the (right) excitatory branch.
Profile 1 illustrates the ‘motion picture’ which shows the spatial distribution of the velocity V(i) in the visual field of the object and the background
(indicated by the grey level, the darker the higher the velocity). Hence, for each position i, a velocity value V(i) is given. In the left branch the values
V(i) are spatially integrated to the signal I. This signal is transformed into the conductance gI via the synaptic transmission function synI(). In the right
branch a conductance gV(i) is calculated for each position i from the motion picture using the synaptic transmission function synV(). In the last step all
conductances gI and gV(i) are used to calculate the output of the model. B A detailed sketch of the DPI model circuit. Retinotopic motion sensitive
cells excite the inhibitory element of the circuit as well as the FD-cell (black). The inhibitory element pools the retinotopic signal and inhibits the FD-
cell directly. The symbols of the different cells are explained at the bottom of the figure.
doi:10.1371/journal.pone.0003092.g003
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negative level (though not below 2120 mV). It is obvious that the

synaptically inducted conductances are biologically limited. Since

we do not know the upper limit, we choose a wide range: The

maximum of the excitatory and the inhibitory conductance

are limited each to 10,000-times the leak conductance.

Direct Distributed Inhibition Model
The Direct Distributed Inhibition (DDI) model uses the same

activation of the FD-cell as the DPI model: the retinotopic velocity

information V(i) is transformed into a sum of conductances gV of

excitatoy ion channels. However, DDI differs from DPI with

respect to the inhibitory pathway (fig. 4A). DDI takes into account

the evidence for a spatially distributed output of the inhibitory

element. Furthermore, it assumes the inhibitory input of the FD-

cell to be directly mediated via dendro-dendritic synapses between

the inhibitory element and the FD-Cell (fig. 4B). Dendritic

processing in the inhibitory element is modelled by a spatial

lowpass filter as described above. The output of the inhibitory

element, represented by the vector I(i), is retinotopically

distributed. By applying the synaptic transmission function synI,

the output of the inhibitory element I(i) is transformed into an

array of conductances gI(i) of the FD-cell (fig. 4A). In contrast to

DPI, the retinotopic distribution of the inhibitory signal is

preserved, though spatially blurred, until it reaches the FD-cell

(compare figs. 3B and 4B).

The FD-cell integrates the velocity information in terms of the

conductances gV(i) and gI(i), respectively. gV(i) and gI(i) are the

conductances of the synaptically controlled ion channels with the

reversal potentials EV and EI, respectively:

Um~

P
i

gI ið ÞEIz
P

i

gV ið ÞEV zg0E0

P
i

gI ið Þz
P

i

gV ið Þzg0
ð5Þ

with gI(i ) = synI(I(i )), gV(i ) = synV(V(i )) and I(i) as defined in eq. (1)

The model has 9 free parameters: the reversal potentials EV,

EI, the width sigma of the filter kernel and, for both functions of

synaptic transmission, the three parameters characterising

saturation, the slope and the position of the transmission

characteristic (see above). Here again the optimal values have

been determined by optimisation (see below). The value ranges

which are set to be valid for the optimisation are the same as for

the DPI model.

From an abstract point of view, DPI is only a special version of

DDI. If the inhibitory neuron of the FD-cell circuit were

electrically compact, this neuron would have exactly the same

potential along the entire dendrite. For the DDI model this

situation is given for an infinite width of the spatial filter kernel

averaging the signal across the entire receptive field.

Indirect Distributed Inhibition Model
The Indirct Distributed inhibition (IDI) model differs from the

