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Abstract 

Traumatic brain injury (TBI) presents a public health concern as a leading cause of death and disability in 

children. Pediatric populations are particularly vulnerable to adverse outcomes following TBI due to 

periods of rapid growth, synaptic pruning, and myelination. Pediatric patients with moderate-severe TBI 

(msTBI) and healthy controls were evaluated from the post-acute (2-5 months) to chronic phase (13-19 

months) of recovery using diffusion magnetic resonance imaging (dMRI) and interhemispheric transfer 

time (IHTT), which is an event-related potential measure the speed of information transfer across the 

corpus callosum. We previously identified two subgroups of patients based on IHTT, with one group 

showing a significantly slower IHTT (TBI-slow), poorer cognitive performance, and progressive structural 

damage. In contrast, the other group (TBI-normal) did not differ from controls on IHTT or cognitive 

performance and showed relative structural recovery over time. Here, we examined group differences in 

restricted diffusion imaging (RDI), which is a dMRI metric sensitive to inflammation. Comparing TBI-slow, 

TBI-normal, and controls on RDI cross-sectionally, dMRI connectometry analysis revealed higher RDI 

across the white matter in the TBI-slow group compared to both the control and TBI-normal groups. 

Longitudinal analyses indicated that while both TBI groups exhibited a decrease in RDI over time, 

suggesting resolution of neuroinflammation and recovery, the decreases in the TBI-slow group were 

smaller. The differences in RDI between TBI-slow and TBI-normal suggest that inflammation may play a 

key role in the prolonged recovery, including brain structure, cognitive performance, and symptom 

reports, of pediatric patients with msTBI.  
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Introduction 

 Pediatric brain development is characterized by periods of rapid growth, synaptic pruning, and 

myelination.1 Disruption during these processes may lead to long-term and severe consequences for 

cognitive, emotional, physical, and social function.2,3 Traumatic brain injury (TBI) presents a significant 

public health concern as a leading cause of death and disability in children.4 In 2019, there were over 

60,000 TBI-related deaths in the United States, with children ages 0-17 accounting for approximately 

4.1% of death. Additionally, in 2014, there were nearly 3 million TBI-related emergency department 

visits, of which 800,000 (~27%) were children between the ages of 0-17.5 Children who sustain a 

moderate to severe TBI (msTBI) often experience long-term symptoms that can become more apparent 

as they enter critical periods of development, particularly with respect to cognitive and emotional 

functioning.6,7 Cognitive impairments following TBI in pediatric populations can include deficits in 

attention, processing speed, memory, learning, emotional regulation, and executive functioning.7–13 These 

changes are supported by neuroimaging findings, as pediatric patients frequently show corpus callosum 

lesions and other white matter disruptions, further indicating structural and/or functional disruption of the 

brain for a prolonged period following the initial injury.14,15 There are several proposed mechanisms 

driving long-term disruptions: trauma or development during critical periods, altered neuroplasticity, 

impaired synaptogenesis, and prolonged inflammation.16,17 

 Regardless of the mechanism of brain injury, a consistent metabolic mechanism occurs in response 

to physical trauma. The brain experiences a cascade of chemical changes resulting in temporary 

disequilibrium, quantified by increased extracellular potassium levels which trigger excessive glutamate 

release. This release leads to the accumulation of intracellular calcium levels and ultimately results in 

mitochondrial respiration dysfunction, protease activation, and often apoptosis.18–20 Secondary injury is 

the consequence of brain tissue damage and may occur minutes to months following the primary 

injury.16,21 The specific mechanism of secondary injury is not clearly identified, but it is believed to play a 

key role in prolonged symptoms, particularly in pediatric patients.4,7,16 Contributors to secondary injury 

include excitotoxicity, mitochondrial dysfunction, increased oxidative stress, weakened blood-brain barrier 

integrity, cerebral blood flow dysregulation, and inflammation.16,22,23 In cases of chronic inflammation, the 

immune system remains in a heightened state, leading to glial cells having extended activation and a 

chronic pro-inflammatory response.24 Animal models have repeatedly shown inflammatory markers such 

as leukocytes, pro-inflammatory cytokines, activated astrocytes, and microglia remain elevated 2-7 times 

longer in adolescent brains compared to adults, indicating this pathway could play a major role in 

