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Abstract

The negative motivational aspects of withdrawal include symptoms of both anxiety and 

depression, and emerge following termination of chronic drug use as well as after acute drug 

exposure. States of acute withdrawal are an inherent part of intermittent drug use in humans, but 

the contribution of acute withdrawal to the development of addiction has received limited 

systematic investigation, due to a lack of preclinical models for withdrawal states that emerge 

spontaneously after acute drug exposure. Here, we have characterized a spontaneous increase in 

the magnitude of the acoustic startle reflex (i.e., spontaneous withdrawal-potentiated startle) that 

emerges following acute morphine administration in rats, and compared the time course of startle 

potentiation and place conditioning. We find that startle potentiation appears related to a decrease 

in opiate receptor occupancy and reflects an anxiety-like state with a pharmacological profile 

similar to other signs of opiate withdrawal. Spontaneous startle potentiation emerges before the 

rewarding effects of morphine have subsided, even though naloxone administration after a single 

morphine exposure causes both startle potentiation and conditioned place aversion (CPA). These 

results demonstrate that negative emotional signs of withdrawal develop following just one 

exposure to morphine, and are likely a recurrent aspect of intermittent drug use that may 

contribute to the earliest adaptations underlying the development of addiction. Furthermore, the 

dissociation between spontaneous startle potentiation and CPA suggests anxiogenic and dysphoric 

manifestations of opiate withdrawal may be mediated by distinct neural mechanisms that are 

progressively engaged as withdrawal unfolds.
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Introduction

The negative motivational aspects of withdrawal from chronic drug exposure contribute to 

the maintenance of established drug addiction (Koob and Le Moal, 2008), but negative 

emotional states also emerge following acute drug exposure (Breiter et al, 1997; Kirby and 

Stitzer, 1993; Van Dyke and Byck, 1982). These episodes of acute withdrawal are a 

recurrent and integral component of human drug use (Baker et al, 2004), emerging after 

occasional drug use or when ongoing drug intake is interrupted by sleep or periods when 

drug supply is limited (Dole et al, 1966; Haertzen and Hooks, 1969). Alleviation of acute 

withdrawal may motivate further drug use, and changes in neural activity during acute 

withdrawal could contribute to drug-induced alterations in physiology and brain function 

(Houshyar et al, 2003; Houshyar et al, 2004). Withdrawal from acute opiate exposure can be 

precipitated by opiate receptor antagonists (for review, see Harris and Gewirtz, 2005), but in 

the context of human opiate abuse, withdrawal emerges spontaneously in the absence of an 

antagonist. Despite this fact, surprisingly few preclinical models have been developed to 

study the spontaneous emergence of withdrawal following acute opiate exposure. This study 

describes distinct profiles of anxiety and dysphoria in rats that emerge spontaneously 

following acute exposure to morphine.

Withdrawal from chronic drug use produces symptoms of both anxiety and depression, 

including restlessness, irritability, dysphoria, and anhedonia (American Psychiatric 

Association, 2000; Haertzen et al, 1969). The acoustic startle reflex is a validated measure 

of anxiety in both animals and humans (Lang et al, 2000), and is elevated in rodents during 

spontaneous withdrawal from acute morphine exposure (i.e., withdrawal-potentiated startle; 

Harris and Gewirtz, 2004a). Other spontaneous signs of acute morphine withdrawal in 

rodents, including conditioned place aversion (CPA) (Bechara et al, 1995) and increased 

thresholds for intracranial self-stimulation (ICSS) (Liu and Schulteis, 2004), may reflect 

states of dysphoria or anhedonia associated with depression (Barr et al, 2002; Carlezon and 

Chartoff, 2007; Land et al, 2008b). Given the growing number of experimental dissociations 

between anxiety- and depression-like behavior in rodents (Bosch et al, 2008; Land et al, 

2008a; Nestler and Carlezon, 2006; Sahuque et al, 2006; Wallace et al, 2009), as well as 

distinctions between clinical disorders of anxiety and depression (American Psychiatric 

Association, 2000; Goldberg, 2008; Kessler et al, 2008; Krueger, 1999), it is important to 

distinguish between these specific negative affective components of opiate withdrawal, as 

they may not necessarily coincide with one another.