other models in one essential aspect: the inhibition of the FD-Cell

is indirect, since it is mediated via its presynaptic retinotopic input

elements. Here, not the FD-cell itself is inhibited, but its input

elements. As a first approximation, the inhibition is implemented

Figure 4. Direct distributed inhibition model (DDI). A Sketch of the DDI model: The motion picture (V(i)) provides the retinotopic visual input
of the model with an amplitude at each position proportional to stimulus velocity. This motion picture (Profile 1) is the input of the (left) inhibitory
and the (right) excitatory branch. For each position i, a velocity value V(i) is given. In the left branch the signal V(i) is spatially convolved with a
rectangular lowpass filter kernel to lead to the signal I(i). Profile 2 illustrates the motion picture after spatial convolution. The signal I(i) is transformed
by the synaptic transmission function synI() into the conductance gI(i). For each position i a conductance gV(i) is calculated in the right branch. In the
last step both the gI(i) and gV(i) conductances are used to calculate the output of the model. B Detailed sketch of the DDI model circuit. Retinotopic
motion sensitive cells excite the inhibitory element of the circuit and the FD-cell. The inhibitory element inhibits the FD-cell directly in a spatially
distributed way. The symbols of the different cells are explained at the bottom of the figure.
doi:10.1371/journal.pone.0003092.g004
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as a pure shunting inhibition, i.e. Ei = E0.

presyn in,shuntð Þ~ in

1zshunt
ð6Þ

in is the input signal, shunt denotes the strength of the shunt.

The inhibitory element contacts the output area of the local

movement detectors and shunts them before they reach the FD-cell

(fig. 5). The shunting is applied in a spatially distributed way. Again, in

the inhibitory pathway we describe the effect of dendritic processing

by spatial lowpass filtering of the array V(i) representing the retinotopic

velocity values. Using the synaptic transmission function synI() as

specified above, the lowpass-filtered signal I(i) is transformed entry-

wise into the shunting signal (see equation 7). This signal shunts the

retinotopic input of the FD-cell according to Equation 6. Employing

the synaptic transmission function synV() the resulting signal is

transformed into the array of local conductances gv(i) of the FD-Cell

(fig. 5A). Similar to DDI, the FD-cell is implemented as a one-

compartmental patch. The sum of gV(i) reflects the total conductance

of the FD-cell corresponding to ion channels with the reversal

potential EV. The FD-cell has no direct inhibitory input.

Um~

P
i

gV ið ÞEV zg0E0

P
i

gV ið Þzg0

ð7Þ

with gV(i ) = synV (presyn(V(i ), synI(I(i )))) and I(i) as defined in eq. (1)

The model has 8 free parameters: the reversal potential EV, the

width sigma of the spatial filter kernel and, for both functions of

synaptic transmission, the three parameters characterising satura-

tion, the slope and the position of the transmission characteristic.

Again the optimal values have been determined by optimisation

(see below). The value ranges which are set to be valid for the

optimisation are the same as for the previous models.

Optimisation
The model parameters were optimised to mimic the experi-

mentally determined velocity and size dependences of the FD-cell

response. Since only spike rates were available from the

extracellular recordings of FD-cell activity, these had to be

transformed into membrane potentials. Based on a previous study,

the membrane potential was assumed to be proportional to the

spike rate [43]. The proportional factor was estimated from

sample intracellular and extracellular recordings [21]. Membrane

potential depolarisations of about 20 mV were found when the cell

fires at a rate of about 120 spikes per second. Further, a resting

potential of 252 mV was estimated [21].

Our aim was to account for both the size dependence and the

velocity dependence of the FD-cell response in each model using

only a single set of parameters. Therefore, it was essential to

optimise the models simultaneously with respect to both criteria.

Since the experimentally determined dependence of the FD

response on object and background velocity comprises more data

points than the size dependence results (compare [25] with [26]),

the former data would have a much greater impact on the

longitudinal resistance

shunting synapse
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motion sensitive neuron
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retinotopic signal (array)

pooled signal (scalar)

array encoding 
local velocities

V(i)

I(i)

sht(i)

spatial 
integration

FD-cell 

spatial
lowpass

lp()

syn
I
()

syn
V
()

g
V
(i)

U
m
()

Profile 2

Profile 1

presyn()

