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Graphical Abstract

Our analysis showed a landscape of lysine acetylation in HCC. And we clearly
identified significantly altered acetylated sites in normal, paracancerous and
HCC liver tissues and validated the clinical significance of three histone acetyla-
tion sites using an independent cohort.
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Abstract
Lysine acetylation (Kac) as an important posttranslational modification of his-
tones is essential for the regulation of gene expression in hepatocellular carci-
noma (HCC). However, the atlas of whole acetylated proteins inHCC tissues and
the difference in protein acetylation between normal human tissues and HCC
tissues are unknown. In this report, we characterized the proteome and acetyl
proteome (acetylome) profile of normal, paracancerous, and HCC liver tissues
in human clinical samples by quantitative proteomics techniques. We identified
6781 acetylation sites of 2582 proteins and quantified 2492 acetylation sites of 1190
proteins in normal, paracancerous, and HCC liver tissues. Among them, 15 pro-
teins weremultiacetylated withmore than 10 lysine residues. The histone acetyl-
transferases p300 and CBP were found to be hyperacetylated in hepatitis B virus

Abbreviations: ACN, acetonitrile; AGC, automatic gain control; BP, biological process; CC, cellular component; FA, formic acid; FC, fold change;
FDR, false discovery rate; GLUD1, glutamine synthetase 1; GO, Gene Ontology; HAT, histone acetyltransferase; HBV, hepatitis B virus; HBX, HBV X
protein; HCC, hepatocellular carcinoma; IHC, immunohistochemistry; Kac, lysine acetylation; KEGG, Kyoto Encyclopedia of Genes and Genomes;
LIHC, Liver Hepatocellular Carcinoma; MF, molecular function; PBS, phosphate-buffered saline; PPI, protein–protein interaction; PTM,
posttranslational modification; TCA, trichloroacetic acid; TCGA, The Cancer Genome Atlas; TEAB, triethylammonium bicarbonate; TMA, tissue
microarray; TMT, tandem mass tag; WB, western blotting
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pathway. Moreover, we found that 250 Kac sites of 214 proteins were upregulated
and 662 Kac sites of 451 proteins were downregulated in HCC compared with
normal liver tissues. Additionally, the acetylation levels of lysine 120 in histone
H2B (H2BK120ac), lysine 18 in histone H3.3 (H3.3K18ac), and lysine 77 in his-
tone H4 (H4K77ac) were increased in HCC. Interestingly, the higher levels of
H2BK120ac, H3.3K18ac, and H4K77ac were significantly associated with worse
prognosis, such as poorer survival and higher recurrence in an independent clin-
ical cohort of HCC patients. Overall, this study lays a foundation for understand-
ing the functions of acetylation in HCC and provides potential prognostic factors
for the diagnosis and therapy of HCC.
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1 INTRODUCTION

Hepatocellular carcinoma (HCC) is the fourth most com-
mon tumor in the world.1 The occurrence and develop-
ment of HCC are mainly caused by cirrhosis, hepatitis
B virus (HBV), or hepatitis C virus infection. The inci-
dence of HBV-related HCC accounts for nearly 85% of
HCC patients in China.2 Lysine acetylation (Kac) is a
posttranslational modification (PTM) that is critical for
gene expression and plays an important role in chromatin
remodeling, transcription factor activity, and metabolic
enzyme activity.3 A number of acetylation studies related
to cancer have been reported. For instance, hyperacety-
lation of mitochondrial proteins in kidney cells affects
metabolic and antioxidant processes.4 The acetylome in
colorectal cancer exhibits differential regulation in pri-
mary and distant metastatic tumors.5 The acetylation of
proteins in the mouse liver correlates with the circa-
dian and feeding rhythms, and the overrepresented mito-
chondrial acetylated proteins were regulated by rhythms
and depend on NAD+-dependent SIRT3 deacetylation.6
However, the acetylome atlases in HCC, paracancerous,
and normal liver tissues are unknown, which hampers
the understanding of acetylation role in HCC pathology.
Recently researches reported a tandem mass tag (TMT)-
labeling acetylome for human HCC and normal tissues,7
but the number of Kac proteins and sites was lower than
ours. Acetyl-CoA is the key central metabolite and the
donor of the acetyl group in protein acetylation. Changes
of cellular acetyl-CoA levels regulate histone and nonhis-
tone acetylation. For example, the acetyl-CoA thioesterase
12 regulates acetyl-CoA metabolism, and histone acetyla-
tion promotes HCC metastasis by epigenetic induction of
epithelial–mesenchymal transition.8 These findings sug-
gest that acetylation may play a critical role in HCC devel-

opment and recurrence, and associate with the prognosis
of HCC.
In this study, we analyzed the changes of protein acety-

lation level in hepatitis B-related HCC and normal liver
tissues of clinical samples using label-free and TMT-
labeling quantification proteomics. More than 1000 acety-
lated lysine residues were identified, and most of them
were hyperacetylated. The acetylation level of some Kac
sites (such as histones) showed significant differences
between HCC and normal liver tissues. Based on the
western blotting (WB) and immunohistochemistry (IHC)
results of an independent cohort of HCC patients, we
demonstrated that lysine 120 in histone 2B (H2BK120ac),
lysine 18 in histone H3.3 (H3.3K18ac), and lysine 77 in his-
tone H4 (H4K77ac) were significantly associated with sur-
vival of HCC patients. More interestingly, the H4K77ac
was associated with HCC recurrence. This indicates that
H2BK120ac, H3.3K18ac, and H4K77ac may be potential
prognostic factors for HCC. Our data provides a land-
scape of acetylation in HCC and establishes the potential
of acetylation sites as prognostic factors of HCC.

2 MATERIALS ANDMETHODS

2.1 Patients and follow-up

All patients involved in our research were HBV infected.
Fresh tumor samples were taken from areas adjacent to
the tumor margins from consecutive patients with HBV-
related HCC who underwent curative resection in 2016
at the Liver Cancer Institute, Zhongshan Hospital, Fudan
University. A total of two normal liver tissues from two
patients and three paired paracancerous and HCC tis-
sues from the other three patients were used for total
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proteome and acetylome quantification by label-free quan-
titative proteomics. Three paired paracancerous and HCC
tissues from three patients were used for TMT labeling
quantification (Table S1). A cohort of 135 HCC patients
were randomly selected from consecutive patients who
underwent curative resection from May 2012 to May
2013. Clinicopathological characteristics were defined as
described previously.9 Ethical approval was obtained from
the Research Ethics Committee of Zhongshan Hospi-
tal, Fudan University. A signed informed consent was
obtained from each patient. The follow-up data were sum-
marized at the end of December 2018, with a median
follow-up of 59 months (range: 7–73 months). Follow-up
procedures were described in our previous study.9

2.2 Cell lines

The HCC cell line HepG2 (American Type Culture Col-
lection) and the human liver cell line L02 (Cell Bank of
the Chinese Academy of Sciences) were maintained in
DMEM supplemented with 10% fetal bovine serum and 1%
penicillin–streptomycin at 37◦C with 5% CO2.