To address these issues, we have further characterized spontaneous withdrawal-potentiated 

startle and compared its time course with that of spontaneous CPA. We show that 

spontaneous withdrawal-potentiated startle appears related to a decrease in opiate receptor 

occupancy and has an anxiety-like pharmacological profile that resembles other measures of 

opiate withdrawal. However, startle potentiation emerges while rats still exhibit conditioned 

place preference (CPP), demonstrating an increase in anxiety-like behavior before the 

rewarding effects of morphine have subsided. In contrast, withdrawal-potentiated startle and 

CPA develop concurrently when withdrawal is precipitated by naloxone (an opiate receptor 

antagonist). These results indicate that anxiogenic and dysphoric manifestations of acute 

morphine withdrawal reflect changes in distinct neural systems. These negative emotional 

Rothwell et al. Page 2

Neuropsychopharmacology. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



states accompany the earliest stages of drug exposure, are likely a recurrent feature of 

intermittent drug use in humans, and thus may contribute significantly to the development of 

addiction.

Materials & Methods

Subjects

Male Sprague-Dawley rats (Harlan) were housed in groups of 4-5 in metal cages with a 12 

hour light/dark cycle (light on 0800-2000 hours) and free access to food and water except 

during testing. Rats were allowed to acclimate to housing conditions for two weeks after 

arrival, were gently handled for two consecutive days prior to any testing, and weighed 

250-350g at the beginning of each experiment. All procedures conformed to the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved 

by the University of Minnesota Institutional Animal Care and Use Committee.

Drugs

Morphine sulfate was provided by the National Institute on Drug Abuse (Rockville, MD). 

Naloxone, chlordiazepoxide, and R,S-propranolol hydrochlorides were obtained from Sigma 

(St. Louis, MO). LY235959 was obtained from Tocris (Ellisville, MO). All drugs were 

dissolved in 0.9% saline (except propranolol, which was dissolved in water) and injected 

(i.p.) in a volume of 1 mL/kg body weight. Over the course of these studies, we shifted to 

s.c. administration of morphine and naloxone to be consistent with the majority of other 

work in this field (Houshyar et al, 2003; Houshyar et al, 2004; Schulteis et al, 1994). We 

directly compared i.p. and s.c. morphine injections in several experiments and found no 

significant differences between routes of administration (data not shown), so results from 

both routes of administration have been pooled. All drug doses are expressed as the weight 

of the salt.

Acoustic Startle

Acoustic startle was tested in four identical plastic cages (17 × 8.5 × 11 cm) resting on 

compression springs and located within individual ventilated sound-attenuating chambers. 

Cage movement resulted in displacement of a piezoelectronic accelerometer (Model 

ACH-01, Measurement Specialties, Valley Forge, PA) attached to each cage. Voltage output 

from the accelerometer was filtered and amplified by a custom-built signal processor, 

digitized on a scale of arbitrary units ranging from 0-1000 (National Instruments SCB100 

and PCI-6071E boards), and recorded using Matlab (The MathWorks, Natick, MA). Startle 

amplitude was defined as the peak accelerometer voltage during the first 200 ms after onset 

of the startle stimulus. High frequency speakers (Radio Shack Supertweeters, range = 5-40 

kHz) located 10 cm beside each cage delivered the startle stimuli, which were 50-ms bursts 

of filtered white noise (low pass: 22 kHz, rise-decay <5 ms) at intensities of 95 or 105 dB. 

Ventilating fans elevated background noise to approximately 60 dB.

Acoustic startle was tested on each of two days prior to drug exposure. For each test session, 

rats were placed in the startle chambers for a 5-minute acclimation period, and then 

presented with 40 startle stimuli (20 each at 95 or 105 dB in semi-random order) with a 30-
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second inter-stimulus interval. Average startle amplitudes from the second day were used to 

match animals into experimental groups with similar overall mean startle amplitudes. Each 

day of drug testing began with a baseline startle session prior to any drug injections. Several 

experiments involved startle testing over multiple days using Latin Square or crossover 

designs; details are provided in figure legends. All drug injections were given in the colony, 

and rats remained in their home cage between drug injections and startle tests.