prolonged recovery.25,26,27 Adolescent mice with mild TBI show pro-inflammatory responses for 2 weeks 

post-injury, while only lasting 7 days in adults.28 The contrast in recovery brings concern for development 

during critical periods and for long-term brain health, as chronic inflammation is often linked to 

neurodegeneration later in life.16 

 Measuring neuroinflammation in vivo is challenging, particularly outside of acute care settings and 

in pediatric populations. After hospital discharge, inflammatory markers can be measured through blood, 

but the relevance of these measures for inflammation in the brain is debated.29–32 Positron emission 
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tomography (PET) can be used to detect activated microglia using TSPO tracers,29 but PET is very rarely 

done in children because of radiation exposure. Ramlackhansingh et al. found evidence of elevated 

inflammation up to 10 years post-injury, and persistent inflammation was associated with poorer 

outcomes.29 Advanced neuroimaging methods have great potential as biomarkers of injury and recovery. 

Diffusion magnetic resonance imaging (dMRI) is particularly promising given its sensitivity to white matter 

pathology, such as traumatic axonal injury (TAI).33–35 TAI results from white matter bundles shearing and 

stretching during the injury, causing further tissue and cell damage. However, while dMRI can identify 

areas of disruption post-TBI, it has limited ability to determine the mechanisms of disruption. Lower 

fractional anisotropy (FA) is frequently reported36–38 and can suggest demyelination, but can also indicate 

inflammation and changes in axonal packing.39 Mean diffusivity (MD) can be used in TBI and other 

applications by identifying localized changes in water diffusion, and decreased MD can indicate cellular 

infiltration where inflammatory cells, such as macrophages, reduce the extracellular space for water 

diffusion.40,41 However, MD can also indicate edema and fluid accumulation or other white matter changes 

in the brain unrelated to inflammation, though studies often report difficulties in relying on this metric.42–46 

Radial diffusion (RD) measures the diffusion of water perpendicular to the orientation of white matter 

fibers, and this metric is sensitive to changes in tissue integrity, specifically demyelination.47,48 Axial 

diffusivity (AD) quantifies water diffusion parallel to the axonal tracts where lower AD generally indicates 

damaged or degraded axons; this degradation can become more pronounced due to inflammation or 

chronic diseases.49,50 Restricted diffusion imaging (RDI) is a tensor-free and orientationally invariant 

metric used to quantify the total amount of restricted diffusion within a voxel, and RDI has been shown to 

correlate strongly with cell density.51,52 Furthermore, several clinical trials have provided evidence that cell 

density is related to immune cell infiltration due to inflammation, supporting the use of RDI as a valuable 

metric that could potentially be more sensitive to neuropathology after TBI than traditional dMRI metrics 

(FA, MD, RD, AD).53-54  

 In a previous study, we identified two subgroups of pediatric msTBI patients with different post-

injury trajectories.55–59 Groups differed based on interhemispheric transfer time (IHTT), a visual evoked 

related potential (ERP) measure of the speed of information transfer across the corpus callosum and a 

marker of white matter integrity.55,60,61 We found a bimodal distribution in the TBI group where patients 

with significantly slower IHTT showed poorer cognitive performance and more extensive abnormalities on 

neuroimaging when compared to TBI patients with normal IHTT. Analysis with whole brain magnetic 

resonance spectroscopy (MRS) found group differences in choline, a marker of inflammation and/or 

cellular turnover.62 These results along with other evidence in the literature and the understanding that 

chronic inflammation is neurotoxic suggest that chronic inflammation may be present in some patients 

and may influence outcome. The TBI groups did not differ in demographic or early injury measures, but 

we hypothesized that chronic inflammation may play a role in their strikingly different trajectories. To test 

this, we extended our previous dMRI analyses in the same sample by examining RDI in the present 

analysis. For the current analysis, we hypothesize that children with msTBI in the slow IHTT range (TBI-

slow) will show higher RDI cross-sectionally (i.e., more inflammation), and that this will be associated with 
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poorer cognitive performance. Further, we hypothesize that the TBI-normal group will show greater 

decreases in RDI longitudinally compared to TBI-slow.  

