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ABSTRACT

Many substances for which consumer safety risk assessments need to be conducted are not associated with specific toxicity
modes of action, but rather exhibit nonspecific toxicity leading to cell stress. In this work, a cellular stress panel is
described, consisting of 36 biomarkers representing mitochondrial toxicity, cell stress, and cell health, measured
predominantly using high content imaging. To evaluate the panel, data were generated for 13 substances at exposures
consistent with typical use-case scenarios. These included some that have been shown to cause adverse effects in a
proportion of exposed humans and have a toxicological mode-of-action associated with cellular stress (eg, doxorubicin,
troglitazone, and diclofenac), and some that are not associated with adverse effects due to cellular stress at human-
relevant exposures (eg, caffeine, niacinamide, and phenoxyethanol). For each substance, concentration response data were
generated for each biomarker at 3 timepoints. A Bayesian model was then developed to quantify the evidence for a
biological response, and if present, a credibility range for the estimated point of departure (PoD) was determined. PoDs were
compared with the plasma Cmax associated with the typical substance exposures, and indicated a clear differentiation
between “low” risk and “high” risk chemical exposure scenarios. Developing robust methods to characterize the in vitro
bioactivity of xenobiotics is an important part of non-animal safety assessment. The results presented in this work show
that the cellular stress panel can be used, together with other new approach methodologies, to identify chemical exposures
that are protective of consumer health.

Key words: alternatives to animal testing; risk assessment; systems biology; redox signaling; inflammation; oxidative injury;
glutathione; dose-response; cytotoxicity; computational modeling.

Historically, safety assessments of ingredients in consumer
products, such as cosmetics and food have relied on apical end-
points derived from animal testing. However, ethical and regu-
latory considerations on animal use, in addition to the scientific
need to use more human-relevant data, have led to the emer-
gence of next-generation risk assessment (NGRA) (U.S. EPA,

2014). NGRA is an exposure-led and hypothesis-driven ap-
proach, wherein safety assessments are conducted in a tiered
manner using detailed information on levels of consumer expo-
sure to the ingredient together with appropriate new approach
methodologies (NAMs), including in silico, in chemico, and in vitro
approaches (Dent et al., 2018).
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For many substance exposures, low tier approaches such as
exposure-based waiving will provide sufficient information to
make a decision on safety (Yang et al., 2017, 668). However,
when this is not the case, higher tier approaches can be
deployed. For exposures where systemic toxicity is predicted to
be significant, physiologically based kinetic (PBK) models can be
used to simulate the distribution of the substance throughout
the body (ie, the bioavailability) (Campbell et al., 2012; Moxon
et al., 2020). The output from such models can be combined with
high-throughput in vitro cell assays where toxicity biomarkers
of concern and the concentrations at which they are perturbed
(ie, the point of departure [PoD]) are identified (Thomas et al.,
2019; Wetmore et al., 2015).

Developing suitable high-throughput assays for different
toxicity outcomes remain a major challenge within NGRA
(Middleton et al., 2017). In particular, studies have suggested
that many substances for which a chemical risk assessment
needs to be conducted are associated with nonspecific toxicity
modes of action (Sipes et al., 2013; Thomas et al., 2013), leading
to cellular stress or mitochondrial toxicity, which in turn are as-
sociated with various organ toxicities (Fromenty, 2019; Ipsen
et al., 2018; Ramachandran et al., 2018; Rana et al., 2019). Perhaps,
the most comprehensive datasets looking at the general bioac-
tivity of substances have been produced as part of the U.S. EPA
Toxcast (Dix et al., 2007; Judson et al., 2010; Kavlock et al., 2012)
and the U.S. federal cross agency Tox21 programs (Attene-
Ramos et al., 2013; Collins et al., 2008; Shukla et al., 2010; Tice
et al., 2013). Analysis of these datasets revealed that there is a
disproportionate increase in positive assay responses at con-
centrations that coincide with cytotoxicity and cell stress
(Judson et al., 2016). However, in that analysis it was generally
not possible to distinguish between specific stress responses
triggered by a chemical at subcytotoxic concentrations (that
may have subsequently lead to cytotoxicity at higher concentra-
tions or later timepoints), and cell stress events that coincided
with, and potentially occurred as a consequence of cytotoxicity
(referred to in this work as a “cytotoxic burst”). This limits the
degree to which the data could be used to develop a hypothesis
on a potential mechanism of toxicity. As such, developing a
suitable set of assays and analysis approaches to unravel these
events is an on-going challenge in NGRA.

The objective of this work was to develop and evaluate a cel-
lular stress response panel that could form part of an early tier
screen for identifying substances that could, at relevant expo-
sure levels, be associated with causing adverse effects in
humans. The panel consisted of biomarkers covering the key
cellular stress pathways already identified (Simmons et al.,
2009), together with mitochondrial toxicity and various cell
health effects. To evaluate the suitability of the panel for chemi-
cal risk assessment, data were generated using two sets of
benchmark chemicals. The first set included chemicals that at
defined human exposures are known to cause adverse systemic
effects due to cellular stress in a proportion of exposed individu-
als. The second set included chemicals that at relevant human
exposures have not been associated with adverse systemic
effects related to cellular stress.

A key principle of NGRA is that the various sources of uncer-
tainty, such as identifying positive biomarkers and estimating
the associated PoDs, should be robustly characterized (Dent
et al., 2018). To this end, a novel concentration-response model
was developed. The approach used Bayesian statistics, which
allowed for uncertainties in the model outputs (ie, PoD esti-
mates) to be quantified in a probabilistic manner (Gelman et al.,
2013; Reynolds et al., 2019; Shao and Shapiro, 2018). Using the

stress panel, together with the statistical approach described
here, it was possible to largely distinguish between chemical
exposures that are associated with adverse health outcomes
and chemical exposures that pose a low risk for the consumer.

MATERIALS AND METHODS

Composition of the cellular stress panel. Development of the cellular
stress response panel followed three stages, depicted in
Figure 1. First, a comprehensive literature review was per-
formed to identify biomarkers representative of key stress path-
ways already identified based on Simmons et al. (2009), together
with mitochondrial toxicity and various cell health effects (Step
1, Figure 1). A complete list of these biomarkers, together with a
detailed description of their mechanistic interpretation and as-
sociated references is provided in Table 1. Where possible,
measurements for the same pathway were multiplexed on the
same plate, as indicated in Supplementary Table 1 (making a to-
tal of 15 assays). However, this was not always feasible due to
not being able to multiplex antibodies from the same species or
fluorescent antibodies/probes of the same wavelength in the
same well. For all chemicals, each assay was run once with 3
technical replicates per concentration tested. The positive con-
trols used for each biomarker can also be found in
Supplementary Table 1. In order to generate reliable PoD esti-
mates for each biomarker and detect potentially transient
responses (Shah et al., 2016), data were generated for 8 concen-
tration points per test chemical at 1, 6, and 24 h post-treatment,
except for phospholipidosis and steatosis (6 and 24 h only). Test
substances were selected (Step 2, Figure 1) such that there exists
evidence either that (at defined levels of human exposure) the
substance was known to cause adverse effects in humans due
to cellular stress or that there was a history of safe use.
Substance exposures in the former group were considered
“high” risk and those in the latter group “low” risk, in the con-
text of safety decisions made in the consumer goods industry.
The only exception to this was diethyl maleate (DEM), which
was the only test substance used in the panel for which a typi-
cal systemic exposure level in humans could not be defined. A
summary of the chemicals and corresponding exposure scenar-
ios is provided in Table 2, and the rationale for whether a chem-
ical exposure is low or high risk is provided in Supplementary
Material (Supplementary Substance Information). Where avail-
able, total Cmax estimates (see Table 2) were obtained from the
literature, otherwise they were calculated using PBK models
(see Exposure assessment section). These were then used to es-
tablish the concentration ranges for the in vitro assays of each
substance, together with cytotoxicity data from previous stud-
ies (Step 3, Figure 1; data not shown). In addition, in vitro nomi-
nal concentrations were selected in order to cover the
predicted/observed free in vivo plasma concentrations. To
achieve this, the free concentration was calculated for both
plasma Cmax concentrations and in vitro concentrations by ap-
plying a steady-state mass balance partitioning model based on
published models (Armitage et al., 2014; Fischer et al., 2017;
Kramer et al., 2012). For all chemicals tested, the quantitative
in vitro to in vivo extrapolation factor was higher than 1
(Supplementary Table 2), which indicated that for the same to-
tal plasma Cmax and in vitro concentration, the resulting free
concentration that was available for uptake into the cells was
higher in vitro than in vivo. This meant that an initial compari-
son between plasma Cmax and in vitro PoD was conservative and
therefore nominal concentrations were applied throughout.
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The 8 concentration points for each substance based on these
ranges are provided in Supplementary Table 3.

Materials. Cell culture media, supplements, and buffers were
purchased from ThermoFisher Scientific (Loughborough, UK).
All test compounds were purchased from Sigma-Aldrich
(Dorset, UK). Supplier information for antibodies, cellular dyes,
and assay kits can be found in Supplementary Table 1.