Place Conditioning

Our place conditioning apparatus and procedure were developed according to published 

recommendations (Bardo and Bevins, 2000; Carlezon, 2003; Cunningham et al, 2006). The 

apparatus consists of a rectangular plastic cage (40 cm × 20 cm × 20 cm) divided into two 

sides by a central partition. Each side has a distinct floor texture and wall color: metal bars 

paired with white walls, and wire mesh paired with black striped walls. Each rat's position 

within the apparatus was monitored by an overhead video camera connected to a computer 

running AnyMaze software (Stoelting, Wood Dale, IL).

Rats were transported to the place conditioning room and allowed to acclimate for at least 10 

minutes prior to every experimental session. Each experiment began with a 10-minute 

baseline session in which rats were free to move between both sides of the apparatus. The 

rats used in these studies spent an average of 320 seconds (53.4%) on the bar side during the 

baseline session; two rats with >75% baseline preference for one side were excluded from 

further study. The side of the apparatus paired with drug treatment was counterbalanced 

within each experiment, yielding an unbiased procedure in which rats spend ~50% of the 

baseline session on the side to be paired with drug.

Daily conditioning sessions began 24 hours after the baseline session. Details concerning the 

number, duration, and order of conditioning sessions are provided in figure legends. 

Twenty-four hours after the last conditioning session, a 10-minute test session was 

conducted in which rats were free to move between both sides of the apparatus. We chose to 

express place conditioning results in terms of percent time spent on the drug-paired side, 

rather than using a difference score measured in seconds, because percentage measures are 

relatively independent of the length of the testing session and thus facilitate comparisons 

across studies.

Data Analysis

Startle data were collapsed across both intensities (95/105 dB) before statistical analysis 

(Harris et al, 2004a), since the magnitude of withdrawal-potentiated startle was not affected 

by stimulus intensity (data not shown). In each experiment, we first conducted one-way 

analysis of variance (ANOVA) to verify similar baseline startle amplitude between 

experimental groups; there were no differences in baseline startle between groups in any 

experiment (data not shown). Changes in startle following morphine administration were 

calculated as percent change from baseline on the same day (Walker and Davis, 2002b). For 

experiments that utilized a crossover design, baseline startle amplitude was similar on both 

days of testing, so an average baseline value was used to calculate percent change on each 

individual day. An area under the curve measure for total withdrawal severity was calculated 
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for each individual subject by adding together percent change in startle across all time points 

tested; mean and standard error were then calculated for all subjects in each group.

All data were analyzed using factorial ANOVA, with repeated measures on within-subject 

factors. For main effects or interactions involving repeated measures, the Huynh-Feldt 

correction was applied to control for potential violations of the sphericity assumption. 

Significant interactions were followed with tests for simple effects (Keppel and Wickens, 

2004). When appropriate, significant main effects were followed with polynomial trend 

analysis. All statistical analysis was conducted using SPSS (version 13.0) with a Type I 

error rate of α = .05 (two-tailed). Group sizes for each experiment are indicated in figure 

legends.

Results

Startle Time Course during Spontaneous and Naloxone-Precipitated Withdrawal

Startle was tested 2-5 hours after acute administration of morphine (10 mg/kg), with some 

rats receiving naloxone (2.5 mg/kg) just before the 2:00 startle test (Figure 1A). Startle was 

significantly potentiated 4-5 hours after injection of morphine alone, consistent with our 

previous report that also showed startle returns to baseline six hours after this dose of 

morphine (Harris et al, 2004a). Naloxone caused an immediate but transient potentiation of 

startle at 2:00, with no change from baseline 3-5 hours after morphine injection [Naloxone × 

Time interaction: F3,78 = 12.19, p < .001]. This dose of naloxone was selected based on our 

previous work (Harris et al, 2004b) in an effort to completely displace morphine from the 

opiate receptor. There were no significant changes in startle after injection of saline or 

naloxone alone (Figure 1B) [Naloxone × Time interaction, F3,66 < 1].

It is noteworthy that the peak magnitude of spontaneous withdrawal (4:00: 61.0 +/- 11.6%) 

was significantly larger than the peak magnitude of naloxone-precipitated withdrawal (2:00: 

29.8 +/- 9.0%) [t28 = 2.23, p = .034]. This difference was more pronounced when comparing 

total withdrawal severity, measured as area under the curve across all time points tested 

(spontaneous: 102.2 +/- 19.5%; precipitated: 24.9 +/- 21.0%) [t28 = 2.67, p = .013]. The 

difference in total withdrawal severity was partly driven by the absence of spontaneous 

startle potentiation at later time points after naloxone administration (Figure 1B).