 

Methods and Materials 

Participants 

TBI participants were recruited from four Pediatric Intensive Care Units (PICUs) located in Level 1 

Trauma Centers in Los Angeles County. A study representative discussed the goals of the study with the 

parents of patients, gave them an IRB-approved brochure about the study, and obtained permission for 

the investigators to contact them after discharge from the PICU. Thirty-five percent of patients, whose 

parents agreed to be contacted while the child was in the PICU, participated in this study. Healthy 

controls, matched for age, sex, and educational level, were recruited from the community through flyers, 

magazines, and school postings.  

Inclusion Criteria: 1) non-penetrating msTBI (intake or post-resuscitation Glasgow Coma Scale 

[GCS] score between 3 and 12 or GCS between 13-15 with positive image findings)63 ; 2) 8-18 years of 

age at time of injury; 3) right-handed; 4) normal visual acuity or vision corrected with contact 

lenses/eyeglasses; and 5) English skills sufficient to understand instructions and be familiar with common 

words (the neuropsychological tests used in this study presume competence in English). 

Exclusion Criteria: 1) history of neurological illness, such as prior msTBI, brain tumor, or severe 

seizures; 2) motor deficits that prevent the subject from being examined in an MRI scanner (e.g. 

spasms); 3) history of psychosis, ADHD, Tourette’s Disorder, learning disability, intellectual disability, 

autism, or substance abuse. These conditions were identified by parental reports and are associated with 

cognitive impairments that might overlap with those caused by msTBI. Participants were also excluded if 

they had metal implants that prevented them from safely undergoing an MRI scan. The inclusion and 

exclusion criteria for the healthy controls were the same except for inclusion criterion #1. 

We studied a total of 38 children with msTBI, 17 with longitudinal MRI data, 13 with MRI data from 

the post-acute phase only (2-5 months post-injury), and 8 with MRI data from the chronic phase only (13-

19 months post-injury). We also studied a total of 49 healthy control children, 23 with longitudinal MRI 

data, 21 at the first time point only and 5 at the second time point only. Of the 38 children in the msTBI 

group, 15 had slow IHTT (TBI-slow), 15 had normal IHTT (TBI-normal), and 8 did not have IHTT data 

collected. Demographic data are summarized in Table 1. The injury mechanisms for our TBI group were 

as follows: 12 motor-vehicle accident (MVA) – pedestrian, 6 fall – skateboard, 5 MVA – passenger, 2 fall – 

scooter, 2 sport-related, 1 assault, 1 fall – skiing, 1 fall – ladder, and 8 uncategorized blunt head trauma. 

The demographic information (see Table 1) from our sample is consistent with existing epidemiological 

information on pediatric/adolescent msTBI, both in the male-to-female ratio and in the types of injury 

mechanisms (Keenan and Bratton, 2006). From the CT scan that participants received at the hospital, the 

prevalence of CT findings was as follows across the 32/38 participants for whom we had clinical CT data: 

increased intracranial pressure (21.9%), traumatic axonal injury (15.6%), subarachnoid hemorrhage 

(28.1%), ventricular hemorrhage (18.8%), epidural hematoma (37.5%), subdural hematoma (46.9%), 
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intracerebral hematoma (43.8%), contusions (37.5%), skull fracture – any (68.8%), depressed skull 

fracture (34.4%), non-depressed skull fracture (34.4%). 

 

Scan Acquisition 

 Participants were scanned on 3T Siemens Trio MRI scanners with whole brain anatomical and 66-

gradient diffusion MRI (dMRI). Diffusion-weighted images were acquired with the following acquisition 

parameters: GRAPPA mode; acceleration factor phase encoding=2; TR/TE=9500/87 ms; 

FOV=256x256mm; isotropic voxel size=2mm. 72 images were collected per subject: 8 b0 and 64 

diffusion-weighted (b=1000 s/mm2). Details of the EEG/IHTT acquisition can be found in Ellis et al., 

2016.55 

Scan Comparison: Partway through the study, scanning moved from the UCLA Brain Mapping 

Center to the Staglin IMHRO Center for Cognitive Neuroscience, but imaging was performed using a 

scanner of the same model and with the same scan parameters. Extensive testing was conducted with 

volunteer and phantom data to ensure no bias was introduced with respect to the study design. Details 

may be found in Dennis et al., 2015.56 

 