Figure 5. Indirect distributed inhibition model (IDI). A Sketch of the IDI model: The motion picture (V(i)) is the retinotopic visual input of the
model having an amplitude proportional to stimulus velocity at each position. This motion picture (Profile 1) is the input of the (left) inhibitory and
the (right) excitatory branch. For each position i, a velocity value V(i) is given. In the left branch the signal V(i) is spatially convolved with a rectangular
lowpass filter kernel to lead to signal I(i). The signal I(i) is transformed by the synaptic transmission function synI() into the shunting signal sht(i). For
each position i, the signal V(i) is shunted by sht(i) and, by the synaptical transmission function synv(), transformed into the conductances gV(i). Profile
2 illustrates the motion picture after the presynaptic inhibition. In the final step, all conductances gV(i) are used to calculate the output of the model.
B Detailed sketch of the IDI model circuit. Retinotopic motion sensitive cells excite the inhibitory element of the circuit and the FD-cell. Before the
motion sensitive elements reach the FD-cell, they are shunted in a spatially distributed way by the inhibitory element. The symbols of the different
cells are explained at the bottom of the figure.
doi:10.1371/journal.pone.0003092.g005
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optimisation result than the latter data. To compensate this effect

we employed the following procedure: we modelled the size

dependence of the FD response for two additional object velocities

by using the experimentally determined size dependence and

scaling the amplitude of the responses according to the velocity

dependence experiments. In this way the characteristic size

dependence of the FD-cell response had sufficient weight in the

optimisation process. It should be noted that we did not try to

obtain an exact fit of the experimental data, but only tried to

account qualitatively for their characteristic features. Therefore,

we used a distance measure which weights large deviations

between biological and model data much more than small

deviations. To calculate the overall distance between biological

and model data the following distance measure drms root mean

squared was chosen:

drms~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

p~1

k pð Þ{m pð Þð Þ2
vuut ð8Þ

A penalty term which was added to drms if a parameter is beyond

the valid value range (see above) ensured the parameters to stay

within this ranges.

To asses the significance of the smallest distance values obtained

by the optimisation procedure we used a constant artificial

response which has the smallest drms distance to the biological data

as one reference. This reference assumes that the neuronal

response does not depend at all on the tested stimulus parameters.

The standard error of the mean (SEM) of the data from the

velocity dependence experiments [26] was used as another

reference.

Algorithm
We applied ‘‘Differential Evolution’’ as an automatic stochastic

optimisation method [44]. It is a convenient procedure for

continuous, nonlinear and multimodal but analytically inaccessible

functions. Systematic variations of the parameters did not reveal

any discontinuities in the distance measure drms as a function of

the model parameters. Consequently, we expect Differential

Evolution to be an appropriate optimisation method.

The algorithm searches for the global optimum of the function

to be analysed. In our case we want to find the optimum of the

distance measure drms as a function of 8 (DPI and IDI models) or 9

(DDI model) parameters. Since Differential Evolution is a

stochastic optimisation method, finding the global optimum is

not guaranteed, as it is possible to get stuck in a local optimum.

Initially, the optimisation was performed several times in

preliminary tests with different initial parameters of the search

algorithm. The set of these parameters performing best was chosen

for the final optimisation (weighting factor F = 0.7; crossover

constant CR = 0.9; number of parents NP = 100).

The optimisation procedure was repeated 1,000 times for each

model. Each run was stopped after a fixed number of iterations

(200,000) or if the improvement in terms of drms in the last 10,000

steps of searching was negligible (,0.01 mV). Each of the 1,000

runs delivers one set of model parameters as a solution which is a

candidate for the global optimum.

Since the optimisation procedure may return only a local

optimum as a solution, more than one optimum was found for

each model. Each of the optima was found several times. Hence,

the algorithm did not get stuck in a single local optimum and the

different optima were found reliably. However, there is no

guarantee that we found all local optima including the global

optimum. Systematic variations of the model parameters around

the best found solution ensured that the algorithm did not get stuck

between optima as solutions actually turned out to be local optima.

In the following we evaluate the different solutions for each of

the three models. At first the solution with the best drms is most

interesting. However, since also qualitative properties are

important, good solutions in terms of the distance measure drms

may also be interesting, even if they are not the best.

Results

Direct Pooled Inhibition (DPI)
None of the solutions found for the DPI model mimics the size

dependence of the FD responses: only for high object velocities the

DPI responses decrease with an increasing object size. For small

and medium object velocities, the model responses do not show

any preference for small objects and the response is the same for

all object sizes. On the other hand, all solutions for the DPI model

mimic the velocity dependence quite well. The deviations are in

the range of the SEM of the experimental data. Only at high

background and object speeds do we find a big difference (fig. 6).