Cell culture. The cell line HepG2 (human hepatoblastoma) was
obtained from Public Health England European Collection of
Cell Cultures (ECACC, Salisbury, UK). Cells were cultured in
complete minimal essential medium (MEM) supplemented with
10% fetal bovine serum (FBS), 2 mM L-GlutaMAX, 1% nonessen-
tial amino acids (NEAA), 53 U/ml penicillin, and 53 mg/ml strep-
tomycin in 75 cm2 cell culture flasks. Cells were maintained in a
humidified atmosphere with 5% CO2 at 37�C. Cells were kept at
a confluence below 85% and not maintained in culture more
than 4 weeks (8 passages).

Compound treatment. Compounds were prepared as stock solu-
tions at a 200-fold higher concentration than the desired top
concentration in appropriate vehicle (100% DMSO). Compounds
were serially diluted in appropriate vehicle to give an 8-point
concentration curve using custom dilution series (see
Supplementary Table 3). Dosing solutions were prepared by di-
luting the compound stocks 1:40 in the appropriate assay media
and the cells were exposed by adding 25 ml of the dosing solu-
tion to the appropriate wells (resulting in a total volume of
125 ml/well of a 96-well plate and 0.5% DMSO v/v). Compound
treatment was performed for the appropriate time (1, 6, or 24 h)
in a humidified atmosphere with 5% CO2 at 37�C.

Measurement of mitochondrial toxicity using the extracellular flux as-
say. The extracellular flux assay was used to assess mitochon-
drial toxicity in HepG2 cells by determining the oxygen
consumption rate (OCR), reserve capacity, and extracellular
acidification rate (ECAR) using the XFe96 flux analyzer (Agilent),
as described previously (Brand and Nicholls, 2011). In brief

Figure 1. Overview of composition of the stress panel and experimental design for benchmark data generation. Diethyl maleate (DEM) was also included as a test

chemical in the panel, but could not be designated as high or low risk due to lack of exposure information.
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Table 1. Composition of the Cellular Stress Panel

Pathway Biomarker Description Interpretation References

Cell health and
physiology

Cell count
(nuclei)a/b

Number of cells calculated by
counting stained nuclei.

A decreasing number of cells per well
indicates toxicity due to necrosis, apo-
ptosis or a reduction in cellular
proliferation.

Bauch et al. (2015),
Nikoletopoulou
et al. (2013)

Cell health and
physiology

Nuclear sizeb Nuclear area measured using
DNA stain.

An increase in nuclear area can indicate
necrosis or G2 cell cycle arrest and a de-
crease can indicate apoptosis.

Cell health and
physiology

DNA structureb DNA structure measured using
DNA stain.

An increase in DNA structure can indicate
chromosomal instability and DNA
fragmentation.

Cell health and
physiology

Cell cycle arrest Determined as the ratio of G0/
G1(2N) to G2/M(4N)

An increase is linked to G0/G1 arrest and a
decrease is linked to G2/M arrest.

Cell health and
physiology

Cell membrane
permeability
(necrosis)a

Detected using a cell-imperme-
ant nucleic acid stain.

An increase in cell membrane permeabil-
ity is a general indicator of cell death
via necrosis.

Cell health and
physiology

Caspase 3/7 in-
tensity
(apoptosis)a

Following activation of
Caspase-3/7 in apoptotic
cells, the detection reagent is
cleaved, enabling the dye to
bind to DNA & generate
fluorescence.

An increase in Caspase 3/7 activity indi-
cates the onset of the cell signaling cas-
cade leading to cell signaled cell death
(apoptosis).

Cell health and
physiology

LDH releasea Determined by detecting the
level of LDH released from
cells measured by the con-
version of resazurin into
resorfin.

An increase in LDH is due to the release of
LDH from cells which have damaged
membranes.

Cell health and
physiology

Intracellular pH Determined by measuring the
intensity of a fluorogenic
probe that increases as the
pH drops.

Changes in intracellular pH can indicate
the interference of the compound with
either the regulation of intracellular pH
or the protonation of the compound it-
self. Specific intracellular pH is required
for optimum cellular processes, distri-
bution or target binding of the
compound.

Cell health and
physiology

Phospholipidosis
(PLD)

Detected following conjugation
of a fluorescent dye to phos-
pholipids within cells.

An increase in phospholipidosis (PLD)
indicates an accumulation of phospho-
lipids and/or compounds within lyso-
somes. Lysosomes are organelles
essential in cellular biogenesis and if
compromised can lead to cellular toxic-
ity. PLD can also occur indirectly by al-
tering synthesis and/or degradation of
phospholipids.

Cell health and
physiology

Steatosis Detected using a fluorescent
neutral lipid stain with a
high affinity for neutral lipid
droplets (mainly consisting
of triglycerides).

An increase in steatosis indicates an accu-
mulation of triglycerides within the cy-
toplasm of treated cells, often triggered
by compounds that affect the metabo-
lism of fatty acids and/or neutral lipids.
Large accumulations can disrupt cell
constituents, and in severe cases the
cell may burst.

Mitochondrial
toxicity

PGC1alpha PGC1alpha is a transcription
factor coactivator involved in
mitochondrial biogenesis
and metabolic homeostasis.

An increase in the protein expression of
PGC1alpha indicates mitochondrial
toxicity.

Attene-Ramos et al.
(2013, 2015),
Eakins et al. (2016),
Nadanaciva and
Will (2011), Yuan
et al. (2016)

Mitochondrial
toxicity

Mitochondrial
ROS (MitoROS)

Detected following oxidation
by superoxide of a fluoro-
genic dye specifically tar-
geted to mitochondria.

An increase in mitochondrial superoxide
production indicates mitochondrial
toxicity and oxidative damage.

Mitochondrial
toxicity

Mitochondrial
mass (mito-
mass)

Mitochondrial mass is mea-
sured by a fluorescent mito-
chondrial specific stain and

A decrease in mitochondrial mass indi-
cates loss of total mitochondria and an
increase implies mitochondrial
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Table 1. (continued)

Pathway Biomarker Description Interpretation References

is an indicator of both the
size and number of mito-
chondria present in a cell.

swelling or an adaptive response to cel-
lular energy demands.

Mitochondrial
toxicity

Mitochondrial
membrane po-
tential (MMP)

The mitochondrial membrane
potential (MMP) plays a key
role in ATP production and
mitochondrial homeostasis,
and is measured by staining
the cells with a fluorescent
dye specific for active mito-
chondria prior to compound
treatment.

A decrease indicates a loss of mitochon-
drial membrane potential and mito-
chondrial toxicity, as well as a potential
role in apoptosis signaling, an increase
in mitochondrial membrane potential
indicates an adaptive response to cellu-
lar energy demands.

Mitochondrial
toxicity

Cellular ATP Cellular ATP levels are detected
using a luminescence-based
assay. After cell lysis the en-
dogenous enzymes are re-
leased from the cell. Cells
which are not metabolically
active will not release any
ATP.

A decrease in metabolically active cells
will result in a decrease in the level of
ATP detected indicating mitochondrial
toxicity and loss of cell viability. An in-
crease in cellular ATP levels could also
indicate an effect on cellular
metabolism.

Mitochondrial
toxicity

Oxygen con-
sumption rate
(OCR)

OCR is a measurement of oxy-
gen content in extracellular
media using an XFe96
Extracellular Flux Analyzer.

Changes in OCR indicate effects on mito-
chondrial function and can be bidirec-
tional. A decrease is due to an
inhibition of mitochondrial respiration,
while an increase may indicate an un-
coupler, in which respiration is not
linked to energy production.

Mitochondrial
toxicity

Reserve capacity The reserve capacity is the
measured ability of cells to
respond to an increase in en-
ergy demand. Detected using
an XFe96 Extracellular Flux
Analyzer following addition
of the protonophoric uncou-
pler FCCP.

A reduction indicates mitochondrial dys-
function. This measurement demon-
strates how close to the bioenergetic
limit the cell is.

Oxidative stress NRF2 Nrf2 is a transcription factor
that is key for regulation of
cellular redox balance and
adaptive responses to oxida-
tive stress.

An increase in translocation of Nrf2 into
the nucleus indicates oxidative stress
and results in the expression of a wide
range of antioxidant-response genes.

Hiemstra et al. (2017),
Loboda et al.
(2016), Ramesh
et al. (2014), Wink
et al. (2014)

Oxidative stress Heme oxygenase
1 (HMOX1)

Heme oxygenase 1 is one of the
many genes that has its ex-
pression induced by Nrf2 ac-
tivation and has several
antioxidant roles including
the removal of toxic heme.

An increase in the protein level of heme
oxygenase 1 indicates induction of the
Nrf2/oxidative stress-response
pathway.

Oxidative stress Oxidative stress
(ROS)

Reactive oxygen species (ROS)
are free radicals that cause
damage to a range of macro-
molecules including DNA,
RNA, and protein. Detected
using a probe that fluoresces
following reaction with su-
peroxide or hydrogen
peroxide.