TBI Subgroups 

         We previously found a subgroup within the pediatric msTBI patient sample with slower IHTT, based 

on a visual ERP, which we used to measure the functional integrity of the corpus callosum.55,56 In the first 

few months post-injury, some msTBI patients have significantly impaired callosal functional and structural 

integrity, and this affects cognitive performance. Moreover, these differences appear to be progressive, 

with one pediatric msTBI subgroup showing ongoing white matter disruption, while the other appears to 

begin to return to a healthy trajectory.57,58 Importantly, the subgroup with impaired callosal function in 

our sample do not differ from the msTBI patients with normal callosal function in demographic or acute 

injury variables. In all analyses on this dataset, we have examined the msTBI group as two groups – TBI-

slow (those with significantly longer IHTTs) and TBI-normal (those with IHTTs in the normal range). The 

attrition rate did not differ significantly between TBI-slow and TBI-normal groups. In both the post-acute 

(n=4) and chronic (n=7) phases, there were TBI subjects we did not obtain IHTT data from but were 

included for other analyses.  

 

dMRI Processing 

 dMRI volumes were denoised using local PCA denoising with Rician bias correction (LPCA64). 

Denoised volumes were eddy corrected using FSL 6.0 eddy_openmp. dMRI processing was performed 

using DSI Studio (“Chen” version, 2023.07.06 build on Mac; https://dsi-studio.labsolver.org/). All 

diffusion data were reconstructed in the MNI space using q-space diffeomorphic registration (QSDR)65 to 

obtain the spin distribution function66 with a diffusion sampling length ratio of 1.25. Restricted diffusion 

was quantified using restricted diffusion imaging.52 Following reconstruction, longitudinal data for all 

participants were compiled into a dMRI connectometry database (N=129 scans). 
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dMRI Connectometry Analyses 

 Initial analyses were conducted within DSI Studio, with follow-up analyses conducted in R 4.4.1. 

Our primary measure of interest was RDI;52 however, as prior studies have focused on more traditional 

tensor-based dMRI metrics, such as  FA, MD, RD, AD we also examined these in the supplement for 

completeness, and these supplemental analyses are treated as post hoc comparisons. dMRI 

connectometry was used to derive correlational tractography for each dMRI metric tested.67 A 

nonparametric partial Spearman correlation was used to assess the relationship with each metric between 

groups, with age and sex as covariates. A T-score threshold of 2.5 was applied with a length threshold of 

15mm, and a deterministic fiber tracking algorithm was used to obtain correlational tractography.68 The 

whole brain was seeded with 1,000,000 seeds, and topology-informed pruning was used to filter the tracts 

with 16 iterations.69 A false discovery rate (FDR) threshold of q=.05 was used to select tracts.69 

Permutation testing with 4,000 permutations was used to estimate the null distribution. 

 

Cognitive Performance 

In our prior papers, we computed a summary measure of cognitive performance from tests 

assessing multiple domains known to be affected by TBI.2 It is a linear, unit-weighted combination of the 

following age-based standardized measures: 1) Processing Speed Index from the WISC-IV/WAIS-III; 2) 

Working Memory Index from the WISC-IV/WAIS-III; 3) Trials 1-5 from the CVLT-C/II;70 and 4) Trails 

Condition 4 from the D-KEFS.71 Further details of our cognitive performance index (CPI) are found in 

Moran et al., 2016.72 A higher summary score indicates higher cognitive functioning, whereas a lower 

summary score indicates lower cognitive functioning. In our prior papers, the two TBI subgroups differed 

on this summary measure of cognitive performance, with the TBI-slow group demonstrating poorer 

performance in the post-acute phase.  

 

Statistical Analyses 

Our primary analyses compared along-tract RDI between TBI-slow, TBI-normal, and healthy 

controls in three separate cross-sectional comparisons at each time point. 

Additionally, we used correlational tractography to further examine associations between along-

tract RDI and CPI, and we assessed the ability of post-acute RDI to predict CPI scores at the chronic time 

point.  

Supplementary DTI Analyses 

 As DTI analyses were previously published,57 we performed the same analyses as described above 

on FA, MD, AD, and RD, but these are included as post-hoc analyses in the supplemental material to 

enable comparisons between traditional tensor-based metrics and QSDR-derived RDI. 
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Results 

As referenced above, the TBI-slow and TBI-normal groups were kept separate for all analyses. IHTT was 

measured at the post-acute phase and this grouping was used to examine RDI differences in both 

timepoints. 