The distance measure reflects the qualitative deviations: The best

fit of the DPI model had a drms of 2.1 mV. This is beyond the

SEM (1,2 mV) of the corresponding experimental data [26], but

far below the drms of 3.7 mV for the constant response reference

assuming that the response does not depend on the tested stimuli

at all.

It was surprising that no pronounced small-field tuning has been

obtained with DPI, since this distinguishing characteristic of FD-

cells was previously obtained with a similar model [25]. When we

optimised the DPI model solely with respect to the size

dependence, we obtained also a clear preference for small objects.

However, the model no longer mimics the dependence of the FD-

cell on object and background velocity. These findings suggest that

the DPI model, depending on the model parameters, can mimic

either the characteristic size dependence or the object and

background velocity dependence of the FD-cell, but not both

characteristics simultaneously.

Finding parameters leading to small drms is not sufficient for a

model to be acceptable, it is also necessary that their optimised

parameter values have biological plausibility. Three parameters of

the best solution of the DPI model are at the border of the

permitted range (see above). This is the case in one parameter

vector for the parameter determining the slope of the synaptic

transmission function and in another vector for the reversal

potential of the inhibitory ion channels EI. Allowing values beyond

this range did not noticeably improve the model. The third critical

parameter is the level of saturation S of the synaptic transmission

functions which is determined by the ratio between the

synaptically induced conductance and the leak conductance of

the FD-cell. With an increasing conductance ratio, the perfor-

mance of the model increases slightly, but is no longer much

affected for ratios above approximately 100 (fig. 7).

Direct Distributed Inhibition (DDI)
For the DDI model we obtained three solutions which all

proved to be better than those obtained with the DPI model. Each

solution mimics the velocity dependence and the size dependence

of the FD-cell responses quite well. Only for the data point at high

background and object velocities do we find a large difference

between experimental results and corresponding model response

(fig. 8). However, small-field tuning is obtained for all velocities

and the response of the model decreases with increasing object size

for all velocities (fig. 8).
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The obtained distance measure drms has values between

1.33 mV and 1.37 mV which are close to the experimentally

determined velocity dependence SEM of 1.2 mV [26] (fig. 7).

Hence, the deviations of the model from the experimental results

are close to the range of variability of the experimental data.

Some parameters of the different solutions cover only a small

range. The reversal potential of the excitatory input of all solutions

is between 238.8 and 239.6 mV. Hence, the excitatory reversal

potential is about 14 mV more positive than the resting potential.

The inhibitory reversal potential is more negative than the resting

potential. In different solutions it covers the large range between

256.4 and almost 2120.0 mV, the border of the permitted

parameter range. To test whether there is a significantly better

solution beyond this border, we allowed the search to use

parameters in wider confines. The solutions did not become

significantly better. They improved by less than 0.01 mV in terms

of drms. In any case, the experimental data are explained best if

inhibition does not represent a pure shunting inhibition, but has a

pronounced subtractive effect. The width of the spatial filter

reflecting dendritic blurring of the retinotopic signal was found for

all solutions in the range between 8 and 12 degrees.

For all solutions the synaptic transmission functions have the

shape of a sigmoid. We find almost the same shape of the synaptic

transmission functions for the inhibitory and the excitatory

synapses. The functions differ only in their saturation level and

are just scaled by a factor.

The performance of the DDI model continually improves with

an increasing conductance saturation level S up to the permitted

limit of a ratio of 10,000:1 between the synaptically induced

conductances and the leak conductances (fig. 7). Decreasing

parameter S below 100 the size dependence slowly vanishes. At an

even smaller value of 10 the experimentally determined size and

velocity dependences are not mimicked anymore.

Indirect Distributed Inhibition (IDI)
Both the velocity and size dependence of the experimental data