An increase in ROS indicates the forma-
tion of toxic superoxide intermediates,
an early cytotoxic response and indica-
tor of oxidative stress.

Oxidative stress Glutathione con-
tent (GSH)

Glutathione is one of the most
abundant cellular antioxi-
dants and helps to maintain
cysteine-thiol groups of pro-
teins in the reduced state. An
increased GSSG (oxidized
glutathione) to GSH (reduced
glutathione) ratio is indica-
tive of oxidative stress.

A decrease in glutathione content can re-
sult from production of reactive oxygen
species or from direct binding of elec-
trophiles. An increase in glutathione
content represents an adaptive cellular
response to oxidative stress.
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Table 1. (continued)

Pathway Biomarker Description Interpretation References

Inflammation NFkB NFkB is a transcription factor,
which resides in the cyto-
plasm bound to IkB. Upon
cellular stress the complex
dissociates and NFkB trans-
locates into the nucleus,
where it triggers the expres-
sion of cytokines, enzymes
and growth factors.

An increase in NFkB signal indicates the
activation of the NFkB pathway and its
translocation to the nucleus to initiate
downstream gene expression.

Ben-Neriah and
Karin (2011), Kany
et al. (2019),
Verstrepen et al.
(2010), Xu et al.
(2017)

Inflammation IL-8 IL-8 is a chemokine involved in
inflammation and stimula-
tion of the innate immune
system.

An increase in IL-8 secretion may suggest
an inflammatory response.

Inflammation TNFAIP3 (A20) TNFAIP3 (A20) is a cytoplasmic
protein that plays a key role
in the negative regulation of
inflammation and immunity.

An increase in TNFAIP3 (A20) is likely to
be seen if a compound induces an in-
flammatory response and can lead to
inhibition of NFkB activation.

ER Stress Endoplasmic re-
ticulum (ER)

The ER plays a crucial role in
the synthesis of cellular pro-
teins. The level of ER in a cell
was detected using a fluores-
cent dye selective for ER in
live cells.

Cells increase biogenesis of components
of the ER in order to increase protein-
folding capacity. Therefore, an increase
in the size of the endoplasmic reticu-
lum is an indicator of ER stress.

Foufelle and
Fromenty (2016),
Oslowski and
Urano (2011),
Teske et al. (2011),
Wang and
Kaufman (2016),
Wink et al. (2014)

ER stress BiP BiP is an ER chaperone with a
high affinity for misfolded
proteins.

An increase in the protein levels of BiP
indicates ER stress.

ER stress XBP1 XBP1 is a transcription factor
activated by the ER stress
sensor IRE1 and induces
transcription of genes in-
volved in ER size and
function.

An increase in the protein levels of XBP1
indicates ER stress.

ER stress PERK The kinase PERK is an ER stress
sensor that plays a key role
in inhibiting the synthesis of
new proteins and activation
of the transcription factors
ATF4 and CHOP.

An increase in the protein levels of PERK
indicates ER stress.

ER stress ATF4 ATF4 is a transcription factor
activated via the PERK
branch of the ER stress path-
way that transcriptionally
activates CHOP.

An increase in the protein levels of ATF4
indicates ER stress.

ER stress CHOP CHOP is a transcription factor
activated via the PERK
branch of the ER stress path-
way. Low levels of CHOP
results in the transcription of
pro-survival proteins includ-
ing chaperones. High levels
of CHOP lead to the initiation
of apoptosis.

An increase in the protein levels of CHOP
indicates ER stress.

Metal stress MTF1 Metal-responsive transcription
factor 1 (MTF-1) is a tran-
scription factor that regu-
lates the expression of genes
involved in metal
homeostasis.

An increase in protein levels of MTF-1
indicates metal stress.

Gunther et al. (2012),
Park and Jeong
(2018), Wink et al.
(2014)

Metal stress Metallothionein
(MT)

Metallothionein expression is
induced by the transcription
factor MTF-1.
Metallothioneins bind and
sequester toxic heavy metal
ions.

An increase in protein levels of MT indi-
cates metal stress.
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HepG2 cells were seeded at 16 000 cells/well onto XFe96 plates
(Agilent) in complete MEM supplemented with 10% FBS, 2 mM L-
GlutaMAX, 1% NEAA, 53 U/ml penicillin, and 53 mg/ml strepto-
mycin and left overnight to attach in a humidified atmosphere
with 5% CO2 at 37�C. Dosing solutions were prepared as de-
scribed above. Compound treatment of the HepG2 cells was per-
formed for 1, 6, or 24 h (see Composition of the cellular stress
panel section). Due to some components of the complete MEM
media being known to interfere with the assay readout (Brand
and Nicholls, 2011), the last 60 min of each treatment (or the en-
tire period of the 1 h treatment) was conducted in appropriately
dosed unbuffered DMEM assay medium (Sigma-Aldrich) supple-
mented with 10 mM glucose, 30 mM NaCl, 1 mM pyruvate, and
2 mM L-alanyl-glutamine (medium pH7.4, 37�C). The XFe 96
microplate cartridges (Agilent) were loaded with 20 ml of dosing
solution. Four initial baseline OCR and ECAR measurements
prior to the addition of test compound were determined. Each
measurement consisted of a 3-min mix and 4-min read cycle.
Following treatment with the test compound a further six
measurements of OCR and ECAR were taken. Subsequently a
mitochondrial stress test was performed by consecutive addi-
tion of the inhibitors oligomycin (1 lM), carbonyl cyanide 4-(tri-
fluoromethoxy) phenylhydrazone (FCCP, 0.5 lM), and rotenone
(1 lM) plus antimycin A (1 lM) (Rot/AA). Two subsequent OCR
measurements were taken following each inhibitor addition.
Basal OCR (the sixth OCR measurement following compound/
vehicle addition) were normalized to the baseline OCR measure-
ments, and all measurements were corrected for the nonmito-
chondrial OCR (the final OCR measurement following the

addition of Rot/AA). The reserve capacity is a measurement of
the maximal OCR (following FCCP addition), and was deter-
mined as change from the baseline OCR, and corrected for the
nonmitochondrial OCR. ECAR measurements were taken after
the addition of vehicle or test compound and normalized to
baseline ECAR. On each plate no cells were seeded into A1, H1,
or column 12, the 4 corner wells were used as the temperature
control wells. Control cell free wells were used to identify com-
pounds, which interfered with either OCR or ECAR as a result of
compound induced pH changes or interference due to com-
pound color.

High content imaging assays. Cell imaging with fluorescence anal-
ysis was performed with a Cellomics ArrayScan VTI or
Cellomics ArrayScan XTI Infinity High Content Screening plat-
form (ThermoFisher, UK), which used HCS Studio 2.0 software
(ThermoFisher, UK) and the compartmental analysis bioappli-
cation for image analysis. HepG2 cells were seeded in complete
EMEM supplemented with 10% FBS, 2 mM L-GlutaMAX, 1%
NEAA, 53 U/ml penicillin, and 53 mg/ml streptomycin at cell den-
sities of 10 000, 12 500 or 12 500 cells/well, for the exposure
times of 24, 6 and 1 h, respectively. The cells were seeded in 96-
well black-walled clear-bottom Greiner micro plates (Sigma-
Aldrich) and were allowed to adhere overnight. Test compounds
were prepared as described above. Cells were treated in tripli-
cates at 8 different concentrations of each test compound.
Following compound treatment, the culture media were re-
moved and if appropriate cells were stained with the specific
dye/antibody for each HCS endpoint (Supplementary Table 1). If

Table 1. (continued)

Pathway Biomarker Description Interpretation References

DNA damage DNA damage (p-
H2AX)

DNA double-strand breaks
(DSBs) cause the phosphory-
lation of histone H2AX at
Ser139. DSBs are an indica-
tion of genotoxicity and can
lead to apoptosis.

An increase in p-H2AX indicates a rise in
the number of DSBs and therefore DNA
damage induction.

Ando et al. (2014),
Banerjee and
Chakravarti (2011),
Khoury et al. (2013)

Heat shock
response

Heat shock re-
sponse (Hsp70)

Hsp70 protects against cellular
stress particularly through
its key role in protein folding
and inhibition of apoptosis.

An increase in Hsp70 indicates a general
cellular stress response which could in-
clude thermal, metal, oxidative and ER
stress.

Boudesco et al.
(2018), Wang et al.
(2014a),
Westerheide and
Morimoto (2005),
Wink et al. (2014)

Hypoxia HIF1alpha Hypoxia-inducible factor-1 al-
pha (HIF1alpha) is a tran-
scription factor that plays a
key role in the cellular re-
sponse to hypoxia (low oxy-
gen levels) and also responds
to changes in the redox state
of the cell.

An increase in the level of HIF1alpha indi-
cates hypoxia.

Dengler et al. (2014),
Wenger et al.
(2005), Wink et al.
(2014)

Aryl hydrocarbon
receptor (AhR)

AhR
translocation

AhR is a multifunctional tran-
scription factor that cross-
talks with other transcrip-
tion factors including Nrf2
and NFkB, and cytochrome
P450 enzymes.