Cross-sectional comparisons 

Post-acute Phase:TBI-normal vs. control: There were no significant differences in RDI between the 

TBI-normal (n = 13) and control (n = 28) groups at the post-acute phase. TBI-slow vs. control: 

Widespread differences in RDI were observed between the TBI-slow (n =14) and control (n = 28) groups 

at the post-acute phase, where RDI was significantly higher in the TBI-slow group (Figure 1). TBI-slow 

vs. TBI-normal: There were no significant differences in RDI between the TBI-slow (n = 14) and TBI-

normal (n = 13) groups at the post-acute phase. 

Chronic Phase: TBI-normal vs. control: Correlational tractography analysis revealed several tracts 

with significantly lower RDI in the TBI-normal (n = 9) group compared to controls  (control n = 21) 

(Figure 2). TBI-slow vs. control: At the chronic phase, significantly higher RDI was observed in the TBI-

slow (n = 10) group compared to controls (n = 21) (Supplementary Figure 1). TBI-slow vs. TBI-

normal: Significantly higher RDI was observed across widespread white matter regions in the TBI-slow (n 

= 10) group compared to the TBI-normal (n = 9) group at the chronic phase (Figure 4). 

Longitudinal comparisons 

RDI similarly decreased on average in both the control and TBI-normal groups, whereas an overall 

increase in RDI was observed in the TBI-slow group (Figure 5). 

Cognitive Performance 

 Our analysis of associations between RDI and CPI revealed widespread regions of white matter 

where higher RDI was significantly associated with lower CPI, in the post-acute phase, both across the full 

sample and within the TBI group only (n=72 & n=27, Figure 6). In the chronic phase, however, RDI was 

positively associated with CPI. 

Supplementary DTI Analyses 

 Supplementary analyses were consistent with prior papers56,57 and are shown in Supplementary 

Figures 1-3. Post-acute: We found significant differences between TBI-normal and control in one direction 

for AD, MD, RD, and RDI and significant differences in both directions for FA. We found significant 

differences between TBI-slow vs control in one direction for MD, RD, and RDI and significant differences in 

both directions for AD and FA. We found significant differences between TBI-normal vs TBI-slow in one 

direction for AD, RD, and RDI; both directions for MD; and no significant difference for FA. Chronic: We 

found significant differences between TBI-normal vs control in one direction for MD, RD, and RDI and 

significant differences in both directions for AD and FA. We found significant differences between TBI-slow 

vs control in one direction for all metrics. We found significant differences between TBI-normal vs TBI-

slow in one direction for AD, FA, RD, and RDI and significant differences in both directions for MD. Regions 

with different MRI metric findings are shown at both time points in supplementary figures. 
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Discussion 

 This paper expanded on a previous project that identified two groups of children who incurred 

msTBI with different post-TBI trajectories.38,57,73,74 In this study, we present evidence to suggest that 

there may be chronic neuroinflammation in a subset of pediatric patients after msTBI, and that this may 

be linked to poorer cognitive performance post-acutely. Specifically, we used IHTT to measure corpus 

callosum functioning – a structure that supports a large number of cognitive functions and is often 

disrupted in TBI. Children with msTBI who had slower IHTT in the post-acute phase showed higher RDI 

both in the post-acute and chronic phase compared to children with msTBI and IHTT times in the normal 

range, supporting our hypothesis. It is unclear why these two groups diverge in their recoveries, as other 

possible confounding variables have been accounted for (e.g. age, severity, acute neuropathology, SES); 

however, one leading hypothesis is prolonged neuroinflammation in the TBI-slow group may contribute to 

the observed differences.  

