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BACKGROUND: Lamins are intermediate filament proteins that form a major component of the nuclear lam-
ina, a protein complex at the surface of the inner nuclear membrane. Numerous clinically diverse condi-
tions, termed laminopathies, have been found to result from mutation of LMNA. In contrast, coding or loss
of function mutations of LMNB1, encoding lamin B1, have not been identified in human disease. In mice,
polymorphism in Lmnb1 has been shown to modify risk of neural tube defects (NTDs), malformations of the
central nervous system that result from incomplete closure of the neural folds. METHODS: Mutation analysis
by DNA sequencing was performed on all exons of LMNB1 in 239 samples from patients with NTDs from
the United Kingdom, Sweden, and United States. Possible functional effects of missense variants were ana-
lyzed by bioinformatics prediction and fluorescence in photobleaching. RESULTS: In NTD patients, we iden-
tified two unique missense variants that were predicted to disrupt protein structure/function and represent
putative contributory mutations. Fluorescence loss in photobleaching analysis showed that the A436T vari-
ant compromised stability of lamin B1 interaction within the lamina. CONCLUSION: The genetic basis of
human NTDs appears highly heterogenous with possible involvement of multiple predisposing genes. We
hypothesize that rare variants of LMNB1 may contribute to susceptibility to NTDs. Birth Defects Research
(Part A) 97:398–402, 2013. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Lamins are intermediate filament proteins that are key
components of the nuclear lamina, a meshwork of lamin
polymers and lamin-binding proteins that underlies the
inner nuclear membrane (Capell and Collins, 2006;
Gruenbaum et al., 2005; Worman et al., 2009). LMNA
encodes lamin A and C (A-type lamins), while the B-
type lamins are encoded by LMNB1 (lamin B1) and
LMNB2 (lamins B2 and B3).

Genomic duplication of LMNB1 causes adult-onset
autosomal dominant leukodystrophy, a progressive
demyelinating disorder (Padiath et al., 2006; Schuster
et al., 2011). However, coding or loss-of-function muta-
tions of LMNB1 have not yet been identified in human
disease. This is in marked contrast to LMNA, mutation of
which results in several clinically distinct diseases,
termed laminopathies. These include progeria syndromes

(e.g., Hutchinson-Gilford progeria syndrome and Atypi-
cal Werner syndrome), muscular dystrophy disorders
(e.g., Emery-Dreyfus muscular dystrophy), lipodystro-
phies, and Charcot-Marie-Tooth disease type 2B1, a pe-
ripheral neuropathy (Capell and Collins, 2006; Worman
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et al., 2010). Mutations in LMNB2 may also contribute to
acquired partial lipodystrophy (Hegele et al., 2006).

A role for B-type lamins in nervous system develop-
ment was indicated by the finding of neuronal migration
defects and consequent cortical abnormalities in Lmnb1
and Lmnb2 knockout mice (Coffinier et al., 2010; Coffinier
et al., 2011), while forebrain-specific Lmnb1/Lmnb2 double
mutants exhibit cortical atrophy. A possible requirement
for lamin B1 function in early development of the central
nervous system was recently highlighted by the identifi-
cation of Lmnb1 as a possible modifier gene for neural
tube defects (NTDs) in mice (De Castro et al., 2012). A
polymorphic variant of Lmnb1 was found to be present
on the genetic background of the curly tail strain, in
which embryos develop partially penetrant spinal and
cranial NTDs due to incomplete closure of the neural
tube. This variant (Deletion 18: 56909394) contains a se-
ries of eight instead of nine glutamic acid residues in the
C-terminal domain of the protein, leading to increased
mobility in the lamina. There was a corresponding
increase in numbers of dysmorphic nuclei and premature
senescence in fibroblasts expressing the variant lamin B1
(De Castro et al., 2012), reminiscent of the cellular pheno-
type of Lmnb1 null fibroblasts (Vergnes et al., 2004). The
principal genetic cause of NTDs in the curly tail strain is
homozygosity for a hypomorphic allele of grainyhead-like-
3 (Grhl3) (Gustavsson et al., 2007). However, breeding
the wild-type Lmnb1 onto the curly tail strain background
resulted in a threefold reduction in the frequency of
spina bifida and exencephaly (De Castro et al., 2012).