are fitted quite well by the model IDI, in a similar way to the DDI

model. The four solutions found for the IDI model have, in terms

of the distance measure, a performance similar to the DDI model
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Figure 6. Performance of the DPI model. Best performance of DPI
model with the model parameter S limited to 10,000. (The parameter S
denotes a synaptically induced conductance relative to the leak
conductance.) A–D Velocity dependence of the FD-cell response:
model (red) and experimental (black) responses as a function of object
velocity for three background velocities(a–c), respectively as a function
of background velocity at a constant object velocity (d). Error bars
denote the SEM of the electrophysiological data. E–G Size dependence
of the FD-cell response: model (red) and experimental (black) responses
as a function of object size for three different object velocities.
(Experimental data taken from [25,26].)
doi:10.1371/journal.pone.0003092.g006
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Figure 7. Consequences of increasing the inhibitory synaptic
conductance. The distance measure drms for all models as a function
of the model parameter S accounting for the maximum ratio between a
synaptically induced conductance and the leak conductance. While DDI
improves continually with an increasing synaptic conductance, IDI
shows only clear improvements below a ratio of 10. For high ratios both
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SEM of the experimental data [26].
doi:10.1371/journal.pone.0003092.g007
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(drms between 1.31 and 1.36 mV). Hence, the drms is close to the

SEM of 1.2 mV as obtained for the corresponding experimental

data. As for the DDI model, we observe a major deviation between

the model and the experimental results only at the highest tested

background and object velocities (fig. 9).

The reversal potential of the activating ion channels of the

different solutions of the optimisation is in the range of 239.9 to

240.1 mV. This is close to the most positive membrane potential

of the experimental data. Since we assumed a presynaptic shunting

inhibition, there is no inhibitory reversal potential for the FD-cell

itself. The width of the filter approximating the dendritic spread

was between 32 to 34 degrees i.e. much broader than that of the

DDI model.

For optimal performance of the model, the synaptic transmis-

sion function of the excitatory synapses was found to have the

shape of a sigmoid, whereas the one of the inhibitory synapses is

almost linear. As for the other two models, the performance of the

IDI model improved with increasing parameter S accounting for

the ratio between the synaptically induced conductance and the
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Figure 8. Performance of the DDI model. Best obtained
performance of DDI model with the model parameter S limited to
10,000. (The parameter S denotes a synaptically induced conductance
relative to the leak conductance.) A–D Velocity dependence of FD-cell
response. E–G Size dependence of FD-cell response. Explanations as for
Fig. 6.
doi:10.1371/journal.pone.0003092.g008
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total leak conductance. In contrast to the other models, the

performance improved quite strongly up to ratios as small as 10:1

and improved only relatively little by further increasing the

inhibitory conductance (fig. 7).

Functional Principles
The optimisation procedure employed above reveals variants of

the DDI and IDI models which account quite well for both the

small-field tuning of FD-cells as well as for the dependence of their

responses on the relative velocity of object and background. To get

some insight into the functional principles relevant for the

performance of these neural circuits, two aspects will be discussed

with respect to DDI and IDI respectively.

Small field tuning based on DDI. In contrast to the early

FD-cell model [25,42], the solutions obtained for the DDI model

with automatic parameter optimisation (see above) show that

small-field tuning of FD-cells can be explained well by using

similar expansive transmission functions for the excitatory and

inhibitory synapses and without the assumption of a saturation of

the inhibitory element or a shunting inhibition. The synaptic

transmission functions of inhibitory and excitatory synapses differ

only by a scaling factor. To get an intuitive idea of how a

preference for small objects can be generated on the basis of the

same type of synaptic transmission characteristic we have a closer

look. The difference of the inhibitory and the excitatory input

required for the preference for small objects arises from spatial

blurring of the inhibitory retinotopic input signal and the

exponential shape of the functions describing synaptic

transmission, in particular, of the inhibitory synapse. With an

increasing object size, the difference between the excitatory and

the inhibitory signal profiles decreases (fig. 10).

Different characteristics of the functions of synaptic transmission

of the inhibitory and the excitatory synapses are thus not essential

and not a genuine functional principle of the circuit underlying a

preference for small objects. It is only required that synaptic

transmission operates according to an expansive nonlinearity, such

as an exponential function.

Small field tuning based on IDI. The best solutions

obtained with the IDI model (see above) are characterised by a

nearly linear transmission of the inhibitory synapses, whereas the

excitatory synapses have an expansive characteristic. Nevertheless,

small field tuning may be obtained even with linear transmission

characteristics at both excitatory and inhibitory synapses. This is

illustrated here for a simplified model variant of IDI. It consists of

a spatial low pass filter mimicking, as in IDI, the dendritic signal

spread in the inhibitory neuron (see eq. 1), a shunting inhibition as

given by eq. 6 and a linear summation accounting for both linear

transmission of the input signals and the dendritic integration by

the model FD-cell (model(input)):

FDresponse inputð Þ~
X

i

input ið Þ
1zlowpass inputð Þ ið Þ ð9Þ

The entries of a spatially distributed signal input(i) account for

the numerator of the fraction. The denominator consists of the

entries of the spatially blurred input signal and a term accounting

for the cells leak conductance. The leak parameter was arbitrarily

set to 1.