An increase in AhR translocation indi-
cates a general cellular stress response
which could include oxidative stress,
inflammation, and other chemical de-
fense mechanisms.

Bock (2019), Furue
et al. (2017), Nebert
et al. (2000)

aCytotoxicity biomarker.
bBiomarker measured in every assay.
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Table 2. Exposure Data Used for the Estimation of Internal Concentration Expressed as total Plasma Cmax (mM)

Chemical

Chemical-
Exposure

Classificationa Exposure Data Description Cmax (mM)b Reference

Niacinamide Low risk PBK model predicting niacinamide plasma exposure
(Cmax)c based on the tolerable upper daily intake
level of 12.5 mg/kg bw/day established by the
European Food Safety Authority (EFSA)

163 See Supplementary
Material
(Supplementary
Substance
Information)

Coumarin Low risk PBK model predicting coumarin plasma exposure
(Cmax)c based on tolerable daily intake of 0.1 mg/kg
bw/day established by the European Food Safety
Authority (EFSA)

0.01 See Supplementary
Material
(Supplementary
Substance
Information)

Caffeine Low risk Human plasma exposure for caffeine was estimated
based on a pharmacokinetic study following sin-
gle oral consumption of 315–530 mg/day

52 Blanchard and
Sawers (1983)

Phenoxyethanol Low risk PBK model predicting phenoxyethanol plasma expo-
sure (Cmax) based on cosmetic aggregate exposure
of 2.69 mg/kg/day for adults using the conserva-
tive assumption that all of the products contain
phenoxyethanol at a maximum of 1% and that the
total daily aggregate exposure would be given as a
single dose (once daily)

4 Troutman et al.
(2015)

Sulforaphane Low risk Human pharmacokinetic data describing Cmax
c fol-

lowing repeated daily oral consumption of liquid-
ized broccoli containing 3.9 mg of sulforaphane

0.07 Hanlon et al. (2009)

tertiary-
Butylhydroqui-
none (tBHQ)

Low risk PBK model predicting t-BHQ plasma exposure (Cmax)c

based on the acceptable daily intake of 0.7 mg/kg
bw/day established by the European Food Safety
Authority (EFSA)

1.4 See Supplementary
Material
(Supplementary
Substance
Information)

Triclosan Low risk Predicted human exposure levels corresponding to
the reference dose or MoS targets from the U.S.
FDA and the Scientific Committee on Consumer
Safety (SCCS), respectively

2 Krishnan et al. (2010)

CDDO-Me High risk Human pharmacokinetic data describing Cmax
d fol-

lowing repeated oral exposure of 900 mg/day for
21 days. Exposure corresponds to maximum toler-
ated dose

0.05 Hong et al. (2012)

Doxorubicin High risk Human pharmacokinetic data describing Cmax fol-
lowing an i.v. 40 min infusion of 60 mg/m2 of body
surface area

1 Speth et al. (1987)

Diclofenac High risk Human pharmacokinetic data describing Cmax fol-
lowing exposure to a single oral dose (50 mg) of
diclofenac

4 Davies and
Anderson (1997),
Marzo et al. (2000)

Diethyl maleate No defined exposure scenario
Troglitazone High risk Human pharmacokinetic data describing Cmax fol-

lowing a single oral dose of 400 mg
3 Loi et al. (1999),

Plosker and Faulds
(1999), FDA sub-
mission dossierd

Pioglitazone High risk Human pharmacokinetic data describing Cmax fol-
lowing a single oral dose of 45 mg

4.5 Christensen et al.
(2005), FDA sub-
mission dossierf

Rosiglitazone High risk Human pharmacokinetic data describing Cmax fol-
lowing a single oral dose of 8 mg

1.5 Avandia prescribing
informationd

aExposure scenario adopted for chemical is either “low risk” or “high risk” (from consumer goods perspective).
bMean plasma Cmax values were calculated from clinical trials or PBK models. Further details can be found in the Supplementary Material (Supplementary Substance

Information).
cCmax values were calculated when compound reached steady state after repeat dosing.
dhttps://www.fda.gov/media/75754/download. Accessed June 20, 2019.
ehttps://www.accessdata.fda.gov/drugsatfda_docs/label/1999/20720s12lbl.pdf. Accessed June 20, 2019.
fhttps://www.accessdata.fda.gov/drugsatfda_docs/nda/99/021073A_Actos.cfm, Clinical Pharmacology Biopharmaceutics Review(s), Parts 1 to 4. Accessed June 20, 2019.
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required cells were fixed with 100 ll/well fixation solution (4%
formaldehyde in phosphate-buffered saline [PBS] containing
20 lg/ml Hoechst 33342) for 30 min at room temperature pro-
tected from light. Cells were washed 3 times with PBS and fluo-
rescence image acquisition was performed. Per well 8 fields of
view were imaged using a 10� wide-field objective. Cell nuclei
were detected by analyzing the Hoechst 33342 (Sigma) fluores-
cence signal using a 360–400-nm excitation filter and 410- to
480-nm emission filter or SYTO 11 Green Fluorescent Nucleic
Acid Stain (ThermoFisher Scientific) using 505-nm excitation fil-
ter and 525-nm emission filter depending upon the endpoint
combination used per plate. Endpoints detailed in
Supplementary Table 1 were multiplexed where possible based
upon emission spectra, each endpoint was analyzed for
changes in fluorescent intensity signal in either the cytoplasmic
or nuclear regions of each cell and compared against the vehicle
control wells.

Cellular ATP and lactate dehydrogenase release. Cellular ATP was
determined in HepG2 cells following dosing procedures as out-
lined above using luminescence following the manufacturers
guidelines (CellTiterGlo, Promega), luminescence was deter-
mined using a BioTek Synergy 2 (BioTek). Raw fluorescence in-
tensity values (RFU) were normalized to vehicle control wells in
all cases and expressed as fold changes in assay signal. The
presence of lactate dehydrogenase (LDH) was determined from
50 ml supernatant samples of HepG2-treated cells using the
CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega), fol-
lowing the manufacturers guidelines, absorbance was deter-
mined at 490 nm using a SpectraMax (Molecular Devices).

ELISA tests in the HepG2 cell culture supernatants. HepG2 cells were
cultured and exposed as detailed above. Supernatants were

collected from treated HepG2 cells following the appropriate in-
cubation period (see Table 1). Fifty microliters of supernatant
was analyzed for levels of IL-8 using an ELISA kit, according to
the manufacturer’s instructions.

Exposure assessment. Physiologically based kinetic models were
constructed with the simulation software GastroPlus 9.6
(Simulation Plus, Lancaster, California). Briefly, the PBK models
developed represent the whole body as a series of compart-
ments parameterized based on physiology of tissues and organs
(eg, blood flow, volume, etc.). PBK models integrate this physio-
logical description with compound-specific data to predict the
pharmacokinetics of compounds (ie, concentration over time in
plasma and tissues). In Table 2, a summary of the exposure sce-
narios and total Cmax for each chemical is provided. The full
details regarding the choice of the exposure scenario, the litera-
ture clinical data underpinning the plasma Cmax values selected,
and the PBK model assumptions are described in the
Supplementary Material (Supplementary Substance
Information). When available, the performance of the PBK
model was checked against clinical data.

Concentration-response analysis using Gaussian processes.
Concentration-response analysis was performed using
Gaussian processes (Gelman et al., 2013) within a Bayesian sta-
tistical framework. A brief overview of the approach is provided
below; a more detailed description is given in the
Supplementary Material (supplementary information on
concentration-response modeling). The approach differs from
other more commonly used methods such as benchmark dose
(BMD) as follows. Typically, concentration-response analysis
involves fitting several different curves (mathematical func-
tions, such as exponential, Hill, polynomial) to a single

Figure 2. Representative concentration response data and model fits. (A) Concentration response that strictly increased, (B) strictly decreased, and (C) increased but

then decreased at a higher concentration. (D) Example where the substance had negligible influence on the measured biomarker at all tested concentrations. (E)

Example in which there was a high uncertainty regarding whether the observed change was due to the test chemical, a chance fluctuation in the replicates and/or a

bias in the response due to well location or due to well position. F) Example in which the PoD distribution is bimodal, resulting in more than one plausible PoD found

by the model to be consistent with the data. Crosses correspond to individual data points; horizontal dashed lines indicate control values.
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concentration-response dataset. These functions (or curves) are
dependent on one or more parameters. This process of fitting a
curve to the data by optimizing over the parameters is known
as a parametric approach. Model selection criteria then need to
be established in order to select the “best” curve that describes
the data, from which the PoD can be calculated. However, find-
ing this “best” curve can be regarded as source of uncertainty in
itself, as it can impact the estimate of the PoD (Watt and Judson,
2018). Gaussian processes are, in contrast, an example of a non-
parametric modeling approach, whereby the Gaussian process
defines effectively a probability distribution of random func-
tions. Using this approach, the data are able to dictate the shape
of the fitted curves rather than have the curves be of a pre-
defined shape, as in the parametric approach. This allows for a
single (nonparameteric) model to be flexible enough to describe
a wide range of concentration-response shapes.