In the current study, we investigated a possible role
for LMNB1 mutation in human NTDs, which are among
the most common birth defects, affecting around 1 per
1000 pregnancies worldwide, with higher rates in some
regions. Elucidation of the causes of NTDs is problematic
owing to their complex, multifactorial etiology and
largely sporadic nature (Bassuk and Kibar, 2009; Greene
et al., 2009). The defining feature of NTDs, such as spina
bifida and anencephaly, is the failure of closure of the
neural tube during embryonic development (Copp and
Greene, 2010). This process is dependent on coordinated
shaping, bending, and fusion of the neural folds (Greene
and Copp, 2009). The sensitivity of these events to
genetic disruption is exemplified by the fact that individ-
ual mutation of more than 200 different genes has been
found to result in NTDs in mice (Copp et al., 2003; Har-
ris and Juriloff, 2007; Harris and Juriloff, 2010).

Several lines of evidence indicate that there is a genetic
component in human NTDs, the clearest indication being the
progressive increase in recurrence risk following affected
pregnancies (Harris and Juriloff, 2007). Susceptibility to NTDs
is also influenced by environmental factors. These include
maternal diabetes or use of anti-epileptic medication, which
are known to exacerbate risk, or maternal use of folic acid
supplements, which is protective. Identification of these risk
factors provided impetus for extensive analysis of genes
related to glucose and folate metabolism in the causation of
NTDs. Associations have been reported between genes
involved with glucose metabolism and susceptibility to spina
bifida (Davidson et al., 2008; Lupo et al., 2012). Several genes
related to folate metabolism have also shown associations
with risk of NTDs (reviewed by Boyles et al., 2005; Blom
et al., 2006; Greene et al., 2009; Shaw et al., 2009). In addition
to association studies, sequencing analysis has been per-
formed on numerous candidate genes, implicated either by

known environmental risk factors in humans or by the pres-
ence of NTDs in mouse models. For example, loss of function
mutations in components of the glycine cleavage system, a
constituent of mitochondrial folate metabolism, have been
identified in NTD patients and disruption of the glycine
cleavage system through knockout of Amt also causes NTDs
in mice (Narisawa et al., 2012). Loss of function mutations in
genes encoding components of the noncanonical Wnt
signaling pathway (planar cell polarity pathway) causes cra-
niorachischisis in mice, and predisposes to spina bifida or
anencephaly in some digenic models (reviewed in Greene
et al., 2009; Juriloff and Harris, 2012). Analysis of planar cell
polarity genes in humans has revealed mutations in SCRIB
and CELSR1 in craniorachischisis cases (Robinson et al.,
2012), while mutations in VANGL1, VANGL2, CELSR1, and
FZD6 have also been identified in spina bifida and anence-
phaly cases (Kibar et al., 2007; Kibar et al., 2009; Lei et al.,
2010; Allache et al., 2012; De Marco et al., 2012). To date, no
individual gene has been found to be mutated in a more than
a small percentage of NTD patients, supporting the idea of
wide genetic heterogeneity. Nevertheless, these studies en-
courage the view that mouse models provide insight into the
genetic etiology of human NTDs.

MATERIALS AND METHODS
Patient Cohorts and Sequencing

Mutation analysis by DNA sequencing was performed
on all exons of LMNB1 (accession no. L37737.2; HGNC:
6637). Cases comprised a total of 239 samples from patients
with NTDs collected, with ethical permission, in the United
Kingdom (n 5 65; Newcastle upon Tyne Hospital, Queen
Charlotte’s and Chelsea Hospital, Great Ormond Street
Hospital for Sick Children), Sweden (n 5 76; Karolinska
University Hospital), and the United States (n 5 98; North-
western University, Children’s Memorial Hospital, Illinois
and Greenwood Genetics Center, South Carolina). In the
majority of cases, the phenotype was open spina bifida
(myelomeningocele; n 5 233), with a few cases of anence-
phaly (n 5 3) and encephalocele (n 5 3). Exons containing
missense variants were also sequenced in a cohort of 192
well-characterized U.K. controls (Apostolidou et al., 2007)
and a cohort of 184 Swedish controls.

Sequencing

Genomic DNA fragments spanning exons and exon–
intron boundaries of LMNB1 were amplified by PCR (11
exons, 1758-bp open reading frame). Purified PCR prod-
ucts were sequenced using big dye terminator chemistry
(Applied Biosystems) and analyzed on a 3100 Genetic
Analyzer (ABI). Sequence reads derived from both
strands were assembled, aligned, and analyzed for nucle-
otide differences using Sequencher v4.8 (GeneCodes).
Unique variants were checked by repeat PCR and re-
sequencing. Variants were assessed for frequency in the
Exome Variant Server (National Heart, Lung, and Blood
Institute GO Exome Sequencing Project [ESP]; Seattle,
WA; http://evs.gs.washington.edu/EVS/; data release
ESP6500, November 2012).