Morphine Re-exposure Delays Startle Potentiation

If startle potentiation represents a withdrawal effect, it should be blocked by re-exposure to 

morphine (Figure 2A). Indeed, the startle potentiation normally observed four hours after an 

initial morphine injection was prevented by a second injection of morphine three hours after 

initial injection (Figure 2B) [Initial Injection × Second Injection interaction: F1,32 = 11.07, p 

= .002]. We conducted a second startle test in the same animals seven hours after the initial 

injection (Figure 2C). Both groups that received a second injection of morphine (i.e, four 

hours earlier) showed significant startle potentiation at this time [main effect of Second 

Injection: F1,32 = 76.11, p < .001; interaction: F1,32 < 1]. Thus, morphine re-exposure does 

not prevent startle potentiation, but delays its onset until opiate receptor occupancy 

eventually decreases.
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Pharmacological Profile of Spontaneous Withdrawal-Potentiated Startle

We next examined whether anxiolytic drugs attenuate spontaneous withdrawal-potentiated 

startle. Both chlordiazepoxide (a benzodiazepine) and propranolol (a beta-adrenergic 

receptor antagonist) prevent other forms of startle potentiation (Walker and Davis, 2002a) at 

the same doses used here (10 mg/kg), and also decrease anxiety-like behavior in a number of 

other behavioral paradigms (Cole and Koob, 1988; Harris and Aston-Jones, 1993a,b; Knoll 

et al, 2007; Rodriguez-Romaguera et al, 2009). Administration of chlordiazepoxide 

prevented spontaneous withdrawal-potentiated startle (Figure 3A) [Morphine × 

Chlordiazepoxide interaction: F1,30 = 5.49, p = .026], as did administration of propranolol 

(Figure 3B) [Morphine × Propranolol interaction: F1,20 = 5.91, p = .025]. Neither anxiolytic 

drug affected startle amplitude in the absence of morphine.

NMDA receptor antagonists also prevent signs of opiate withdrawal in rodents (Harris et al, 

2008; Kawasaki et al, 2005; Rasmussen, 1995). We examined the effects of LY235959, a 

competitive NMDA receptor antagonist shown to attenuate precipitated morphine 

withdrawal (Jones et al, 2002), using doses (1-3 mg/kg) that prevent tolerance to morphine 

analgesia (Bilsky et al, 1996) and sensitization to morphine-induced locomotion (Mendez 

and Trujillo, 2008). LY235959 produced a dose-dependent attenuation of startle potentiation 

(Figure 4) [Morphine × LY235959 interaction: F2,33 = 14.27, p < .001]. There was a 

significant linear effect of LY235959 dose following morphine injection (p = .012), but no 

effect after saline injection (p = .56).

Startle Potentiation after the First Morphine Exposure

Because the preceding experiments utilized Latin Square and crossover designs, sometimes 

involving multiple exposures to morphine, we sought to clarify whether startle was 

potentiated following the very first exposure to morphine. We pooled control data from the 

preceding experiments in which startle was tested four hours after an animal's first exposure 

to morphine (n = 33) or saline (n = 31), and found a highly reliable potentiation of startle 

after morphine injection (51.2 +/- 6.6%) that was significantly greater than the change in 

startle after saline injection (5.3 +/- 4.6%; t62 = 5.62, p < .001).

Place Conditioning Time Course after Acute Morphine Exposure

A delayed conditioned place aversion (CPA) has been reported following acute exposure to 

morphine (Bechara et al, 1995). We next determined the time course of place conditioning 

after injection of 10 mg/kg morphine (Figure 5). Each group spent ~50% time on the drug 

side during the baseline session, confirming the unbiased nature of our place conditioning 

procedure. ANOVA indicated a significant Session × Time interaction [F6,87 = 4.89, p < .

001]. As expected, conditioned place preference (CPP) was observed immediately after 

morphine injection (0:00) [t11 = 2.85, p = .016], and was maintained at 2:00 [t11 = 4.29, p = .

001] and 4:00 [t10 = 3.70, p = .004]. The 4:00 time point is when we observe peak startle 

potentiation following this same dose of morphine (cf. Figure 1), indicating that rats are still 

experiencing a state of reward when anxiety-like behavior emerges. There was no effect of 

place conditioning at 6:00, and a non-significant tendency for CPA at 8:00 [t22 = 1.46, p = .