The model was constructed as follows. Raw measurements
for each plate were divided by the corresponding median con-
trol measurement, which was then log2 transformed. Nominal
concentrations were used for calculating the PoDs; these were
log10 transformed.

Let x be the concentration of a test compound with corre-
sponding mean response denoted by �y. The change in the mean
response with respect to x is modeled using a Gaussian pro-
cesses (Gelman et al., 2013). Thus �y are distributed according to
a multivariate Gaussian distribution with constant mean vector
l ¼ l; l; . . . ; l½ �T and covariance matrix Kþ r2

plateI such that �y
� N l;Kþ r2

plateI
� �

where

K xu; xvð Þ ¼

0 if xu � h or xv � h;

g2 xu � hð Þ2 xv � hð Þ2 exp � xu � xvð Þ2

q2

 !
if xu > h and xv > h ;

8>><
>>:

(1)

and I is the identity matrix. This covariance function has been
constructed so that the sampled curves will have a constant
mean up to some threshold h, and that above h the response
may change in any direction provided that it does so smoothly
with respect to the concentration x. The quadratic terms pre-
ceding the exponential ensure that samples of �y are continuous
and smooth over the whole test concentration range. The scale
parameter r2

plate is used to model variability in the mean re-
sponse as a function of the well location along a plate, thereby
allowing the model to account for potential biases arising from
plate effects (Malo et al., 2006), see Supplementary Material (ac-
counting for biases in well location and reducing sensitivity to
outliers) for further details.

The distribution of replicate measurements at the same test
concentration, y, is modeled using a Student’s t distribution,
with 5 degrees of freedom, centered on the mean response �y
and having scale parameter r,

y � t5 �y; rð Þ: (2)

The mean response in each group of control wells was mod-
eled using the variable �z and was assumed to be normally dis-
tributed with mean l and scale r2

plate,

�z � N l; r2
plate

� �
:

The replicates, z, within each group of control wells for each
plate were assumed to be distributed as in equation 2 such that

z � t5 �z; rð Þ:

Independent prior distributions were assigned to the param-
eters l; rplate; r; h; g, and q (see Supplementary Material).

The model was fitted using Markov-chain Monte Carlo
(MCMC) approaches (see Software details for further informa-
tion). For each concentration-response dataset, 10 000 model
parameter sample sets (/i; for i ¼ 1; . . . ; 10 000) were drawn
from the posterior distribution. For each set, the concentration-
dependent mean response ypost, was calculated at 100 uniformly
spaced concentrations between the minimum and maximum
tested concentrations using the standard equation for the mar-
ginal distribution of a multivariate normal distribution (Gelman
et al., 2013).

PoDs were defined as the lowest concentration at which the
mean response deviated more than l62

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

plate

q
. This

threshold was based on the heuristic that the 95% credibility
range of the combined variability emanating from the plate bias
and replicate fluctuations is given (approximately) by this term,
when both effects are normally distributed (which is not strictly
true in the mathematical sense, because Student’s t distribu-
tions were used in the model formulation above). The PoD for
sample i is therefore defined as the maximum value of x such
that

PoDi ¼max x : jypost iðx
0Þ � lij < 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

platei

q
þ ri

2 8x0 < x
n o

(3)

Because yposti
is only defined at discrete concentrations x,

linear interpolation is used to solve the above equation. If the
first lowest value of x which satisfied the above was the maxi-
mum tested concentration, then no PoD was defined for that
sample.

For a given concentration response, the above procedure can
result in anywhere between 0 and 10 000 samples for the PoD.
The proportion of samples for which a PoD could be detected
(according to equation 3) was used as a confidence score that
the response was concentration dependent (termed the
Concentration Dependency Score or CDS). A default choice of 50% of
the samples (corresponding to a CDS of 0.5) was required for the
concentration-response dataset to be classified as concentra-
tion dependent. In other words, at least 5000 of the sampled
curves attain a value (at some point along the curve) that
exceeded the threshold defined in equation 3 in order for the re-
sponse to be considered concentration dependent.

Modes and a 95% highest density interval (HDI) were esti-
mated from the posterior samples to summarize the distribu-
tion (Kruschke, 2014). For datasets in which two or more modes
were inferred, the HDI is split into subintervals, one for each
mode. A representative mode was chosen by inspection of the
curve fit, and the corresponding subinterval is used as the credi-
bility range for the POD. Otherwise, in cases where there is only
one mode, the credibility range is based on the entire HDI. In
most cases, the representative mode corresponded to the mode
of highest density. However, in a small number of cases a lower
density mode was chosen for an alternative reason, such as
consistency with other timepoints. Choices and selection ratio-
nale are provided as Supplementary Material, mode selection
file.

A summary file indicating chemical, assay, timepoint, CDS,
and PoD distribution modes for each profile, together with an
image for every concentration-response fit, is provided via the
Dryad repository (https://doi.org/10.5061/dryad.cnp5hqc20).
These images include an overlay of the maximal fold change
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(up or down) attained by the corresponding positive control (see
Supplementary Table 1). Here, note that almost all positive con-
trols caused an increased response, except cellular ATP, OCR,
reserve capacity, glutathione content, and intracellular pH
which were decreased.

Software details for the Gaussian process model. Data processing
was performed using the Anaconda bundle for Python (version
2019.07, Python 3.7.3). MCMC sampling was performed using
Pystan 2.19.0 (Carpenter et al., 2017). Python code for running
the model and reproducing the fits, together with a brief tuto-
rial, is provided via the Dryad repository (see above).

Benchmark dose analysis. Benchmark dose and benchmark dose
lower confidence limit (BMDL) maximum likelihood estimates
were obtained using BMD Software (BMDS) version 3.1 (available
from https://www.epa.gov/bmds/benchmark-dose-software-
bmds-version-30). For a single concentrations-response dataset,
the software fits multiple parametric models and calculates cor-
responding estimates of the BMD, the BMDL, and the Akaike
Information Criteria (AIC) for each fit. The AIC provides a quan-
titative estimate of the quality of the fit, offset by the complex-
ity of the models, and can be used to guide model selection; a
generally accepted heuristic is that the model with the lowest
AIC is likely to be the “best” one among those that were consid-
ered, although this does not guarantee that the model in itself
provides a good description of the data. The following continu-
ous models were used: exponential, polynomial, power, Hill
function, and linear, using both restricted frequentist and unre-
stricted frequentist settings (where possible [U.S. EPA, 2019]).
BMDs were calculated using the “standard deviation” to set the
benchmark response (BMR), where the BMR was (by definition)
the baseline level of the response plus or minus the standard
deviation of the control samples, times the BMR Factor (BMFR);
the BMFR was set equal to 2 to ensure that the BMD definition
would be approximately equivalent to the PoD definition pro-
vided in equation 3. Before fitting the models, raw measure-
ments were processed using the same settings the Gaussian
process concentration-response model described above, but the
nominal concentrations of the test compound were not log10

transformed as BMDS was not designed to accept concentra-
tions in log scale. Otherwise, default settings were used. All out-
put files from the analysis are available via the Dryad repository
(see above).

RESULTS

Generation and Analysis of Concentration-Response Cell Stress Data
Concentration response data were generated for each of the 36
biomarkers representing mitochondrial toxicity, cell stress, and
cell health in Table 1 at 1, 6 and 24 h (unless otherwise stated)
using the 13 benchmark chemicals (listed in Table 2) and DEM (a
model substance for oxidative stress), making a total of 2965
concentration-response datasets. In this work, cytotoxicity is
represented by biomarkers of cell death (indicated in Table 1).
The stress panel datasets comprised a wide variety of different
concentration-dependent trends, depending on the substance,
biomarker, and timepoint, representative examples of which
are provided in Figure 2. This included response profiles that
were either monotonic (ie, the response only increased or de-
creased with concentration; Figs. 2A and 2B) or nonmonotonic
(ie, hormesis: increased at low concentrations before reaching a
plateau and then decreasing at higher concentrations, or vice-

versa; Figs. 2C and 2F) (Hill et al., 2018; O’Brien et al., 2006), pro-
files where no discernable concentration-dependent response
could be observed (Figure 2D), or cases where there was only a
very weak response (Figure 2E), which typically occurred at the
top concentration tested.