 The pediatric brain can respond differently to TBI than adult brains due to increased 

synaptogenesis, continuing myelination, and critical periods of development, among other factors.16,75 In 

response to the primary injury of damaged neuronal tracts, a secondary response occurs including 

activating surrounding microglia, chemical pathways, and astrocyte movements in an inflammatory 

response.76–78 Following TBI, several other inflammatory responses occur, including the penetration of the 

blood-brain barrier by neutrophils, T-cells, and monocytes and the production of antibodies to cerebral 

antigens by B-cells.16,79 RDI is a non-invasive neuroimaging metric that is correlated with cell density due 

to immune cell infiltration, thus providing an indirect measure of neuroinflammation.52 If inflammation is 

an underlying mechanism contributing to the divergence between these two msTBI subgroups in children, 

this could indicate potential clinical targets and suggest an expanded window for intervention beyond the 

acute phase. Additionally, RDI could be a promising diagnostic tool for children that avoids invasive 

techniques, such as lumbar puncture measuring inflammatory biomarkers or pharmacokinetic PET, which 

involves low levels of radiation exposure to detect activated microglia.29 In the chronic phase, the TBI-

normal group had significantly lower RDI than the healthy controls. With limited studies on RDI in humans 

and none focused on development, the reasons and implications for this are unknown. Lower RDI could be 

due to neuroplasticity as brain networks reorganize after injury, resolution of secondary injury 

mechanisms such as inflammation, post-injury remyelination, cell death, or breakdown of the extracellular 

matrix. RDI likely reflects different neurobiological processes at different times post-injury, so we hope 

that our work encourages other researchers to examine RDI in their datasets as well to give a fuller 

picture of the implications and potential of RDI. 

We found that higher RDI was associated with lower cognitive performance in the post-acute 

phase, mirroring our prior papers identifying group differences in WM organization and summary cognitive 

performance at this time point. Rehabilitation methods in pediatric msTBI have targeted working memory 

as a key focus of overall cognitive improvement, supporting our findings of digit span as a useful 

biomarker and possible clinical measure.80–82 Other studies in pediatric msTBI continually note that 

cognitive impairments following the injury, including worsened working memory, attention, and memory, 
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lead to long-term deficits in daily functioning.83–85 The inconsistent associations between RDI and cognitive 

function require additional information to fully understand. It is possible, given that RDI is mathematically 

approximating a biological phenomenon, that RDI is reflecting different neuropathological processes at 

different stages post-injury. Our prior work demonstrated that these two groups of patients differ in 

longitudinal trajectories of structural development56,57 but were unable to identify a causal factor. The 

present study expanded by evaluating differences in the TBI subgroups, and the changes in RDI show a 

correlation with worsened overall outcome, cognitive performance, and support the hypothesis that 

inflammation is the driving mechanism between these two groups. While RDI is still an indirect measure of 

inflammation, the present results bring us one step closer to understanding this divergence and, thus, 

hopefully one step closer to identifying new opportunities for intervention.  

One limitation of this study is that RDI does not directly measure inflammation in the same 

mechanism as a blood biomarker or other invasive measure. Direct measures of neuroinflammation are 

difficult to collect, especially in pediatric patients and especially outside of the acute care context. Blood 

samples can reflect circulating inflammatory markers, but there is debate as to how well these peripheral 

markers correspond with neuroinflammation.86–89 It is possible to collect cerebrospinal fluid during acute 

neurosurgery when placement of a shunt is necessary or through a lumbar puncture – this method allows 

for direct collection of  central nervous system biomarkers indicative of inflammation. PK PET is a more 

direct imaging measure of inflammation, but this is more costly than MRI and far less common in pediatric 

studies and preclinical pathological correlation partly due to the radiation exposure. Still, these methods 

are not feasible nor ethical beyond the acute phase. Although RDI is not a direct measure, it has been 

validated with in vivo data, and the restricted interference can reflect the level of inflammation in a given 

area of the brain.52,90,91 Another limitation is that RDI is more reliable in multi-shell diffusion acquisitions, 

and our acquisition only included a single diffusion weighting. Finally, we had a relatively small sample 

size with 39 TBI patients, albeit smaller with the subgroups, although this is in line with other publications. 

The lack of power for the analyses with subgroups and for longitudinal data may explain the inconsistent 

associations between RDI and cognitive function. RDI is a new metric with limited information in TBI and 

in pediatric populations, so additional future information will aid in the interpretation and whether it has 

prognostic benefits.  