Bioinformatic Analysis

The predicted effect of amino acid variants on protein
structure/function was assessed using PolyPhen-2

LAMIN B1 AND NEURAL TUBE DEFECTS 399

Birth Defects Research (Part A) 97:398–402 (2013)



(v2.2.2r398) and potential effects on splicing were pre-
dicted using Alamut software (v2.0). Lamin B1 protein
sequences from multiple species were aligned using Mul-
tAlin software (Corpet, 1988). The aligned sequence was
used to model the secondary structure and relative acces-
sibility of residues in the globular tail domain (PDB ID
3UMN: residues 428–550) using tools in ESPript v2.2
(Gouet et al., 1999) and the protein data bank
(www.pdb.org). Prediction of the effect of amino acid
variants on local phosphorylation sites was performed
using GPS2.1.

Fluorescence Loss in Photobleaching

Constructs were generated in the pcDNA3.1 vector by
standard cloning methods, to express fusion proteins
composed of a nuclear localization signal, yellow
fluorescent protein, and 200 amino acids of the lamin B1
C-terminal region. Missense variants were introduced by
site-directed mutagenesis. Plasmids were transfected into
HeLa cells and fluorescence loss in photobleaching was
performed as described previously (Malhas et al., 2009).
In brief, a region of interest was photobleached at full
laser power while scanning at 4% laser power elsewhere.
For quantitative analysis, background intensity was sub-
tracted, and intensities of a specific region of interest out-
side the photobleached area were measured over time
and normalized using intensities of an region of interest
in a transfected but nonbleached cell.

RESULTS

Exon sequencing of LMNB1 revealed several variants
in NTD patients (Fig. 1), each of which was present in
heterozygous form. Variants included five synonymous
and three nonsynonymous alterations. Four of the synon-
ymous variants corresponded to known single nucleotide
polymorphisms and one, c.213C>T (R71R), had not pre-
viously been reported in public variant databases. Three
of the synonymous variants were present in two or more
patients (24/239 in the case of rs3749830) and the other
two, including the previously unreported variant, were
only detected in single individuals.

Three nonsynonymous (missense) alterations were
detected. Among these A501V corresponds to a previ-
ously reported single nucleotide polymorphism,
rs36105360, and was detected in nine patients. In con-
trast, the two other variants A436T and D448G were
each detected in only one individual, one with spina
bifida and one with anencephaly. Neither variant was
present in 376 controls (752 chromosomes), the single nu-
cleotide polymorphisms database (dbSNP), or in the
National Heart, Lung, and Blood Institute Exome
Sequencing Project/Exome Variant Server Database.
Alignment of protein sequences revealed that the alanine
(A436) and aspartic acid (D448) residues found to vary
in NTD patients are highly conserved (in human, chim-
panzee, macaque, mouse, rat, dog, chick, frog, and zebra
fish). Bioinformatics analysis indicated that the

Figure 1. LMNB1 sequence variants identified in neural tube
defect (NTD) patients. (A) Schematic diagram of lamin B1 protein
structure shows the head and tail domains that mediate polymer
assembly and the central rod, comprising coiled-coli domains (1A,
1B, and 2). A nuclear localization signal (NLS) is present in the
tail domain. The positions of missense variants identified among
patients are indicated. (B) Sequencing of LMNB1 (NM_005573.2
used as reference sequence) in 239 NTD patients revealed eight
different variants (five synonymous and three nonsynonymous)

present in heterozygous form in a total of 48 individuals (2
patients carried two heterozygous variants). None of the variants
were predicted to affect splicing. Two variants were present in
NTDs but not in 376 controls sequenced in this study or in the
Exome Variant Server database. Frequency of previously reported
variants in the Exome Variant Server database were rs3749830,
C5700/T512,306; rs34224885, A5355/G512,651; rs61726489,
C555/T512,951; rs36105360, T5252/C512,754; rs6875053,
A5527/G512,479.
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polymorphic A501V change is predicted to be a “benign”
variant, whereas the A436T and D448G variants, which
were unique to NTDs, are both predicted to be “probably
damaging.” Both variants are located in the globular tail
domain of the lamin B1 protein, residues 428 to 550 (Fig.
1A). In silico modeling of the secondary structure of the
tail domain suggests that A436 is a surface residue and
D448 is partially buried (data not shown). A436T lies in
an area rich in serine/threonine potential phosphoryla-
tion sites. Bioinformatics prediction of the effect of the
A436T variant on local phosphorylation sites (using
GPS2.1) indicates possible effects on the phosphorylation
of S431, S433, and S437. D448 lies 10 amino acid residues
from the closest predicted phosphorylation sites (T439
and T459), and the D448G variant is not predicted to
affect their modification.