To analyze the data, a nonparametric (Gaussian process)
Bayesian concentration response model was applied. Fits be-
tween the model and data are represented in Figure 2 using the
mean concentration response distribution, indicated by the red
shaded bands. The nonparametric nature of the approach en-
sured that the model provided a standalone method that was
flexible enough to describe all possible concentration-response
shapes. In the model, a change in concentration-response mea-
surement could be caused through a combination of 3 possible
effects: (1) chance fluctuations in the response arising from bio-
logical or technical variability; (2) biases in the location of wells
used to generate the measurement samples (see
Supplementary Material, “Accounting for biases in well location
and reducing sensitivity to outliers” for further details); and (3)
the test chemical induced a concentration-dependent effect. To
quantify the uncertainty in whether a change in the response
was due to the latter (a concentration-dependent effect), rather
than either of the former explanations, the model generated a
concentration-dependency score (CDS; see Materials and
Methods section). A CDS value >0.5 indicated that, conditional
on the model, it was statistically more likely than not that the
test chemical was inducing a change in the response measure-
ment (conversely, a CDS value <0.5 indicated it was more likely
that the chemical did not induce such a change, and the effect
was due to a statistical fluctuation or a bias in well location). In
Figures 2A–C and F, the corresponding CDS values were all close
to 1.00, reflecting the strong evidence that the observed change
in the biomarker could be attributed to the test chemical, rather
than say, well location on the plate. Equally, the CDS in
Figure 2D was close to 0.0, providing strong evidence that there
was no response. Figure 2E provides an example where the CDS
was slightly above 0.5, and there was high uncertainty in
whether the response at the maximum tested concentration
was due to a weak response by the test substance, or another
factor such as a plate bias or a chance fluctuation.

In cases where the CDS was above 0.5, the plausible regions
for the PoD are reflected via the purple-shaded regions in
Figure 2, where the intensity of the shading reflects its underly-
ing distribution, and gives an indication of how likely the differ-
ent PoD locations were. For most datasets, there was a solitary
mode for the PoD (as the case in Figs. 2A–C and E). However, in
some instances the model suggested two distinct modes, as is
the case, for example, in Figure 2F. This arose because the
model suggested two possible sets of response curves which
would be consistent with the data. In the first set (correspond-
ing to the lower mode), the mean response increased from
around 1 mM to reach a peak at around 5 mM before decreasing
well beyond the baseline. In the second set of trajectories (up-
per mode), the increase in the response observed at 5 mM was
attributed to either a plate bias or statistical chance and the as-
sociated fits were constant up to �7 mM and decreased thereaf-
ter. The depth of purple shading reflects the fact that the lower
POD mode was considerably more likely than the upper PoD
mode.

To compare the nonparametric Bayesian model developed
in this work with a more commonly used approach, the 6 data-
sets in Figure 2 were also analyzed using the U.S. EPA BMD
Software implementation of BMD (Haber et al., 2018) (see
Materials and Methods section). Details of this analysis can be
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found in the Supplementary Material (Benchmark dose analysis
section). In summary, for each concentration-response dataset
in Figure 2, multiple BMD estimates were generated using differ-
ent parametric models. According to the default model selec-
tion process in BMDS, none of the fits were reported as
“recommended” (all were “questionable” or “unviable”), and in
some cases (depending on the dataset and model fit), BMDS was
observed to overfit the data. However, in general the
“questionable” BMD estimates were found to be contained
within the corresponding PoD credibility ranges inferred using
the Bayesian approach, illustrating how the latter was able to
effectively quantify the uncertainty in deciding “which” curve
to use for PoD estimation, this uncertainty being quantified in
terms of a PoD distribution. Furthermore, multiple BMDs were
also reported for the data in Figure 2D, even though there is
clearly no concentration-dependent response, because the
BMDS implementation of BMD implicitly assumed that there
was a concentration response prior to fitting any curves (other
implementations of BMD address this through additional com-
putational steps, eg, by using appropriate statistical tests
[Phillips et al., 2019]). Overall, the Bayesian concentration re-
sponse model reported here provided a robust statistical analy-
sis of concentration-response datasets without the need for
model selection or additional steps to manage datasets where
there is likely no concentration-dependent effect by the test
chemical (instead, providing a measure of uncertainty in this,
the CDS). Furthermore, based on these results the nonparamet-
ric nature of the Bayesian model means it is less susceptible to
overfitting (see the Supplementary Materials, Benchmark dose
analysis section for further details).

Generation of PoD Summary Plots
For most of the substances tested in this study (listed in
Table 2), multiple biomarkers were triggered at varying concen-
trations and timepoints, spanning different stress pathways
and cell health effects. In order to visualize these data effec-
tively, separate plots of the PoDs for each chemical were con-
structed as follows (Figure 3): all biomarkers (regardless of
timepoint) likely to be perturbed by the substance (ie, have a
CDS > 0.5) are listed along the y-axis, grouped by pathway, and
the corresponding PoDs are plotted along the x-axis. For bio-
markers in which multiple biological replicates were available
(namely cell count, nuclear size, and DNA structure, see
Table 1), the PoD samples were pooled in order to compute sta-
tistics (eg, CDS and PoD credibility range) for the summary
plots.

Different symbols are used to indicate the measurement
timepoint (Figure 3A), and width of the PoD symbol reflects the
credibility range of the PoD (Figure 3B). Finally, the color of the
PoD symbols corresponds to the pathway that the biomarker
represents (Figure 3A). An example summary PoD plot for nia-
cinamide, which is used in many cosmetic formulations (see
Supplementary Materials) is shown in Figure 3C. Here, there
were only three PoDs for which the CDS was above 0.5, corre-
sponding to a small but appreciable decrease in IL-8 at 24 h and
relatively weak changes in MTF1 and ROS at 6 and 24 h respec-
tively, all at the top concentration tested (10 000 mM; Figure 3D).
All other concentration-response data generated for niacin-
amide (including those associated with MTF1 and IL-8 at 1 and
6 h for, and ROS at 1 or 24 h) had CDS values below 0.5 and so
were excluded from the summary plots.

Using the Cell Stress Panel to Distinguish Chemicals Based on
Bioactivity
Analysis of the data revealed that the different benchmark sub-
stances could be divided broadly into 3 groups based on their
bioactivity, these being: (1) substances with very low levels of
bioactivity, corresponding to none or few of the 36 stress panel
biomarkers being triggered at the concentrations tested; (2) sub-
stances for which cellular stress responses largely coincided
with cytotoxicity, reflecting a nonspecific burst of activity (ie,
the “cytotoxic burst”; (3) substances for which, at subcytotoxic
concentrations, bioactivity was limited to specific effects on one
or more cellular stress pathways.

Compounds in group 1 were phenoxyethanol, niacinamide,
coumarin, and caffeine. The least bioactive was phenoxyethanol,
a substance that is commonly used as a preservative in personal
care products (see Supplementary Material): no concentration-
responses could be detected among all 36 biomarkers (the maxi-
mum CDS from all the assays tested was 0.29). For caffeine only, a
single concentration-response could be detected, which had a
CDS of 0.54 (barely above the 0.5 threshold), corresponding to
phospho-gamma-H2AX at 1 h; this observation is unlikely to have
biological significance as a concentration response was not
detected at 6 or 24 h. For coumarin, all PoDs also occurred around
the top concentration tested (1000mM). The lowest PoD was due to
a decrease in ATP at both 6 and 24 h, which was accompanied by a
decrease in IL-8, an increase in glutathione levels and a decrease
in phospholipidosis at 24 h. It is possible that the increase in gluta-
thione levels was a protective response of the cells to the decrease
in ATP that occurred at the earlier timepoint of 6 h and that the
decrease in IL-8 was due to the anti-inflammatory properties of
coumarin (Hadjipavlou-Litina et al., 2007).

These results are in stark contrast to the bioactivity observed
for substances in group 2, which were diclofenac (an anti-
inflammatory drug) and doxorubicin (a chemotherapy drug), both
of which are known to cause adverse effects in humans through
mitochondrial toxicity (Burridge et al., 2016; Damiani et al., 2016;
Eakins et al., 2016; Ramachandran et al., 2018). In the case of diclo-
fenac (Figure 4A), multiple cellular stress effects were detected, all
coinciding with cell injury. For doxorubicin (Figure 4B), the only
subcytotoxic PoD was associated with increases in mitochondrial
mass that occurred at 1, 6 and 24 h (Figure 4C). This was accompa-
nied by increases in cellular ATP at 6 h, potentially indicating an
increase in mitochondrial biogenesis, a mechanism used by cells
to protect against various forms of cellular stress. Increases in glu-
tathione could also be observed at 1 h, likely reflecting a homeo-
static cellular response to increased oxidative stress (Lushchak,
2012). However, both apparent mechanisms were overwhelmed
by 24 h, leading to a loss of glutathione and cellular ATP. In both
cases, a specific mode of action (such as mitochondrial toxicity)
could not be determined, as changes in most biomarkers coin-
cided with concentrations causing cell death.

Compounds in group 3, namely triclosan, troglitazone, pio-
glitazone, rosiglitazone, CDDO-Me, DEM, tBHQ, and sulforaph-
ane, were in general either found to trigger specific
mitochondrial toxicity effects or oxidative stress at subcytotoxic
concentrations. Overall, these responses reflected the substan-
ces’ known bioactivity, showing the utility of the cellular stress
panel for developing mechanistic hypotheses for NGRA, and are
described in greater detail below.

Cell Stress Panel Identifies a Specific Mode of Toxicity for a Subset of
Substances: Mitochondrial Toxicants and Nrf2 Activators
A slightly reduced panel of biomarkers (exceptions were hyp-
oxia and metal stress, see Supplementary Table 1) was tested
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Figure 3. Overview of PoD summary plots. A, Information on the PoD timepoint, stress pathway, and CDS are indicated using shape, color and depth of shading. B, The

credibility range for the representative PoD is indicated using the width of the symbol, the median is given by a vertical gray line. C, PoD summary plot for niacinamide.