Here, we present evidence suggesting that a subset of pediatric msTBI patients have prolonged 

neuroinflammation and that these differences may contribute to cognitive deficits and slower recovery 

after injury. Previous studies indicate that RDI is more accurate in identifying inflammation than other 

commonly used MRI metrics.52. In this study, we demonstrate that RDI is more sensitive to changes in the 

chronic phase between TBI-slow and TBI-normal groups; this sensitivity is critical in identifying alterations 

in the brain following a TBI and the underlying mechanisms that lead to different trajectories of recovery 

in some patients. Though FA and MD have largely been used to identify TBI, RDI may be a more accurate 

diagnostic to identify and predict TBI recovery. Further studies in larger samples and/or including blood 

biomarkers of inflammation are needed to validate our results. Confirmation of our findings could suggest 

mechanistic clinical targets addressing neuroinflammation and potentially expanded windows of 
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opportunity for therapeutic intervention. Furthermore, utilizing RDI as a non-invasive diagnostic measure 

to identify the trajectory of pediatric msTBI may provide benefits both in identifying short- and long-term 

treatments while reducing the reliance on subjective reports, radiation exposure, and invasive measures.  
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Figure and Table Legends 

Table 1. Demographic information. Summarized demographic information, including age, 
sex, socioeconomic status, and time since injury, of TBI and control groups in the post-acute 
and chronic phase.  
Figure 1. Post-acute differences in RDI between the TBI-slow and control groups. 
Tracts showing significantly higher RDI in the TBI-slow group in the post-acute phase are shown. 
Colors correspond to t-statistics as shown in the color bar. Right in image is left in brain. Video: 
https://drive.google.com/file/d/1iXUwQ1QYa5iV9n6OfhSERSbN-LkirF1l/view?usp=drive_link  
Figure 2. Chronic differences in RDI between the TBI-normal and control groups. Tracts 
showing significantly lower RDI in the TBI-normal group in the chronic phase are shown. Colors 
correspond to t-statistics as shown in the color bar. Right in image is left in brain. Video: 
https://drive.google.com/file/d/11STaIwpu-rDZe-shQO7xYsQK0KeXZCBG/view?usp=drive_link  
Figure 3. Chronic differences in RDI between the TBI-slow and control groups. Tracts 
showing significantly higher RDI in the TBI-slow group in the chronic phase are shown. Colors 
correspond to t-statistics as shown in the color bar. Right in image is left in brain. Video: 
https://drive.google.com/file/d/1BXS1YBhofSs8Cjid_5Vy3Sf_qrlTnKep/view?usp=drive_link 

Figure 4. Chronic differences in RDI between the TBI-slow and TBI-normal groups. 

Tracts showing significantly higher RDI in the TBI-slow group compared to the TBI-normal group 

in the chronic phase are shown. Colors correspond to t-statistics as shown in the color bar. Right 

in image is left in the brain. Video: 

https://drive.google.com/file/d/1Rom_JmzgdaBOxNeOQKkBknbNcpbTRFsX/view?usp=drive_link 

Figure 5. Associations between RDI and Summary cognitive scores during post-acute 

phase. Areas in blue are regions where lower cognitive function was associated with higher RDI. 
Right in image is left in the brain. 
Figure 6. Associations between RDI and Cognitive Function. Along-tract negative 
associations between post-acute RDI and post-acute CPI in the TBI group. Colors correspond to 
t-statistics as shown in the color bar. Right in image is left in the brain. Right in image is right in 
the brain. Video: 
https://drive.google.com/drive/folders/191JGtHm5Oi5Lgnuix0ZqXHUyJ6VJ_roo  
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Table 1. Demographic information. Summarized demographic information, including age, 
sex, socioeconomic status (measured with highest parent education), time since injury, and 
acute neuropathology of TBI and control groups in the post-acute and chronic phase. 
TAI=traumatic axonal injury, H=hematoma or hemorrhage (subarachnoid, intraventricular, 
epidural, or subdural), C=contusion, SFx (skull fracture). 1 participant in the post-acute TBI-
normal group and 1 in the chronic TBI group without IHTT data did not have an acute 
neuropathology report. 
 