2.3 Protein extraction

Samples were ground into powder with liquid nitrogen,10
then transferred to a 5-mL centrifuge tube. Then the
samples were sonicated in lysis buffer (8 M urea, 1%
Triton-100, 65 mM dithiothreitol [DTT, Sigma], and 0.1%
Protease Inhibitor Cocktail III) three times on ice using
a high-intensity ultrasonic processor (Scientz). Debris
was removed by centrifugation at 20,000 × g at 4◦C for
10 min. Finally, the proteins were precipitated with 15%
cold trichloroacetic acid (TCA) for 2 h at –20◦C. After
centrifugation at 4◦C for 10 min, the supernatant was
discarded. The precipitates were washed three times with
cold acetone. The protein pellets were redissolved in 8 M
urea in 100 mM triethylammonium bicarbonate (TEAB)
(pH 8.0) (Sigma–Aldrich, Saint Louis, USA). The protein
concentration was determined with 2-D Quant kit (GE
Healthcare) according to the manufacturer’s instructions.

2.4 Protein digestion

The proteins in 8 M urea in 100 mM TEAB buffer were
reducedwith 10mMDTT for 1 h at 37◦C and alkylatedwith
20 mM iodoacetamide (Sigma) for 45 min at room temper-
ature in darkness. The alkylated solution was diluted by
adding 100 mM TEAB until the urea concentration was
below 2 M. Proteins were digested overnight with mod-
ified porcine trypsin (Promega, Madison, USA) at a pro-
tease/substrate ratio of 1:50 (w/w), followed by a second

HIGHLIGHT

∙ Acetylome in normal, paracancerous, and HCC
liver tissues

∙ HSPD1, HADHA, CPS1, GLUD1, and ADH1B
were multiacetylated with more than 10 lysine
sites

∙ Hyperacetylation of p300 and CBP inHCC com-
pared with paracancerous tissues

∙ Higher levels of H2BK120ac, H3.3K18ac, and
H4K77ac were associated with worse prognosis

round digestion for 4 h with trypsin at a protease/substrate
ratio of 1:100 (w/w). Tryptic peptides were desalted by
Strata X C18 SPE column (Phenomenex) and vacuum-
dried for TMT labeling and label-free quantification.

2.5 TMT labeling

The lyophilized peptides were solubilized in 0.5 M TEAB
and 6-plex TMT labeling was performed according to
the manufacturer’s protocol of the kit (Thermo Scien-
tific, 90068, Waltham, USA). Briefly, one unit of the TMT
reagent (defined as the amount of reagent required to label
100 μg of protein) was thawed and reconstituted in ace-
tonitrile (ACN). The peptides of different labeling were
then incubated for 2 h at room temperature and pooled,
desalted, and dried by vacuum centrifugation. Samples A1,
A2, B1, B2, C1, and C2 were labeled by TMT reagents 126,
127,128, 129, 130, and 131, respectively.

2.6 High-performance liquid
chromatography fractionation

The TMT-labeling peptides were fractionated by high-pH
reverse-phase high-performance liquid chromatography
using an Agilent 300Extend C18 column (5 μm particles,
4.6 mm ID, 250 mm length). First, the peptides were sepa-
rated into 80 fractions with a gradient ramping from 2% to
60% mobile phase B (100% ACN, conditioned with 10 mM
ammonium bicarbonate [pH 10]) over 80 min. Next, small
fractions were combined into eight major fractions and
dried by vacuum centrifugation.

2.7 Enrichment of the acetylated
peptides by immunoaffinity precipitation

To enrich lysine-acetylated peptides, 3 μg TMT-labeled
peptides of each fraction and 1.5 mg label-free peptides
of each samples were dissolved in 300 μL NETN buffer
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(100 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl, 0.5% NP-
40, pH 8.0). The peptides were incubated with 20 μL pre-
washed antibody beads (cat no: PTM-104, Jingjie PTM
BioLabs, Hangzhou, China) at 4◦C overnight with gen-
tle shaking. The beads were then washed four times with
NETN buffer and twice with ddH2O. Next, the bound pep-
tides were eluted from the beads using 0.1% trifluoroacetic
acid. Then the eluted peptides were lyophilized using a
lyophilizer. Finally, the resulting peptides were desalted
with C18 ZipTips (Merck Millipore, USA) according to the
manufacturer’s instructions.

2.8 LC–MS/MS analysis of the label-free
peptides

For label-free experiments, the peptides from total pro-
tein digestion or acetylated-peptide enrichment were dis-
solved in 0.1% formic acid (FA) and analyzed by online
nanoAcquity ultraperformance LC (Waters, Milford, MA,
USA) coupled with an Orbitrap Fusion Tribrid mass
spectrometer (Thermo Fisher Scientific, Waltham, MA,
USA). Nanospary was controlled by a PicoViewNanospray
Source (PV550; New Objective, Woburn, MA, USA) at a
spray voltage of 1.9 kV. The peptides were concentrated
using a 2G-V/MT Trap symmetry C18 column (5 μm parti-
cles, 180 μm ID × 20 mm length) at a flow rate of 5 μL/min
for 3 min. The concentrated peptides were further sepa-
rated on a BEH130 C18 analytical column (1.7 μm parti-
cles, 100 μm ID × 250 mm length) at a flow rate of 250
nL/min. Peptides were eluted from the analytical column
using a 90 min and 3 min linear gradient of 3%–85% ACN
in 0.1% FA. Data-dependent MS/MS acquisition was per-
formed following a full MS survey scan by Orbitrap at
a resolution of 60,000 over the m/z range of 300–2000.
The top 20 most intense precursor ions were subjected to
MS/MSmeasurements. The target values of automatic gain
controls (AGCs) were set as 200,000 for Orbitrap MS and
10,000 for ion-trap MS/MS detection. The fragmentations
of the selected multiply charged ions were achieved using
helium gas and argon at a normalized collision energy
of 35% for higher energy collisional dissociation fragmen-
tation. Dynamic exclusion was enabled for 60 s. Singly
charged or charge-unassigned ions were excluded from
MS/MS analysis. The peptides used for total proteome
quantification were analyzed using the samemethodology
as above.