The model simulations reveal that just a spatial low-pass filter

combined with a presynaptic shunting inhibition (and implicitly

assumed linear transmission characteristics at all synapses) are

sufficient to produce a preference for small objects (fig. 11). For

numerical reasons this preference only shows up if some

background activity of the input channels is assumed. This

assumption is fairly plausible from a biological point of view.

Shunting inhibition of the retinotopic elements is by itself not

sufficient to ensure small-field tuning of the model: Without spatial

blurring the response of the inhibitory neuron the FD-cell response

is proportional to object size (fig. 11). With increasing width of the

spatial filter a preference of the FD-cell for small objects emerges.

The spatial width of the filter determines the optimal object size. If

the filter width gets too large, the preference for small objects

vanishes and for an infinite filter width, i.e. for an isopotential

inhibitory neuron, the preference for small objects is completely

lost (fig. 11).

Discussion

It has been the objective of this modelling study to challenge

different model circuits with respect to their ability to account for a

preference of FD-cells in the blowfly visual system for small

moving objects as well as the characteristic dependence of their

responses on object and background velocity [25,26].

In all tested models small-field tuning is accomplished by

inhibiting the FD-cell either directly or indirectly via another

motion sensitive cell. Issues were the functional consequences of

different architectures of the neuronal microcircuits. In particular

we assessed the impact of localised inhibition after spatial pooling

of retinotopic motion information versus distributed dendritic

inhibition as well as pre- and postsynaptic synaptic interactions.

We did this by employing a new approach of modelling the signal

spread in a passive dendritic tree by spatial filtering of the cell’s

input activity pattern rather than by detailed compartmental

models. The parameters characterising the three analysed model

circuits were automatically optimised with respect to the most

characteristic electrophysiological properties of FD-Cells. In

contrast to inhibition after spatial pooling, circuits based on

spatially distributed inhibition can approximate the preference of

FD-cells for small objects and their dependence on object and

background velocity so well that we are, in most cases, not able to

clearly distinguish the experimental data from the model

responses.

The distributed inhibition satisfies all constraints
In the Direct Pooled Inhibition (DPI) model, the inhibitory

element spatially integrates the motion signals before inhibiting the

FD-cell directly. With appropriate parameter constellations it satisfies

either the characteristic size dependence or the velocity dependence,

but not both with the same parameter setting. Hence, this model

cannot account for the characteristic features of the FD-cells.

With a spatially distributed interaction between the inhibitory

element and the FD-cell or its input elements the performance

improves significantly. In the model ‘‘Direct Distributed Inhibi-

tion’’ (DDI), the inhibitory element interacts with the FD-cell

dendro-dendritically, whereas in the model ‘‘Indirect Distributed

Inhibition’’ (IDI) it interacts presynaptically to the FD-cell with its

retinotopic input elements. The two distributed models approx-

imate quite well both the dependence of the FD responses on

pattern size as well as its dependence on object and background

velocity. At most data points are the model data within the

standard error of the mean of the experimental data.

This good performance of the distributed models relies on a

spatial blurring of the retinotopically mediated velocity signal in

the dendrite of the inhibitory neuron. Hence, we can conclude

that a distributed interaction which preserves the spatially

distributed retinotopic velocity signal in the inhibitory neuron,
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though in a blurred form, is an essential part of the circuitry of

object detection in the visual system of the fly.