 

 

 

 Group Age Male Female IHTT [ms] 
Highest Parent 

Education 
[Years] 

TSI [weeks] GCS TAI | H | C | SFx 

Post-acute 

TBI-slow 13.7 (2.3) 9 5 26.2 (6.2)** 12.7 (3.8) 12.0 (4.8) 9.8 (4.0) 1 | 11 | 6 | 10  

TBI-normal 14.8 (3.0) 9 4 8.3 (5.4) 14.3 (4.0) 14.0 (5.1) 7.7 (3.9) 3 | 10 | 2 | 9 

TBI (No 
IHTT Data) 14.5 3 1 N/A 10.7 (1.9) 19.0 (7.3) 10.0 (2.8) 1 | 3 | 3 | 3 

Control 15.1 (2.8) 21 23 9.2 (5.6) 14.7 (3.7) N/A N/A N/A 

Chronic 

TBI-slow 15.2 (1.9) 8 2 26.2 (6.3)** 13.1 (4.1) 62.0 (5.2) 8.2 (3.2) 1 | 8 | 5 | 7 
TBI-normal 16.9 (2.8) 7 2 8.2 (5.7) 15.2 (3.6) 64.7 (8.1) 10.3 (3.5) 0 | 7 | 3 | 5 
TBI (No 
IHTT Data) 

16.9 (1.8) 6 1 N/A 13.6 (3.4) 61.9 (18.2) 9.7 (3.0) 2 | 5 | 3 | 3 

Control 16.8 (2.7) 18 10 10.2 (5.0) 15.7 (3.0) N/A N/A N/A 

 

 

 

** = < 0.01 significance  
* = < 0.05 significance 
 

** TBI-normal and TBI-slow IHTT in post-acute and chronic phases 
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Figure 1. Post-acute differences in RDI between the TBI-slow and control groups. 
Tracts showing significantly higher RDI in the TBI-slow group compared to the control group in 
the post-acute phase are shown. Colors correspond to t-statistics as shown in the color bar. 
Right in image is right in brain. Video: 
https://drive.google.com/file/d/1iXUwQ1QYa5iV9n6OfhSERSbN-LkirF1l/view?usp=drive_link  
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Figure 2. Chronic differences in RDI between the TBI-normal and control groups. Tracts 
showing significantly lower RDI in the TBI-normal group compared to the control group in the 
chronic phase are shown. Colors correspond to t-statistics as shown in the color bar. Right in 
image is right in brain. Video: 
https://drive.google.com/file/d/11STaIwpu-rDZe-shQO7xYsQK0KeXZCBG/view?usp=drive_link  
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Figure 3. Chronic differences in RDI between the TBI-slow and control groups. Tracts 
showing significantly higher RDI in the TBI-slow group compared to the control group in the 
chronic phase are shown. Colors correspond to t-statistics as shown in the color bar. Right in 
image is right in brain. Video: 
https://drive.google.com/file/d/1BXS1YBhofSs8Cjid_5Vy3Sf_qrlTnKep/view?usp=drive_link 
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Figure 4. Chronic differences in RDI between the TBI-slow and TBI-normal groups. 

Tracts showing significantly higher RDI in the TBI-slow group compared to the TBI-normal group 

in the chronic phase are shown. Colors correspond to t-statistics as shown in the color bar. Right 

in image is right in the brain. Video: 

https://drive.google.com/file/d/1Rom_JmzgdaBOxNeOQKkBknbNcpbTRFsX/view?usp=drive_link 
 

 
 
 
 
 
 
 
 
 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2025. ; https://doi.org/10.1101/2025.01.20.25320782doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.20.25320782
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

Figure 5. Differences in RDI in the post-acute and chronic phase. RDI was averaged 
across the regions showing significant differences between TBI-slow and TBI-normal at the 
chronic timepoint. RDI residuals are charted after accounting for age and sex. Red represents 
the control group, green represents the TBI-normal group, and blue represents the TBI-slow 
group. Cross-sectional differences are shown for the post-acute and chronic phases, with 
differences in longitudinal changes shown on the right. Statistically significant differences 
between groups (at q<0.05) are indicated within the graph with an asterisk.  
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Figure 6. Associations between RDI and Cognitive Function. Along-tract negative 
associations between post-acute RDI and post-acute CPI in the TBI group. Colors correspond to 
t-statistics as shown in the color bar. Right in image is left in the brain. Right in image is right in 
the brain. Video: 
https://drive.google.com/drive/folders/191JGtHm5Oi5Lgnuix0ZqXHUyJ6VJ_roo  
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