2.9 LC–MS/MS analysis of the
TMT-labeled peptides

For TMT labeling samples, the enriched lysine-acetylated
peptides were dissolved in 0.1% FA and concentrated using

a reverse-phase precolumn (Acclaim PepMap 100 C18;
metric: 75 μm i.d. × 15 cm; particle size: 3 μm; pore size:
100 Å; type: nanoViper; cat no: 164568, Thermo Scientific).
The peptides were separated using a reverse-phase analyt-
ical column (Acclaim PepMap RSLC C18; metric: 50 μm
i.d. × 15 cm; particle size: 2 μm; pore size: 100 Å; type:
nanoViper; cat no: 164562, Thermo Scientific). The gradi-
ent was a linear increase from 7% to 20% solvent B (0.1% FA
in 98% ACN) over 24 min, 20% to 35% for 8 min, then a lin-
ear increase to 80% over 3 min, then maintenance at 80%
for the last 5 min. Flow rate was constant at 280 nL/min.
The fractionated peptides were ionized using a nanospray
source (NSI) and analyzed by Q Exactive™ Plus hybrid
quadrupole-Orbitrap mass spectrometer (Thermo Scien-
tific) coupled to theUPLC system. The electrospray voltage
appliedwas 2.0 kV. The precursor ionswere detected in the
Orbitrap at a resolution of 70,000. A data-dependent pro-
cedure that alternated between one MS scan followed by
20 MS/MS scans was applied for the top 20 precursor ions
above a threshold ion count of 2× 104 in theMS survey scan
with 30.0 s dynamic exclusion. MS/MS fragmentation was
performed using normalized collision energy fixed at 30.
The daughter ions were detected in the Orbitrap at a res-
olution of 17,500. AGC was used to prevent overfilling of
the ion trap; 5 × 104 ions were accumulated for generation
of MS/MS spectra. For MS scans, the m/z scan range was
350–1800. Fixed first mass was set as 100m/z.

2.10 Database searches of LC–MS/MS
data using MaxQuant

The resulting MS/MS data were processed using
MaxQuant with integrated Andromeda search engine
(v.1.4.1.2).11 The LC–MS/MS spectra were searched against
the human proteome (UP000005640, Swiss-Prot 20200629
release containing 75,069 sequences) concatenated with
a reverse decoy database. Trypsin/P was specified as
cleavage enzyme allowing up to four missed cleavages,
four modifications, and five charges per peptide. Mass
error was set to 10 ppm for precursor ions and 0.02 Da
for fragment ions. Carbamidomethylation on Cys was
specified as fixed modification and oxidation on Met,
Acetylation on Lys, and acetylation on protein N-terminal
were specified as variable modifications. False discovery
rate (FDR) thresholds for protein, peptide, and mod-
ification site were specified at 1%. Minimum peptide
length was set as 7. These common parameters were
used in label-free proteome, label-free acetylome, and
TMT-acetylome database searching analyses.
For acetylome identification (including label free and

TMT-6-plex quantification), the following additional set-
tings were used: Modified peptide score was set at >40.
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Only peptides with a site localization probability of >0.75
were retained. For total proteome identification, Kac was
set to variable modification. Unless specified in the above
common parameters, other searching parameters were set
by default.

2.11 Protein quantification and
differential expression analysis

For the label-free proteome and acetylome datasets, the
MaxQuant results were postprocessed using Perseus soft-
ware platform.12 The finally processed datasets were used
to calculate the fold change (FC) of acetylated sites or
proteins among normal (N), paracancerous (P), and HCC
(T) tissues. We calculated the FC of proteome and acety-
lome separately for paired groups (T vs. N, T vs. P, and P
vs. N). The FCs with <0.5 or >2 were defined as down-
or upregulation. The significance of FC was calculated
using the two-sided Student’s t test. Thus, for each com-
pared group, there are nine kinds of combination of dif-
ferential change between protein expression and acetyla-
tion level. We define this as a “Nine-Square scatterplot,”
which clearly reflects the relationship between site acetyla-
tion level and corresponding protein expression. For TMT
analyses, a FC of <0.77 or >1.3 with a p-value <0.05 was
considered as down- or upregulation.13

2.12 Western blotting

Logarithmically growing cells or tissue were washed twice
with ice-cold phosphate-buffered saline (PBS) and lysed
in RIRP lysis buffer (50 mM Tris-HCl [pH 7.4], 150 mM
NaCl, 1% NP-40, 0.1% SDS) containing protease inhibitor
cocktail. After sonication on ice, the cells or tissues lysates
were centrifuged at 12,000 × g for 20 min at 4◦C. The
supernatants were boiled for 10 min in the presence of β-
mercaptoethanol. The proteins were fractionated on 10%
sodiumdodecyl sulfate-polyacrylamide gel electrophoresis
and transferred onto nitrocellulose membrane. The mem-
brane was blocked in 5% dry milk-TBST (10 mM Tris-HCl
[pH 7.5], 150 mMNaCl, and 0.1% Tween 20) for 1 h at 37◦C.
The membrane was incubated overnight with the pri-
mary antibody (anti-H2BK120ac, PTM-111; anti-H3K18ac,
PTM-158; anti-H4K77ac, PTM-127; JingJie PTM Biolab,
Hangzhou, China) at a dilution of 1:2000 (v/v) in TBST
at 4◦C. Next, the membrane was washed three times with
TBST before incubating with the corresponding secondary
antibody for 1 h at 37◦C inTBST. Signals inmembranewere
visualized onX-ray filmusing an enhanced chemilumines-
cence detection system.

2.13 Tissue microarray and IHC

The tissue microarrays (TMAs) from an independent
cohort were used in our research. The TMAs were
constructed using 135 paired tumor–nontumor liver
tissues from the HBV-related HCC cohort using the
method described previously.14 In short, all cases were
histologically investigated by H&E staining. Then the
representative areas for detection were premarked on
the paraffin blocks, away from necrotic and hemorrhagic
regions. Duplicates of 1.5-mm-diameter cylinders from
two contrastive areas, HCC tumor center and adjacent,
were involved in each case, to ensure reproducibility and
homogeneous staining of the tissue slides.
IHC staining for histone modification sites was per-

formed on the TMAs as described previously.15–17 In brief,
USP7/TRIP12 staining was simultaneously examined by
two blinded, independent observers, and a consensus
score was reached for each core. The staining intensity
of USP7/TRIP12 was categorized into levels 0, 1, 2, and 3.
The percentage of USP7/TRIP12-positive cells was scored
as 0 (0%), 1 (1%–33%), 2 (34%–66%), and 3 (67%–100%).
In the case of differences between duplicate cores, the
higher score of the two tissues was taken as the final
score. The sum of the intensity and percentage score was
used as the final staining score. The staining pattern was
defined as follows: 0, negative; 1–2, weak; 3–4, moderate;
and 5–6, strong. Rabbit anti-acetyl-histone H2B (Lys120)
and anti-acetyl-histone H4 (Lys77) and mouse anti-acetyl-
histone H3 (Lys18) were diluted 1:2000 in PBS contain-
ing 1% Bovine serum albumin (BSA). The incubation with
the primary antibodies was performed at 4◦C overnight.
Nuclei were counterstained with hematoxylin. Immunos-
taining using the second antibodies and the signal detec-
tion were carried out using the protocol of the Ventana
automated staining platform (Ventana Medical System).