This conclusion is in good accordance with the available

experimental data: (1) elimination of the inhibitory vCH-cell

eliminates the preference of the FD-cell for small objects [28]. (2)

The vCH-cell and the FD-cell come in close contact to each other

only in their dendritic regions. The dendritic aborisations of the

FD-cell are totally covered by the aborisations of the vCH-cell

along their horizontal extent [32]. (3) Varicose swellings on the

dendrites of the vCH-cell indicate that the dendrites are an output

region [40]. (4) A spatially distributed inhibition requires a

distributed activation of the inhibiting neuron’s aborisations when

excited by spatially limited stimuli. This distributed activation was

shown for the vCH-cell [32] and is likely to be mediated via

dendrodendritic synapses by the so-called HS-cells [31]. (5) The

joint input and output aborisations of the inhibitory vCH-Cell

[32,45,46] form the structural basis of spatial blurring of the

retinotopic input activity pattern [34].

Advantages of distributed processing
As a potential advantage of a circuit relying on spatially

distributed inhibition the inhibitory signal has more computational

degrees of freedom than a pooled signal. In the latter case, only the

signal strength can be varied as a function of time, whereas in the

former situation the spatial domain can also be used. Hence, in the

case of a distributed interaction the inhibitory signal may depend

in different ways on object size as well as on the contrast and speed

of the stimuli [30,32].

There might be another advantage of distributed models (DDI

and IDI) over a model where the signal in the inhibitory element is

presynaptic signal
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spatially pooled prior to its interaction with the FD-cell (DPI).

Unlike the DPI model, when tuned to the size dependence of the

FD-cell the responses of the DDI and IDI models do not confound

two objects moving in the receptive field with a single object of

twice the size in their responses. A second object has only a small

effect on the response of the models with distributed inhibition,

whereas the response of the DPI model decreases. This means that

spatially distributed inhibition cannot be disturbed as easily as an

inhibition after spatial pooling by a second object which turns up

in the receptive field of the FD-cell. Although this prediction has

not been tested in FD-cells so far, a similar effect was found in an

object-sensitive cell of dragonflies [24].

Indirect inhibition is less demanding
It is not known so far whether the spatially distributed inhibition

operates directly on the dendrite of the FD-cell or indirectly via its

retinotopic input elements. Both DDI and IDI are able to mimic

similarly well all considered response properties of FD-cells.

However, the synaptic conductance changes required for this

performance differ for the two wiring schemes. IDI achieves the

required performance with conductance changes which are by

magnitudes smaller than the ones necessary for DDI. The

performance of IDI does not improve further with increasing

conductances. In contrast, DDI requires not only much higher

conductance changes than IDI to satisfy the constraints, but gets

continually better with growing conductance changes.

Measurements of input resistance in the axon of blowfly motion

sensitive neurons without and during visual motion stimulation

reveal a ratio of less than 2:1 between the total synaptically

induced conductance and the leak conductance [47,48]. The FD-

cell models proposed here hardly allow us to make realistic

predictions of conductance ratios, because these models are

intended to test the performance of different network architectures

for a minimum set of assumptions and do not take the precise

biophysical and geometrical properties of the involved neurons

into account. Since in the electrophysiological experiment the

postsynaptic sites are electrotonically distant from the recording

site, the conductance changes determined in the axon may be

considerably smaller than in the dendritic postsynaptic areas. This

is because the conductance ratio in the axon depends on all

conductances distributed over the dendritic tree, on the longitu-

dinal conductances between the postsynaptic sites in the dendrite

and the recording site in the axon as well as on the leak

conductance of the axon (Hennig unpublished). Moreover, further

geometrical properties may have to be taken into account: In the

case of the DDI model, for example, the location of inhibitory

synapses on the FD-cell’s dendrite may affect the required

conductances. An inhibition on the path between the retinotopic

input sites and the axonal output site, was shown to be much more

efficient than an inhibition in the more distal parts of the dendrites

[49]. Thus, a closer analysis of the consequences of the spatial

structure of the inhibitory neuron and the FD-cell requires detailed

compartmental models with realistic biophysical parameters.

Nevertheless, independent of the biophysical details of the

synaptic interaction between inhibitory neuron and FD-cell two

advantages of a distributed indirect inhibition make this wiring

scheme currently the most plausible one: Since IDI performs well

for much smaller conductances than DDI, it is likely to be much

less demanding with respect to energy expenditure. This is

because, large synaptic currents require much more ions to be

actively transported to the other side of the cell membrane.