16]. A trend towards CPP was also observed at 10:00 [t11 = 2.18, p = .052]. There was a 

Rothwell et al. Page 6

Neuropsychopharmacology. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant fit to fourth-order polynomial trend across time [p = .003], suggesting the 

emergence of aversion following the initial preference.

Place Conditioning and Startle during Naloxone-Precipitated Withdrawal

Because spontaneous withdrawal-potentiated startle and CPA emerged at different times 

after acute morphine injection, we asked if these two behavioral effects could be dissociated 

under other conditions. Since 2.5 mg/kg naloxone produces startle potentiation when 

administered two hours after 10 mg/kg morphine (cf. Figure 1), we examined whether 

naloxone causes CPA under these same conditions (Figure 6A). ANOVA indicated a 

significant Session × Group interaction [F2,28 = 10.04, p = .001]. Exposure to morphine 

alone caused CPP [t8 = 2.49, p = .038], while naloxone had no effect in the absence of 

morphine [t7 < 1]. However, naloxone administration two hours after morphine caused CPA 

[t13 = 3.90, p = .002]. Previous studies have shown that naloxone still causes CPA when 

administered 24 hours after a single morphine injection (Araki et al, 2004; Parker and Joshi, 

1998), and we also replicated this effect (Figure 6B). At the 24 hour time point, ANOVA 

indicated a trend towards a Session × Group interaction [F2,44 = 2.15, p = .13]. Planned 

comparisons revealed that administration of morphine followed by naloxone caused CPA 

[t14 = 2.47, p = .027], while there was no effect of either morphine alone [t15 < 1] or 

naloxone alone [t15 < 1].

The effect of naloxone on acoustic startle has not been examined 24 hours after a single 

exposure to morphine. We found that naloxone still produced startle potentiation 24 hours 

after a single morphine injection (Figure 7) [t10 = 2.57, p = .028], similar to its effect two 

hours after acute morphine injection. Startle potentiation and CPA thus develop concurrently 

when naloxone is administered either two or 24 hours after a single morphine injection.

Discussion

Our results demonstrate that anxiety-like behavior (i.e., startle potentiation) emerges 

spontaneously after a single exposure to morphine, appears related to a decrease in opiate 

receptor occupancy, and shares a pharmacological profile with other forms of opiate 

withdrawal. Startle potentiation develops before the rewarding effects of morphine have 

subsided, clearly dissociating increased anxiety-like behavior from decreased reward system 

activity. This study represents the first direct demonstration that anxiogenic and dysphoric 

manifestations of opiate withdrawal may be mediated by distinct neural mechanisms, which 

are progressively engaged during withdrawal following acute exposure to morphine.

The Nature of Spontaneous Withdrawal-Potentiated Startle

Spontaneous withdrawal-potentiated startle emerged and peaked four hours after injection of 

10 mg/kg morphine, consistent with our previous report (Harris et al, 2004a). This 

corresponds to a time at which morphine levels in blood and brain have declined 

substantially (Barjavel et al, 1995; Hipps et al, 1976), and the direct behavioral and 

neurochemical effects of morphine have already peaked and are returning to baseline 

(Babbini and Davis, 1972; Barjavel et al, 1995; Di Chiara and Imperato, 1988; Hipps et al, 

1976). This suggests startle elevation emerges as morphine metabolism leads to falling drug 
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levels and reduced opiate receptor occupancy. Startle was potentiated by naloxone 

administration two hours after morphine, while morphine re-exposure delayed the onset of 

startle potentiation, suggesting a link between startle potentiation and decreased opiate 

receptor occupancy.

Spontaneous withdrawal-potentiated startle was also blocked by chlordiazepoxide and 

propranolol, two anxiolytic drugs previously shown to attenuate increases in startle 

amplitude caused by conditioned fear cues and exposure to bright light (de Jongh et al, 

2002; Risbrough et al, 2003; Walker et al, 2002a). Chlordiazepoxide prevents other forms of 

anxiety-like behavior in rodents (e.g., Knoll et al, 2007), while propranolol has been shown 

to reduce affective signs of opiate withdrawal (Harris et al, 1993a, b). NMDA receptor 

antagonists also alleviate signs of opiate withdrawal (Harris et al, 2008; Kawasaki et al, 

2005; Rasmussen, 1995). LY235959, a competitive NMDA receptor antagonist that reduces 

precipitated morphine withdrawal (Jones et al, 2002), produced a dose-dependent 

attenuation of startle potentiation. These results clearly indicate that startle elevation shares a 

pharmacological profile with other measures of opiate withdrawal.