2.14 Acetylated protein annotation

Gene Ontology (GO) annotations of the human pro-
teins were retrieved from the UniProt-GOA database
(www.ebi.ac.uk/GOA). Protein domains of the identi-
fied Kac proteins were annotated using InterProScan
(www.ebi.ac.uk/interpro).18,19 Sequence motif was ana-
lyzed using iceLogo.20 The pathways enriched in the dif-
ferential expression proteins were identified using Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
by two-tailed Fisher’s exact test. The total identified pro-
teins were used as the background. Correction for mul-
tiple hypothesis testing was conducted using standard
FDR control methods. A p-value of <0.05 was considered

http://www.ebi.ac.uk/GOA
http://www.ebi.ac.uk/interpro
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TABLE 1 Top five multiacetylated proteins in the label-free acetylome

Protein N P T Total Description Gene
P10809 19 22 21 23 60 kDa heat shock protein, mitochondrial HSPD1
P40939 18 19 16 22 Trifunctional enzyme subunit alpha HADHA
P31327 14 21 17 22 Carbamoyl-phosphate synthase [ammonia] CPS1
P00367 14 14 11 16 Glutamate dehydrogenase 1, mitochondrial GLUD1
P00325 12 11 8 14 All-trans-retinol dehydrogenase [NAD(+)] ADH1B

Abbreviations: N, normal; P, paracancerous; T, HCC tissue.

significant. These pathways were classified into hierar-
chical categories according to the KEGG database infor-
mation. Similarly, a two-tailed Fisher’s exact test was
employed to evaluate the significance of each domain
identified. GO enrichment and KEGG pathway analysis
of publicly available transcriptome data were performed
using the clusterProfiler package in R (3.5.0).21 We also
analyzed the transcriptome in HCC patient using TCGA
(The Cancer Genome Atlas, https://www.cancer.gov/tcga)
databases through University of California Santa Cruz
(UCSC) Xena Public Data Hub (xena.ucsc.edu).22 Survival
analysis was performed using the survival package in R
(3.5.0).
The protein–protein interaction networks of the iden-

tified Kac proteins were analyzed using the STRING
database (http://string-db.org/).23 The threshold of inter-
action confidence was set as 0.7. The interaction net-
work was visualized using Cytoscape (version 3.6.1) and
stringApp.24,25 Protein structures from the Protein Data
Base were analyzed by pymol software.26

2.15 Statistical analyses

The nonparametric Wilcoxon’s signed-rank test was
applied to evaluate differential expression between paired
samples. Independence of the data was tested using a two-
tailed Fisher’s exact test and the chi-squared test.27 The
p < 0.05 was considered as significant. All statistical tests
were performed in R (3.5.0).

3 RESULTS

3.1 Profiles of Kac proteins and sites of
the normal, paracancerous and HCC liver
tissues

To investigate the Kac atlas of HCC, the lysine acetyl pro-
teomics (acetylome) of hepatitis B-related HCCs, para-
cancerous tissues, and normal liver tissues were analyzed
using label-free quantitative proteomic techniques (Fig-
ure 1A). A total of 1232 Kac sites from 424 proteins were

identified and quantified in label-free proteomic analysis
(Table S2). Most Kac proteins contained one or two lysine
residues, whereas 21 Kac proteins had ≥10 Kac sites (Fig-
ure 1B). To understand the significance of acetylation in
HCC tissues, we also compared the changes of protein lev-
els in hepatitis B-related HCC, paracancerous, and normal
liver tissues. (Tables S3 and S4). Among the 424 quantified
Kac proteins, HSPD1, HADHA, CPS1, GLUD1, andADH1B
were multiacetylated (Table 1; Figures S1A and S1C). The
acetylation levels of several histones, including histone
H2B type 1-K, H3.3, andH4, were increased inHCC tissues
(Figures S1B and S1D). In addition, 1057 lysine residues in
383 proteinswere found to be acetylated in normal liver tis-
sue samples. There were 88 (8.3%) unique Kac sites in nor-
mal liver tissue samples (Figure 1C). There are acetylated
proteins in common among the three tissues, but differ in
acetylation abundance. This result indicates that these dif-
ferential Kac proteins may be associated with the patho-
physiological process of HCC.
To analyze the functions or cellular distribution of

the 424 Kac proteins, we performed the biological pro-
cess (BP), molecular function (MF), cellular component
(CC), and KEGG pathway enrichment analyses based on
the GO annotation (Figure 2). BP enrichment analysis
revealed that these Kac proteins were enriched in cell–cell
adhesion, fatty acid beta-oxidation, oxidation–reduction
process, metabolic process, and tricarboxylic acid cycle
(Figure 2A). MF analysis showed that these Kac proteins
were associatedwith poly(A)RNAbinding, focal adhesion,
and oxidoreductase activity. CC analysis indicated that
these Kac proteins were mainly localized in extracellular
exosomes, mitochondria, and cytosol. KEGG pathway
analysis suggested that these Kac proteins were signifi-
cantly associated with liver metabolism-related pathways,
including “carbon metabolism,” “valine, leucine, and
isoleucine degradation,” “Glycolysis/Gluconeogenesis,”
“Biosynthesis of amino acids,” “Fatty acid degradation,”
“Glyoxylate and dicarboxylate metabolism,” and “Citrate
cycle” (Figure 2B). By analyzing a published transcrip-
tome dataset, we found that the expression pattern of
these Kac protein coding genes had different expression
pattern between HBV-related nontumorous and tumor-
ous tissue (Figure 2C). This indicates that the Kac may

https://www.cancer.gov/tcga
http://string-db.org/
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contribute to the alteration of the pathophysiological
process in HCC.