D, Corresponding niacinamide concentration-response data. Crosses correspond to individual data points; horizontal dashed lines indicate control values.
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Figure 4. Summary of group 2 substances, diclofenac and doxorubicin. (A) PoD summary plot for diclofenac and (B) doxorubicin (see Figure 3A for corresponding leg-

end). C, Concentration responses to doxorubicin for mitochondrial mass, cellular ATP, and glutathione content at 1, 6, and 24 h. The PoD distributions (indicated by

purple shading) for cellular ATP at 24 h and glutathione at 6 h were both bimodal (ie, two district shaded bands); the lower mode was selected as the representative

mode in both cases. Crosses correspond to individual data points; horizontal dashed lines indicate control values.
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using 3 members of the thiazolidinedione family of drugs (tro-
glitazone, pioglitazone, and rosiglitazone), used in the treat-
ment of diabetes (Hauner, 2002). These are widely used by
researchers as model chemicals for cell systems and assays
designed to predict either liver or mitochondrial toxicity (Bell
et al., 2018; Hu et al., 2015; Masubuchi et al., 2006; Nadanaciva
et al., 2007). All 3 thiazolidinediones exhibited a significant
concentration-dependent inhibitory effect on cellular respira-
tion measured by monitoring the OCR and reserve capacity (see
Figure 5A and Supplementary Figure 1) at subcytotoxic concen-
trations. These results showed that the maximum inhibition of
oxidative phosphorylation occurred as early as 1 h with no fur-
ther significant changes by 24 h. Overall, the extracellular flux
assays were the most sensitive for all 3 chemicals: the 24 h PoDs
for OCR and reserve capacity were in the range of 0.05–0.5 mM,
occurring at concentrations at least 10-fold lower than those
which caused changes in MMP, ATP, and cell count (Figure 5B).
However, changes to mitochondrial ROS could be detected at
even lower concentrations for troglitazone. This is consistent
with the observations of Liao et al. (2010), where this effect was
attributed to troglitazone (but not rosiglitazone or pioglitazone)
stimulating PGC-1a protein degradation, reducing superoxide
dismutase 1 and 2 expression.

Despite the OCR PoDs occurring at similar concentrations,
the fold change from control was significantly different between
the three substances. Exposure to troglitazone at the two high-
est concentrations (40 and 100 mM) reduced the OCR near to zero
which was not observed for the other chemicals. Pioglitazone on
the other hand showed a completely different concentration-
response curve, causing a decrease in both OCR and reserve ca-
pacity at concentrations up to 10 mM, and an increase at concen-
trations between 40 and 100mM (Figure 5A and Supplementary
Figure 1).

The magnitude of the response observed in these extracellu-
lar flux assays implied that troglitazone is a more potent chemi-
cal than pioglitazone and rosiglitazone as previously reported
in the literature (Hu et al., 2015). This was further confirmed by
observations in the other assays where pioglitazone and rosigli-
tazone only triggered mitochondria-related biomarkers (MMP,
MitoROS, ATP, and ROS) at concentrations around 10–100 mM
(Figure 5B). At similar concentrations, troglitazone not only in-
duced mitochondrial stress but also perturbed the oxidative
stress, ER and AhR stress pathways, and cell health-related bio-
markers which seemed to coincide with a cytotoxic burst
(Figure 5B).

Triclosan is used as antimicrobial in many consumer prod-
ucts. Using the full stress panel, the lowest PoDs for this chemi-
cal were obtained using the OCR and reserve capacity assays
(similarly to the thiazolidinediones, see Supplementary Figs. 2A
and 2B). These results were consistent with previous reports
that triclosan has been shown to inhibit mitochondrial complex
II, superoxide release, and uncoupling of oxidative phosphoryla-
tion (Teplova et al., 2017). At higher concentrations, other mito-
chondrial biomarkers were also affected by triclosan with a
strong increase (2- to 4-fold) in mitochondrial superoxide
(MitoROS) across all timepoints at the highest concentration, an
increase in ATP at 6 h followed by a reduction in ATP at 24 h, but
minor changes in MMP, mitochondrial mass, and PGC1a (see
Supplementary Figure 2B).

The full stress panel was also tested using 4 soft electro-
philes: CDDO-Me, sulforaphane, DEM, and tBHQ. Soft electro-
philes are thought to react predominantly with soft
nucleophiles, including glutathione and the sulfhydryl groups
of cysteines in Keap1 (LoPachin and Gavin, 2016). The former

can cause depletion of glutathione, which is counteracted by
the latter by disrupting interactions between Keap1 and Nrf2,
leading Nrf2 nuclear translocation and the consequent upregu-
lation of various antioxidant response mechanisms, including
increased expression and activity of glutathione synthesis and
ROS-detoxification enzymes (Magesh et al., 2012).

Across all 4 soft electrophiles, the lowest PoDs triggered be-
low cytotoxicity were associated with changes in glutathione
content, Heme Oxygenase 1 (HMOX1), and reserve capacity via
the extracellular flux assay (see Figure 6A). However, unlike the
3 thiazolidinediones and triclosan described above, changes in
reserve capacity were not accompanied by changes in OCR or
other mitochondrial toxicity biomarkers (with the exception of
transient effects on OCR by tBHQ at 1 h). Responses by Nrf2 to
treatment appeared relatively weak and difficult to detect for all
substances, possibly due to its transient nature, and the fact
that only small increases in nuclear Nrf2 are needed to induce
downstream effects (Wink et al., 2017). However, HMOX1, which
is downstream of Nrf2 (Loboda et al., 2016), responded at subcy-
totoxic concentrations with the levels increasing from �75% to
200% of control at both 6 and 24 h for all substances (see
Supplementary Figure 3).

Changes in glutathione abundance were similar across all 4
soft electrophiles: short exposures (1 h) to high concentrations
resulted in depletion of glutathione, whereas longer-term expo-
sures (6–24 h) caused glutathione levels to increase and accu-
mulate back to, and in some cases exceed, baseline levels (see
Figure 6B and Supplementary Figure 4). This resulted in nonmo-
notonic response profiles at 6 and 24 h that at low concentra-
tions increased in a concentration dependent manner, but then
began to decrease at higher concentrations. In all the cases, the
concentration that gave rise to the 1 h glutathione PoD that
overlapped with multiple other cellular stress, cell health, and
physiology biomarker PoDs at 24 h, including the accumulation
of ROS. Thus, although glutathione levels were typically replen-
ished for concentrations close to the high-concentration PoD by
24 h, consistent with an adaptive response by cells to electro-
philic or oxidative stress, the insult was severe enough at these
concentrations to cause cell injury by 24 h; the nonmonotonic
nature of the observed glutathione responses were consistent
with those made by Wang et al. (2014b) for CDDO-Me.

Comparison Between POD and Cmax Values for Typical Exposure
Scenarios
To obtain a broad summary of cell stress panel results, the rep-
resentative mode for all concentration-response datasets is
plotted separately for all chemicals in Figure 7. To compare the
PoDs with the typical exposure scenarios associated with each
substance (summarized in Table 2), estimates of the blood
plasma Cmax are also plotted, along with the maximum concen-
tration tested. The lowest PoD associated with cytotoxicity is
also highlighted to indicate the onset of cell death (see Table 1
for a list of relevant biomarkers).

For all the chemical exposures categorized as low risk (see
Table 2) except triclosan, the estimated Cmax was below the
minimum PoD detected for that substance (or, in the case of
phenoxyethanol, the maximum tested concentration, as no bio-
activity was detected). In contrast, for chemical-exposure sce-
narios identified as high risk from a consumer safety
perspective (except diclofenac), the estimated Cmax values were
above the minimum PoD, and were generally found to be at con-
centrations where the substance would be expected to be caus-
ing significant cellular stress. Although the estimated Cmax was
approximately one order of magnitude below the lowest PoD for
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Figure 5. Summary of stress panel responses for 3 group 3 substances (troglitazone, rosiglitazone, and pioglitazone). A, Oxygen consumption rate data for all 3 substan-

ces at 1, 6, and 24 h measured using the extracellular flux assay. Crosses correspond to individual data points; horizontal dashed lines indicate control values. B,

Summary PoD plots (see Figure 3A for corresponding legend).
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Figure 6. A, Summary of PODs for group 3 substances tested in the panel that are soft electrophiles (CDDO-Me, sulforaphane, tBHQ, and DEM). See Figure 3A for legend.

B, Representative glutathione concentration-response plots for CDDO-Me and tBHQ measured at 1, 6, and 24 h. The glutathione response to tBHQ at 1 h results in a bi-

modal PoD distribution; the lower mode was chosen to be the representative the PoD. Crosses correspond to individual data points; horizontal dashed lines indicate

control values.
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diclofenac, the adverse cellular stress effects are known to be
caused by a reactive metabolite (Ponsoda et al., 1995), and these
may not have been present at human relevant levels in these
assays because the HepG2s that were used lack many phase I
enzymes required for the metabolism of diclofenac (Bort et al.,
1999).