To further examine the possible functional effects of
the missense variants identified in NTD patients, we
used fluorescence loss in photobleaching to analyze their
effect on lamin B1 stability in the nuclear lamina. This
approach relies on photobleaching of fluorescently
tagged proteins in one area of the nuclear lamina and
monitoring of loss of fluorescent intensity in an adjacent
unbleached area as proteins relocate within the lamina.
Fusion proteins comprising a nuclear localization
sequence, yellow fluorescent protein, and the 200 C-ter-
minal residues of lamin B1 (Fig. 2A) were expressed in
HeLa cells, as previously performed (Malhas et al., 2007).
All of the variant proteins localized to the nuclear enve-
lope as observed for the wild-type protein (Fig. 2B).
However, following photobleaching, there was a more
rapid decline in fluorescence intensity in the unbleached
area of membrane in cells expressing the A436T variant
compared with wild-type (Fig. 2C). This behavior is in-
dicative of increased mobility (Malhas et al., 2007) and,
hence, decreased stability of interaction of the A436T var-
iant within the nuclear envelope. Neither D448G nor
A501V showed a significant difference in the decline in
signal intensity to the wild-type protein (Fig. 2C).

DISCUSSION

Pinpointing the genetic basis of NTDs is particularly chal-
lenging owing to their multigenic inheritance and potential
influence of environmental factors. Thus, unlike many NTD
mouse models in which defects arise in homozygous null
embryos, NTDs in humans rarely show Mendelian inheri-
tance. It appears likely that a defect in a given individual
may arise from summation of two or more factors that are
individually insufficient to cause NTDs. Where putative
contributory mutations have been identified, for example in
genes of the planar cell polarity pathway or glycine cleav-
age system, they are present in heterozygous form and,
where evaluated, have usually been found to be inherited
from an unaffected parent (reviewed by Narisawa et al.,
2012). This suggests that these NTD patients also carry vari-
ant alleles in other genes, consistent with the multigenic
threshold model of inheritance of NTDs (Harris and
Juriloff, 2007). We propose that LMNB1 may represent one
such “susceptibility” gene in which rare variants contribute
to NTD predisposition in some individuals.

Whereas only a small proportion of NTD patients
exhibited putative mutations in LMNB1, two missense
variants were unique to NTD patients and both were
predicted to be damaging. We could not determine

whether the mutations arose de novo, as parental sam-
ples were not available. In the case of A436T, we also
found a direct effect of the variant, compromising the
stability of the protein’s interaction in the nuclear lamina.
Such an effect was also observed for the variant found to
increase susceptibility to NTDs in mice (De Castro et al.,
2012). Lamins have multiple functions in the nuclear en-
velope and influence a variety of cellular properties.
There is a structural role of lamins in assembly and
maintenance of the nuclear envelope, nuclear shape, and
anchoring of nuclear pore complexes (Hutchison, 2002;
Dechat et al., 2008). Lamin B1 has additional functions in
DNA synthesis and transcriptional regulation, mediated
through interactions with both chromatin and transcrip-
tion factors (Malhas et al., 2007; Malhas et al., 2010;
Mekhail and Moazed, 2010). Dysregulation of cellular
proliferation and/or transcriptional regulation both rep-
resent potential mechanisms by which impairment of
lamin B1 function could impact on neural tube closure.

In summary, we hypothesize that mutations in LMNB1
may contribute to susceptibility to NTDs in a subset of
patients. Although the majority of cases analyzed in the

Figure 2. Functional analysis of lamin B1 missense variants by
fluorescence loss in photobleaching. (A) HeLa cells were trans-
fected with constructs expressing fusion proteins comprising a
nuclear localization signal, yellow fluorescent protein (YFP), and
the C-terminal 200 amino acids of lamin B1, which corresponds
to the tail domain. (B) The wild-type and mutant fusion proteins
all localize to the nuclear lamina. (C) FLIP analysis showed simi-
lar loss of signal intensity in the lamina of cells expressing
fusion proteins with the wild-type lamin B1 sequence and the
D448G or A501V variants. The A436T variant showed a signifi-
cantly greater decline in signal intensity (P< 0.01; t-test), indicat-
ing greater mobility in the nuclear lamina. Scale bar 5 5 lm.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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current study were spina bifida, we note that one of the
mutations was present in a patient with anencephaly
(cranial NTDs), suggesting that further analysis of
LMNB1 may be particularly worthwhile in this group of
NTDs. Identification of susceptibility genes for NTDs
will assist in understanding the genetic basis of NTDs in
affected families and may inform development of possi-
ble preventive approaches.
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