3.2 Characteristic of Kac sites and
subcellular localization of Kac proteins

To understand the sequence characteristics around the
Kac sites, we analyzed the relative frequency of the 10
amino acid residues at the N- and C-terminus of the
identified Kac sites using iceLogo. We identified six over-
represented motifs surrounding the Kac sites, including
KK/R/H, KxK/R, and KxxxR (underlined lysine is acety-
lated) (Figure 3A). The analysis of all the identified Kac
sites revealed that acetylation occurs in regions enriched
in polar amino acids, specifically basic amino acids (K, H,
and R), surrounding the lysine residue. K was in the +1
and+2 positions, H in the+1, and R in the+1,+2, and+3.
These findings are consistent with the Streptococcus pneu-
moniae acetylome.28 Acetylation motifs of KK, KxK, and

KxxKwere observed in rat tissues, whereasmotifs of KK/R
were overrepresented in human sperm.29 We inferred that
motifs of KK, KxK, and KxxK are to a certain extent evolu-
tionarily conserved in different organisms.
Enzyme activity is regulated by the surrounding envi-

ronment. Kac is a reversible posttranslationalmodification
that is regulated by lysine acetyltransferases with acetyl-
CoA as a cofactor and deacetylases with NAD+ or Zn2+
as cofactors.30 The acetyl-CoA level of different organelles
is changeable and dynamic.31 Therefore, we predicted the
subcellular localization of the identified Kac proteins. We
found that around 38% of Kac proteins were localized in
themitochondria (18.6 %), cytoplasm (10.6 %), and nucleus
(8.7 %) (Figure 3B). Compared with the nucleus, there are
twice as many Kac proteins in the mitochondria than in
the nucleus. Indeed, the proportion of Kac proteins in the
cytoplasm andmitochondria ismore than threefold higher
than in nucleus (Figure 3B). This observation is consis-
tent with the mouse liver acetylome, in which most Kac
proteins located in the cytoplasm and mitochondria.6 Less
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F IGURE 2 GO enrichment (A) and KEGG pathway (B) analyses of the Kac proteins in liver tissues. (C) The transcript expression level of
the Kac proteins in HCC and adjacent tissues. Abbreviations: BP, biological processes; CC, cellular component; MF, molecular function

than 2% of acetylated proteins were localized to the Golgi
and peroxisomes.

3.3 Analysis of the differentially
acetylated sites and proteins

The samples used in proteome and acetylome analyses
contain three groups: normal (N), paracancerous (P), and
HCC (T). To understand the function of acetylation inHCC
development, we compared the differential acetylation lev-
els between three group pairs (T vs. N, T vs. P, and P vs. N).
The differential changes of acetylation were normalized
against the total protein expression levels. FC was used as
a criterion to calculate the differences among these three
groups (Table 2). All results were listed in Table S5.

TABLE 2 Statistics of the differential expressed Kac sites and
proteins

Type T vs. N T vs. P P vs. N
Down Kac site 662 252 815

Kac protein 452 202 546
Up Kac site 250 485 85

Kac protein 215 296 58

We performed “Nine-Square scatterplot” analysis of the
label-free quantitative proteome and acetylome data. The
proteins were divided into nine groups (Figure 4A). Based
on the strictly filtered upregulated (F and I) and downreg-
ulated (A andD) acetylation groups, we found that 250Kac
sites in 215 proteins were upregulated (FC> 2) and 662 Kac
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Total=424

18.63%  Mitochondrion
10.61%  Cytoplasm
8.73%    Nucleus
1.65%    Cell membrane
1.65%    Peroxisome
1.42%    Endoplasmic reticulumn
57.31%  unknown

F IGURE 3 Characteristics of the identified Kac proteins. (A)
Analysis of Kac motifs from positions –5 to+5 (the Kac sites were set
as zero) of identified Kac proteins in label-free acetylome. (B) Subcel-
lular localization prediction of Kac proteins in liver tissues

sites in 452 proteins were downregulated (FC← 2) in HCC
tissues versus normal liver tissues (Table 2; Figure 4A).
GO enrichment analysis indicates that downregulated
Kac proteins are enriched in small molecule catabolic
and metabolic process, such as carboxylic acid catabolic
process, organic acid catabolic process, drug metabolic
process, and cellular amino acid catabolic process (Figure
S2A), whereas the upregulated Kac proteins are mainly
enriched in establishment of organelle localization, intra-
cellular transport, RNA processing, apoptotic process,
negative regulation of cellular process, and some positive
regulation of macromolecule biosynthetic process, such
as RNAmetabolic process, nucleic acid metabolic process,
and ribonucleoprotein complex biogenesis (Figure S2B).
Lysine is a positive-charge amino acid and acetylation
of this residue neutralizes its electric charge.30 Thus,
acetylation may influence protein structure and alter
metabolic enzyme activity. Researchers have found that
acetylation in protein could neutralize the positive charge
of lysine residue, change the protein conformation,
impacts protein activity,32 and result in metabolism
regulation.33 The KEGG pathway analysis showed that
the Kac proteins with upregulated acetylation level on
their sites in HCC are mainly involved in alcoholism, viral
carcinogenesis, transcriptional misregulation in cancer,

glycolysis/gluconeogenesis, and fatty acid degradation
(Figure 4B), whereas the proteins with downregulated
acetylation levels are primarily involved in biosynthesis of
amino acids, fatty acid metabolism, pyruvate metabolism,
and tryptophan metabolism. The level of some proteins
and Kac proteins in the viral carcinogenesis pathway
(hsa05203 in KEGG database) was significantly upregu-
lated (Figure 4C). One of the Kac protein is H2B, a core
component of the nucleosome that is highly expressed in
HCC tissue.34 H2B is also involved in disease pathway reg-
ulation in alcoholism, viral carcinogenesis, and systemic
lupus erythematous.35
The comparisons of T versus P and P versus N groups

were performed with a similar approach as above (Fig-
ures S3 and S4). We found that the increase or decrease in
acetylation level of most proteins was independent of pro-
tein levels (Figures 4A, S3, and S4). That is, the increase
or decrease in Kac proteins was due to changes in acetyla-
tion levels rather than changes in protein levels. The com-
parisons of T versus P with the TMT-labeling approach
in other three paired samples also showed similar pattern
in each group (Table S6). A total of 232 Kac sites in 228
Kac proteins were simultaneously quantified in the label-
free and TMT-labeling acetylome (Figure S5). The BPs and
KEGG pathways of the up- and downregulated Kac pro-
teins in each group were also highly reproducible (Fig-
ures 4, S3, and S4), further demonstrating the accuracy of
the identified acetylome data.