DISCUSSION

Within NGRA there is an ongoing need to develop robust and
relevant assays that can be used to characterize bioactivity of
chemicals at human-relevant exposures (Dent et al., 2018). To
that end, the cell stress panel presented here was developed to
serve as a low-tier broad-spectrum tool for determining
whether a chemical is likely to cause cell stress (Thomas et al.,
2019), and if so provide an estimate of the concentrations at
which this perturbation occurs. The intention is that informa-
tion from the cellular stress panel can be combined with appro-
priate human exposure estimates (eg, the Cmax) to provide an
indication of how likely this bioactivity is to occur in humans
under the relevant exposure scenario (ie, the risk). This is in
contrast to other panels that have been developed for the pur-
poses of hazard identification (eg, drug-induced liver injury or
genotoxicity) and focus on one or two stress pathways at a time,
or mitochondrial toxicity (Clewell et al., 2014; Eakins et al., 2016;
van der Linden et al., 2014; Wink et al., 2017). Although cellular
stress responses have been studied extensively in the literature,
a major challenge of implementing such panels for NGRA is not
only in their development (ie, selecting biomarkers, timepoints,
etc.), but also ensuring that the panel is fit for purpose
(Middleton et al., 2017). In other words, can the cell panel be
used to distinguish between high- and low-risk chemical-expo-
sure scenarios that are driven by cellular stress? To this end,
various substances (pharmaceuticals, foods, cosmetics) were
used as benchmarks.

This research builds on work conducted as part of the
ToxCast and Tox21 U.S. governmental programs (Judson et al.,
2016). The added value of the present study is the ability to

distinguish the “trigger” stress pathways from those that coin-
cide with cytotoxicity. For example, it was observed that the
lowest PoDs for troglitazone, pioglitazone, rosiglitazone, and tri-
closan were all specifically associated with mitochondrial toxic-
ity at subcytotoxic concentrations, consistent with their known
mechanisms of toxicity. At higher (ie, cytotoxic) concentrations,
however, a burst of activity could be observed, where multiple
cellular stress pathways are triggered, notably ER stress, but
also other pathways including DNA damage and hypoxia. In
contrast, the soft electrophiles triggered a distinctly different
set of responses at low concentrations, notably causing poten-
tially adaptive effects such as glutathione upregulation; at
higher cytotoxic concentrations nonspecific stress responses
could again be observed. The potential consequences of the 2
types of effect, mitochondrial disruption and glutathione upre-
gulation, are stark: depending on the dose used, the former can
be associated with various forms of organ toxicity, including
liver failure (Ramachandran et al., 2018; Rana et al., 2019),
whereas the latter can be associated with beneficial health
effects (Wu and Batist, 2013). Thus, being able to disentangle
the “trigger” stress pathways from those caused by nonspecific
cytotoxicity is highly beneficial from a risk assessment
perspective.

One of the strengths of the work presented here is that the
uncertainties associated with the data analysis are quantified
probabilistically, a key principle of NGRA (Dent et al., 2018). This
was made possible through the novel modeling approach devel-
oped as part of the work. First, the model can be used to gener-
ate a quantitative measure of the plausibility that a response of
a biomarker to the test chemical can be detected, namely the
CDS. This approach has the advantage of providing a measure
of confidence attributed to when there is no response in a set of
assays, or flagging when a response is particularly weak (ie,
when the CDS is slightly above 0.5). This is very relevant for con-
sumer safety assessments, because the PoDs represent the low-
est concentration at which a response can be detected, rather
than an arbitrary threshold on the response, such as an AC50.
Calculating the PoD in this way may provide a more sensitive

Figure 7. Overview of PoD modes (corresponding to concentration-response datasets where the CDS is larger 0.5) and associated mean Cmax estimates for each sub-

stance. The ordering of the chemicals along the y-axis is determined by ranking chemicals based on the mean of all displayed PoDs.
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metric for the analysis of high-throughput assay data, and allow
differentiation between low concentration and high concentra-
tion events. This could explain why, with our analysis, we can
disentangle the subcytotoxic and cytotoxic cell stress responses
as discussed above. Second, using a nonparametric approach
removes the issue over which set of parametric models (ie, Hill
function, exponential, linear, etc.) one must choose to fit the
data, which represents a source of uncertainty in itself and is
frequently a challenge in concentration-response modeling
(Watt and Judson, 2018).

To illustrate how the stress panel might be deployed in fu-
ture, we provided a comparison between the PoDs and the esti-
mated exposure levels based on typical use-case scenarios
listed in Table 2 (see Figure 7). For this, Cmax was used as a sur-
rogate metric for systemic exposure levels. It should be noted
that adverse effects caused by cellular stress may not always be
driven by Cmax, and in certain cases the duration of exposure
may also need to be considered. Nevertheless, the results
obtained from this preliminary analysis were promising: gener-
ally, of the low-risk substance-exposure scenarios (except triclo-
san), the PoDs occurred at higher concentrations than the
corresponding Cmax values, whereas for all of the high-risk sub-
stance-exposure scenarios (except diclofenac), there was a clear
overlap between the PoDs and Cmax values (Figure 7). The ability
to distinguish low from high risk is influenced heavily by the
degree of the “biological coverage” of the panel. The biomarkers
that were associated with low sub-cytotoxic PoDs that could be
considered to be especially protective from a risk assessment
perspective for the compounds tested were glutathione content,
HMOX1, IL-8 or MTF1, OCR and reserve capacity, whereas many
of the other stress biomarkers were only responsive at cytotoxic
concentrations and were rather “nonspecific” in their response.
This was likely a consequence of the benchmark substances
that were selected for testing. Running more chemical-exposure
scenarios will allow us to determine whether the degree of cov-
erage is sufficient, and if there is a “core” set of biomarkers that
can be identified. However, in reality it is expected that this
panel would be used alongside other in vitro cell assays, such as
high-throughput transcriptomics, receptor binding screens, and
other bespoke assays designed to investigate specific modes of
action (Daston et al., 2015; Dent et al., 2018). In particular, some
substances relevant to consumer safety may act via specific tar-
gets and mechanisms, such as interfering with the function of
key receptors, enzymes, or ion channels (Bowes et al., 2012).
Going forward, it will be important to understand how different
NAMs covering both specific and nonspecific toxicity endpoints
can be combined to define substance exposures that are protec-
tive of consumer safety. How this might work in practice for the
NGRA of a consumer product has recently been demonstrated
in Baltazar et al. (2020).

The discrepancy between PoD and Cmax for diclofenac in
terms of its risk category from a consumer safety perspective
highlights the importance of incorporating metabolism within
in vitro assays, which is an on-going challenge in NGRA and may
be addressed either by using more organotypic models
(Ramaiahgari et al., 2017, 2019) that are metabolically compe-
tent, artificially increasing the expression of specific CYP
enzymes (DeGroot et al., 2018), or directly testing predicted
metabolites.

One further consideration is that in the cellular stress panel,
3 timepoints were selected for data generation (1, 6, and 24 h).
Depending on the biomarker and chemical being tested, PoD

values vary over time, and one key challenge is determining
how to incorporate this time-dependence into the risk assess-
ment approach. Based on our observations, the lowest PoDs (ie,
most conservative) typically occurred at 24 h. However, in some
cases the value of the PoDs could continue to change, and in
particular decrease, over longer time periods (eg, several days)
(Zhang et al., 2018). This issue is intricately linked with the tip-
ping point between adaptive and adverse responses (Middleton
et al., 2017; Shah et al., 2016; Wink et al., 2017). In particular, al-
though the data in this work were generated using a single dose
of the test chemicals, most exposure scenarios relevant to con-
sumer safety involve long-term repeated exposures, and the na-
ture of the exposure scenario itself (eg, whether cells or tissues
are left with a period of recovery following insult) may also af-
fect the PoD values (see, eg, Bischoff et al., 2019). Together, these
considerations lead to a key question: is the 24 h timepoint suf-
ficiently conservative for a low-tier screen? Answering this will
require generating data under long-term exposures, which
would most likely require using more sophisticated organotypic
cell models, potentially within a microfluidic-based system
(Trietsch et al., 2017; Wevers et al., 2018). Such data would then
need to be complimented with appropriate computational
approaches that take into consideration the biodynamic
changes cellular stress responses (Zhang et al., 2018), in order to
quantify the uncertainties associated with the time-dependent
effects on PoDs and tipping points (eg, using the approach intro-
duced by Shah et al. [2016]). However, given the possible
approaches and technologies available, these challenges appear
to be surmountable.

CONCLUSION

Using the in vitro cellular stress panel and statistical approach
described here it was possible to identify substance exposures
that may be associated with adverse health effects due to cellu-
lar stress. In combination with other cellular assays and in silico
approaches, this panel could provide a powerful tool to use in
nonanimal safety decision making. The preliminary analysis
presented here will be built upon to ensure the approach de-
scribed is sufficiently protective of consumer safety for a larger
group of substances, including those that require metabolic
activation.
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online.
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