Furthermore IDI is less demanding with respect to the biophysical

and geometrical properties of the FD-cell, because in DDI the very

simple approximation of the model FD-cell operates sufficiently

well only for very large synaptically controlled conductance. Only

additional biophysical and geometric assumptions may – if at all -

improve DDI in this respect.

Prediction to distinguish indirect and direct inhibition
electrophysiologically

The two distributed models might be directly distinguished by

experimental analysis. Due to an indirect inhibition the overall

conductance of the FD-cell should decrease with increasing object

size. The overall conductance depends, apart from the leak

conductance, on the excitatory synaptic conductances. Therefore,

a decreasing cellular response with increasing object size is

predicted to lead to a decreasing overall conductance. In the case

of direct inhibition of the FD-cell however, motion in the receptive

field would also lead to an opening of inhibitory ion channels in

the FD-cell dendrite. With increasing object size, the inhibitory

currents are predicted to overcompensate the excitatory input

currents. Thus, in the case of a direct inhibition, the overall

conductance of an FD-cell should increase with increasing object

size, in contrast to an indirect inhibition.

Open problems
Despite the good overall agreement of the models based on

distributed inhibition and the experimental data, there are some

differences for spatially extended objects and at high velocities.

The difference obtained for large objects may be caused by the

very simplistic receptive field structure of the model cells. In the

models we assumed the same sensitivity across the entire receptive

field, although the sensitivity of real cells building the circuit

declines towards the receptive field edges [21,50]. Therefore, more

realistic receptive field structures may improve some details of the

model performance. Moreover, the receptive fields of both the

model FD-cells and of the inhibitory element had the same size,

whereas the inhibitory vCH-cells in real flies have a considerably
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Figure 11. Consequences of the width of spatial dendritic
blurring for small-field tuning of the FD-cell. Response of an FD-
cell modelled according to IDI, but with linear synaptic transmission
functions (see equation 9), as a function of object size. Parameter is the
width of the filter mimicking the spatial blurring of the retinotopic input
signal in the dendrite of the inhibitory element. With increasing width
of the spatial filter, a preference for small objects emerges. The spatial
width of the filter determines the optimal object size. If the filter width
gets too large, the preference for small objects vanishes and for an
infinite filter width the preference for small objects is completely lost
(grey dashed line).
doi:10.1371/journal.pone.0003092.g011
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larger receptive field extending even into the contralateral visual

field [32,50].

Two aspects may be responsible for the difference of the

model performance and the experimental data at high velocities.

(1) Velocity coding by biological motion detectors, as found in

the fly visual system, is not linear [51]. The movement detector

output first increases with increasing velocity, reaches an

optimum and then decreases again. (2) The deviations between

experimental and model results at high velocities may also result

from the assumption of point symmetric synaptic functions. The

synaptic functions may have been optimised to fit the data

primarily at low velocities, since there are more data points

corresponding to low velocities than data points at high

velocities, resulting in a undesirable deviations at high velocities.

These issues need to be tested on the basis of more elaborated

model versions.

Similarity to lateral inhibition
Spatial blurring of the retinotopic input resulting from dendritic

signal spread in the inhibitory neuron is restricted to the

neighbourhood of an activated input element. This is also true

for the mechanism of lateral inhibition. A lateral inhibition circuit

and the IDI model also show a structural similarity. In the case of

lateral inhibition, a layer of interneurons is laterally inhibited by

neighbouring input elements (fig. 12). Assuming appropriate

parameter settings, the sum over the interneuron’s activation

shows a preference for small objects. In the IDI circuit, the layer of

interneurons is replaced by a neuron with a dendritic output

region that spatially blurs the retinotopic input signal. This signal

then inhibits the input elements of the circuit’s output neuron in a

spatially distributed fashion. Hence, the mechanism of IDI is, to

some extent, reminiscent of a lateral inhibition network. This

functional similarity between the indirect distributed inhibition

circuit and the lateral inhibition network suggests that sensory or

perceptual phenomena that are conventionally be explained by

lateral inhibition may be also accounted for in an alternative way.

A classical example is the perceptual enhancement of contrast

borders (often referred to as Mach bands [52,53]). Whether a

distributed dendritic interaction like the one presented with the

IDI model is able to account in detail for this kind of phenomena

needs to be tested.
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