3.4 Subcellular localization of the
differential Kac proteins in HCC and
normal liver tissues

To know the cellular compartment of differentially acety-
lated proteins, we predicted the subcellular localization
of the up- and downregulated Kac proteins in HCC.
The upregulated Kac proteins in HCC compared with
normal liver localize in cytoplasm (25%) and nucleus (9%),
whereas downregulatedKac proteins localize inmitochon-
dria (17%) and cytoplasm (5%) (Figures 5A and 5B). Motif
analysis of the up- and down-regulated Kac sites revealed
that Lys (K) was overrepresented at –5, –4, +1, +3, +4,
and +5 position. Lys (K) was overrepresented at +2 and
+4 position of the downregulated Kac sites (Figure 5C),
whereas Gly (G) was overrepresented at –3, –2, and –1
position of the upregulated Kac proteins (Figure 5D). A
previous report found that acetylation of glyceraldehyde-
3-phosphate dehydrogenase induces its translocation from
cytoplasm to nucleus.36 Thus, we speculate that acetyla-
tion of these differential Kac proteins may impact protein
localization.
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F IGURE 4 Analysis of the differential level of proteins and acetylation between the normal and HCC liver tissues. (A) The nine-quadrant
scatterplot for fold changes (T vs. N) of proteins and acetylation sites. (B) KEGG pathway enrichment analysis of the differential Kac proteins
between normal and HCC liver tissues. (C) Fold changes of indicated proteins and Kac proteins between normal and HCC liver tissues in viral
carcinogenesis pathway. Abbreviations: T, tumor; N, normal
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proteins with upregulation acetylation level

3.5 Acetylation of histone
acetyltransferases in HCC

Histone acetyltransferases (HATs) are enzymes that can
transfer acetyl groups to lysine residues of histones.37 HATs
can be autoacetylated or acetylated by other HATs.38 Two
important HATs, EP300 and CBP, were also found to be
acetylated in HCC tissue (Table S6). As the bifunctional
enzymes, p300 and CBP acetylate histones and act as
transcriptional coactivators that regulate cell proliferation
and differentiation.39–41 Thus, the acetylation of p300 and
CBP in HCC may alter its activity and regulate oncogene
expression.42–44 However, the significance of the hyper-
acetylation of p300 and CBP remains unknown.

3.6 Protein–protein networks of
acetylation proteins

Protein–protein interaction (PPI) plays important roles in
a variety of BPs, such as signal transduction and energy
metabolism. We performed PPI network analysis of the
acetylome in HCC tissues using STRING database (Figure
S6). We found that EP300 and CPS1 interact with multiple
Kac proteins (Figure 6). For instance, histone acetyltrans-
ferase EP300 strongly correlated with the upregulated
Kac protein CREBBP (Figure 6A). CPS1 interacted with
the multiacetylated glutamine synthetase 1 (GLUD1),
the downregulated Kac protein argininosuccinate syn-
thase 1, and ornithine carbamoyltransferase (Figure 6B).
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F IGURE 6 Protein–protein interaction network of Kac proteins. (A) The sub network of p300 and its interacting Kac proteins. (B) The
subnetwork of CPS1 and its interacted Kac proteins. The size of node denotes the degree that interact with other Kac proteins. The color of node
ranges from saffron yellow to blue, which refers to the connected clustering coefficient with corresponding Kac proteins. The thickness of edge
size indicates the strength associated with corresponding Kac proteins. The color of edge ranges from saffron yellow to blue, which refers to
the degree of edge betweenness

To understand the role of the Kac sites in proteins, pymol
software was used to visualize the structures of ADH1B,
GLUD1, CPS1, and HADHA with Kac sites (Figure 7).
We found that Kac sites in these four proteins are more
likely to target ordered secondary structure, such as alpha
helices, beta-sheets, and turns, which is consistent with
previous report.45 In addition to the known Kac sites in
UniProt46 and PhosphoSitePlus,46,47 we also identified
novel Kac sites in these Kac proteins including K72, K89,
K301, K405, and K418 in HSPD1; K6, K9, K19, K20, K33,
K105, K114, K160, K227, K232, and K355 in ADH1B; K200
and K397 in GLUD1; K138, K176, K253, K905, and K1498 in
CPS1; and K213, K230, K255, K292, and K414 in HADHA.
The Kac sites of ADH1B, GLUD1, CPS1, and HADHA in
this dataset were also labeled in the three-dimensional
structures (Figure 7). Besides, most of the loci can also
be found in public databases, which further demonstrates
the accuracy of our acetylome data.

3.7 Kac sites of histones are potential
prognostic factors for HCC

To understand the potential clinical significance of differ-
ential Kac proteins and sites in HCC, we investigated the
acetylation level changes of the histone Kac sites in HCC
and normal liver tissues. We found that the acetylation

level of lysine 120 on histone H2B (H2BK120ac), lysine
18 on histone H3.3 (H3.3K18ac), and lysine 77 on histone
H4 (H4K77ac) was upregulated in HCCs compared with
paracancerous or normal liver tissues (Figure 4A; Table
S6). WB also showed the same results in normal and HCC
liver tissues (Figure 8A). IHC staining confirmed that
H2BK120ac, H3.3K18ac, and H4K77ac were highly present
in tumor tissues (Figures 8B and 8C). In addition, these
three Kac sites significantly were associated with disease
features in an independent cohort containing 135 HCC
patients in a TMA (Tables 3 and S7; Figure 8D). High level
of H2BK120ac was associated with poor differentiation
(p = 0.002), whereas level of H3.3K18ac was related to
microvascular invasion (p = 0.031). High level of H4K77ac
was correlated with elevated alpha-fetoprotein (p= 0.035),
larger tumors (p = 0.017), and microvascular invasion
(p = 0.047). Patients with high acetylation levels of all
three histone Kac types showed obviously poorer overall
survival than patients with low acetylation levels. Intrigu-
ingly, patients with high acetylation level of H4K77ac
showed significantly shorter disease-free survival than
patient with low acetylation level (Figure 8D). We per-
formed an analysis of The Cancer Genome Atlas Liver
Hepatocellular Carcinoma (TCGA-LIHC) dataset using
GEPIA2.34 We found that the gene expression levels of
the multiacetylated proteins HSPD1, CPS1, and ADH1B
are correlated with improved survival of HCC patients,
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A B

C D

F IGURE 7 The crystal structures of four multiacetylated proteins: ADH1B (A), GLUD1 (B), CPS1 (C), and HADHA (D). Acetylated sites
are labeled in red. Pale green and light blue denote α helixes and β sheets, respectively. Red color represents the position of acetylated lysine
(K) sites
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F IGURE 8 Histone acetylation is associated with prognostic survival of HCC patients. (A) Western blotting analysis of H2BK120ac,
H3.3K18ac, and H4K77ac in normal, paracancerous, and HCC tissues. Immunohistochemistry (IHC) staining (B) and IHC scores (C) of
H2BK120ac, H3.3K18ac, and H4K77ac in paracancerous and HCC tissues. (D) Correlation of H2BK120, H3.3K18, and H4K77 acetylation level
with overall survival and recurrence. Abbreviations: CRR, cumulative recurrence rates; MAS, months after surgery; N, normal; OSR, overall
survival rates; P, paracancerous; T, tumor

whereas the multiacetylated proteins HADHA and
GLUD1 are not (Figure S7A–E). The gene expression lev-
els of HIST1H2BC, HIST1H2BK, H3F3A, and HIST1H4A
are also not related to survival.34 In addition, we analyzed
the relationship between the expression level of the Kac
protein coding genes and the overall patient survival

rate by calculating the counts of acetylated (Ac) and
nonacetylated (non-Ac) protein genes in the significant
(p-value of odds ratio between Ac and non-AC was used
to determine significance) and nonsignificant groups
using TCGA-LIHC cohort data. The results show that the
acetylation tends to target proteins that are significantly
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TABLE 3 Histone acetylation level was associated with tumor feature

ac-H2BK120 ac-H3.3K18 ac-H4K77
p OR p OR p OR

Tumor differentiation 0.002 3.989362 – –
Microvascular invasion – 0.031 0.4231343 0.047 0.4427245
AFP – – 0.035 2.275
Tumor size – – 0.017 2.573427

Abbreviations: AFP, α-fetoprotein; OR, odds ratio; p, p-value.

associated with overall survival (Figure S7F). Together,
these data indicate that H2BK120ac, H3.3K18ac, and
H4K77ac may be potential prognostic factors for HCC.

4 DISCUSSION

Kac plays a critical role in gene expression in HCC.48,49
In the current study, we analyzed the acetylomes and
proteomes of normal liver, paracancerous, and HCC
tissues using label-free quantitative LC–MS/MS. In total,
we identified 6781 Kac sites in 2,582 Kac proteins. When
only the leading proteins in MaxQuant results are con-
sidered, 1232 Kac sites in 424 proteins were quantified.
After normalizing against the identified total proteins,
250 upregulated Kac sites of 214 Kac proteins and 662
downregulated Kac site of 451 Kac proteins were identified
in the HCC tissues compared with the normal liver tissues.
We also analyzed the acetylomes of the paracancerous and
HCC tissues using TMT-labeling proteomics technique
and identified 1040 Kac sites in 587 Kac proteins. In this
analysis, 237 up- and 122 downregulated Kac proteins
of more than ±1.3 FC were identified in HCC tissues
comparing with paracancerous tissues.
In the TMT quantitative proteomics analysis, the acety-

lation of the acetyltransferases CBP and p300 was sig-
nificantly increased in HCC versus paracancerous tissue.
The enrichment analysis of the differential Kac proteins
between pairs of groups (T vs. N, T vs. P, and P vs.
N) shows that the up- and downregulated Kac proteins
share some common signaling pathways, such as viral
carcinogenesis, glycolysis/gluconeogenesis, and fatty acid
metabolism. This suggested that the protein acetylation
may play an important role duringHBV infection. Interest-
ingly, H2BK120ac, H3.3K18ac, and H4K77ac are negatively
correlated with survival of HCC patients, and H4K77ac is
associated with HCC recurrence. Together, these results
show the first landscape for HCC acetylome, and demon-
strate that the H2BK120ac, H3.3K18ac, and H4K77ac may
be the potential prognostic factors for HCC.
Although the characterizations and functions of acety-

lation in histone or nonhistone in HCC remain to be deter-
mined, five proteins including HSPD1, HADHA, CPS1,

GLUD1, and ADH1B were multiacetylated in more than
14 Kac sites (Table 1). The protein and acetylation levels of
these multiacetylated proteins in proteome and acetylome
showed diverse patterns in normal, paracancerous, and
HCC tissues (Figures S1A and S1C). Twenty-three lysine
residues in HSPD1 were found to be acetylated. HSPD1 is a
60 kDamitochondrial heat shock protein involved inmito-
chondrial protein import and macromolecular assembly50
and the regulation of HBV viral proteins.51 CPS1 is a
mitochondrial protein and a prognostic marker of liver
cancer. The function of CPS1 is to remove excess ammonia
from the cell.52,53 In our datasets, 16 lysine residues of
CPS1 were found to be acetylated, especially the Kac sites
within carbamoyl-phosphate synthetase large subunit-
like domain and ATP-binding domain.54 Moreover, CPS1
is preferentially expressed in liver tissue.55 Thus, the
highly expressed and acetylated CPS1 in liver cells may be
involved in development of liver cancer. HADHA is amito-
chondrial trifunctional enzyme specifically involved in
the last three of the four reactions of long-chain fatty acids
beta-oxidation pathway,56–58 and the acetylation levels of
the K60, K129, and K569 of HDAHA were also downregu-
lated in tumor tissues,7 which is consistent with our results
(Table S6). Moreover, several novel Kac sites were identi-
fied in this study (Figure 7D). GLUD1 is a mitochondrial
protein that participates in the anaplerosis of glutamine
and produces alpha-ketoglutarate, which is an important
intermediate in TCA cycle59 and amino acidmetabolism.60
In their work, Zhao et al. also found that GLUD1 was
acetylated at K191, K390, K457, K489, and K527 and all the
acetylation levels were downregulated in tumor tissues,7
which is consistent with our data (Table S6) ADH1B
is a disease-associated protein of alcohol dependence
and fetal alcohol syndrome,61 which catalyzes the NAD-
dependent oxidation of all-trans-retinol and its derivatives
involved in retinoid metabolism.58,62 These results indi-
cate that this multiacetylated protein may be involved
in the response to proliferation, migration, and invasion
in HCC.
A previous report demonstrated that the subcellular dis-

tribution of the Kac proteins is dramatically different from
the phosphorylated proteins, and the number of phospho-
rylated proteins in mitochondria is threefold less than the
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Kac proteins that are enriched in muscle contraction and
involved in ATP generation.63 Some oncogenic signaling-
associated proteins contain Kac sites in their functional
domain, which might regulate protein localization. For
instance, CNK1 is involved in cell proliferation and migra-
tion and this protein contains an acetylation site within
its pleckstrin homology domain that drives its localization
to the membrane.64 Taken together, the Kac proteins are
mainly localized in cytosol, nucleus, and mitochondria,
and these Kac proteins may play important roles in HCC
occurrence.
The GO term and KEGG pathway enrichment analy-

sis indicate that the upregulated Kac proteins of HCC are
significantly enriched in the pentose phosphate pathway,
antigen processing and presentation, and viral carcinogen-
esis. Conversely, downregulated Kac proteins inHCCwere
mainly enriched in lysine degradation, fatty acid degrada-
tion, and metabolism of xenobiotics by cytochrome P450.
As revealed by the TMT-labeling data, the acetylation level
of the highly upregulated Kac protein GSTO1 in HCC tis-
sues ismore than 10 times that of nontumor tissues. GSTO1
is a member of GSTs family that catalyzes the conjugation
of glutathione to distinct endogenous and exogenous com-
pounds that are involved in different BP.65 Variants of GSTs
affect enzyme activity and may influence individual sus-
ceptibility to cancer.66 The high degree of hyperacetylation
of GSTO1 at K198 may affect its enzyme activity, because
the K198 and E154 are located in the same pocket of the

GSTO1 structure and are opposite to each other.67 A dele-
tion of E154 in GSTO1 exhibits refolding defects and low
stability, resulting in GSTO1 deficiency.67 Therefore, we
speculate that hyperacetylated GSTO1 might increase the
risk of HCC.
HBV infection stimulates carcinogenesis.68–70 We found

that Kac proteins were enriched in viral carcinogenesis
(Figures 4B and S4B). We analyzed the Kac proteins of
HBV pathway using TMT-labeling quantitative data. We
found that CBP (CREBBP), EP300, STAT3, VDAC3, 14-3-3ζ
(YWHAZ and YWHAB), and STAT1 were hyperacetylated
(Figure 9). CBP may interfere with the regulation of HBV
pathway. A previous study found that STAT3 and STAT1
acetylation might be involved in hepatocyte proliferation
in the Jak/STAT signaling pathway.71 HBV X protein
(HBX) is a viral protein encoded by a pregenomic RNA,
which regulates VDAC3 activity.72–73 VDAC3 is a voltage-
dependent anion channel that regulates Ca2+ release
and homeostasis.74 14-3-3ζ are phosphorylated binding
proteins, which are overexpressed in cancerous tissues of
patients with HCC.75 We found that 12 Kac sites of 14-3-3ζ
were identified and quantified in HCC. The acetylation
may affect the interaction between 14-3-3ζ and HBV
protein X.75 We found seven lysine residues in 14-3-3ζwere
acetylated in functional domain. These residues include
the K3 and K9 in the N-terminal; the K49, K74, and K120
in the 14-3-3ζ binding pocket; and the K138 and K157 in an
alpha helix that helps form the phosphor-binding pocket.76
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Thus, acetylation may regulate some key proteins of HBV
pathway that is involved in HCC regulation.
Analysis of the Kac sites of histone revealed that about

20 lysine residues were acetylated (Figure S1). Histones are
the core components of nucleosome and the basic unit of
chromosome. The posttranslational modifications of his-
tone are also required for gene transcription. The acetyla-
tion of lysine in histones can neutralize the positive charge
of lysine, thereby reducing the accessibility of histones
to DNA for gene transcription.77 Most of them are well
investigated in liver cancer including the novel Kac sites
K120 in histone H2B type 1-C/E/F/G/I (HIST1H2BC); the
K77 in histone H4 (HIST1H4A); the K303 in core histone
macro-H2A.1 (H2AFY); and the K108 and K120 in histone
H2B type 1-K (HIST1H2BK).78–80 Among these Kac sites,
HIST1H2BC can also be hydroxyisobutyrylated, hydroxy-
butyrylated, and succinylated.
WB and IHC experiments demonstrated that

H2BK120ac, H3.3K18ac, and H4K77ac correlate with
HCC occurrence (Figure 8). For instance, H2BK120ac
is correlated with poor differentiation (p = 0.002),
whereas H3.3K18ac is related with microvascular inva-
sion (p = 0.031), H4K77ac is correlated with elevated
alpha-fetoprotein (p = 0.035), larger tumors (p = 0.017),
and microvascular invasion (p = 0.047). Interestingly,
H4K77ac is associated with survival and recurrence.
Although H4K77ac has obvious clinical significance, there
are few cancer-related researches of H4K77ac. Researches
have provided the evidence that H4K77ac may decrease
DNA accessibility, leading to chromatin organization
repression.81 The results of H3K18ac in HCC cell line
HepG2 and healthy liver cell line L02 are consistent
with previous studies.82,83 Some studies also show that
H3K18ac promotes the development of various cancers,
such as breast, colon, lung, hepatocellular, pancreatic,
prostate, and thyroid cancer.84 Amamoto et al. reported
that H2BK120 acetylation and malonylation affect chro-
matin structure assembly by reducing internucleosome
interactions.85 These results demonstrated that histone
acetylation is widely involved in distinct cancers. More-
over, the analysis of the independent cohort of HCC
patients further demonstrated that these three histones
Kac sites are correlated with survival. Thus, we speculate
that H2BK120ac, H3.3K18ac, and H4K77ac may be poten-
tial prognostic factors of HCC and are beneficial to the
management of HCC patients.
With the rapid development of epigenetic studies of liver

cancer, researchers have found that the epigenetic mod-
ifications are closely related to the development of can-
cer. The NAD+-dependent HDAC (histone deacetylase)
SIRT1 can regulate bile acid metabolism. SIRT1 is upreg-
ulated in HCC and promotes liver cancer by stimulat-
ing deactylation of the farnesoid X receptor to an extent
that in turn dysregulates bile acid homeostasis.86 In addi-

tion, researchers have demonstrated that inhibition of
HDAC1/2 was able to suppress proliferation and induce
tumor cell death in several HCC cell lines.87 HBX also
altersDNAmethylation via its ability to affectDNMTactiv-
ity, and also recruits the histone acetyltransferases (HAT)
p300/CBP to induce IL-8 and proliferating cell nuclear
antigen that are involved in inflammation and cell prolif-
eration, respectively.88 In summary, our study provides an
overview ofHCCKac, and clarifies the acetylation changes
of Kac sites and proteins in HCC and paracancerous tis-
sues, and explores the clinical significance of H2BK120ac,
H3.3K18ac, andH4K77ac in an independent cohort ofHCC
patients. Thus, we propose that Kac plays an important
role in the occurrence and development of HCC, which
may be a potential prognostic factor of HCC.
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