Relationship between Startle Potentiation and Place Conditioning

A delayed CPA has been observed following administration of morphine (Bechara et al, 

1995), as well as other opiates (Pain et al, 2008) and other addictive drugs (Ettenberg and 

Bernardi, 2007; Morse et al, 2000; Pliakas et al, 2001). We assessed the time course of place 

conditioning after administration of 10 mg/kg morphine, and found that CPP persisted up to 

four hours after morphine injection (see also White et al, 2005). This time course closely 

parallels the elevation of extracellular dopamine levels in the nucleus accumbens (Di Chiara 

et al, 1988), consistent with the role of nucleus accumbens dopamine in generating 

morphine CPP (Fenu et al, 2006). A tendency for CPA emerged eight hours after morphine 

injection. Other studies have reported robust CPA 11-16 hours after acute exposure to 20 

mg/kg morphine (Bechara et al, 1995; Vargas-Perez et al, 2007), which is likely related to 

differences in morphine dose and the number and timing of conditioning sessions. There 

was a significant fourth-order polynomial trend across time, suggesting the acute rewarding 

effects of morphine were followed by delayed aversive effects. We speculate that the 

tendency toward CPP at 10 hours could reflect alleviation of an aversive withdrawal state.

We were surprised to find CPP four hours after 10 mg/kg morphine, the same time point at 

which we observed peak startle potentiation. To determine if a similar dissociation was 

observed under other conditions, we examined the effect of naloxone on acoustic startle and 

place conditioning at different times after a single morphine injection. We found that 

injection of 2.5 mg/kg naloxone generated CPA (as well as startle potentiation) two hours 

after morphine injection. These results are consistent with human studies showing that 

naloxone can precipitate withdrawal symptoms as soon as 45 minutes after acute morphine 

administration (Heishman et al, 1989). Several signs of withdrawal (Eisenberg, 1982; 

Gellert and Sparber, 1977), including CPA (Araki et al, 2004; Parker et al, 1998), are still 

observed when naloxone is administered 24-48 hours after a single exposure to morphine. 

We observed both startle potentiation and CPA when naloxone was administered 24 hours 
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after one morphine injection, demonstrating an additional similarity between startle 

potentiation and other measures of withdrawal.

A dissociation between the emergence of startle potentiation and CPA was only observed 

when withdrawal was allowed to unfold spontaneously. These results provide an important 

example in which antagonist-precipitated withdrawal does not precisely recapitulate the 

conditions of spontaneous withdrawal. Precipitated withdrawal is a useful experimental tool 

for controlling the timing of withdrawal and studying states of dependence. However, in the 

context of human opiate abuse, withdrawal develops spontaneously in the absence of an 

opiate receptor antagonist. Our findings highlight the importance of further developing 

models of spontaneous opiate withdrawal in rodents, to examine potential similarities and 

distinctions between spontaneous and precipitated withdrawal states.

In future studies, it will be important to examine the opiate receptor subtypes mediating 

different behavioral changes during spontaneous and precipitated withdrawal from acute 

morphine exposure. Specific antagonists of the mu-opioid receptor (MOR) can precipitate 

signs of withdrawal following chronic morphine exposure (Le Guen et al, 2003; Maldonado 

et al, 1992), suggesting that loss of MOR occupancy may cause spontaneous withdrawal. 

However, morphine also has a lower affinity for the kappa-opioid receptor (KOR) 

(Goldstein and Naidu, 1989), and some effects of morphine can be mediated by KOR 

activation (Nobre et al, 2000; Sante et al, 2000; Yamada et al, 2006). As KOR agonists 

produce signs of anxiety, dysphoria, and anhedonia in humans and rodents (Land et al, 

2008b; Motta et al, 1995; Nestler et al, 2006; Pfeiffer et al, 1986; Sante et al, 2000; 

Shippenberg et al, 2007), signaling cascades triggered by KOR activation could also 

contribute to spontaneous withdrawal. On the other hand, KOR antagonists can in some 

cases exacerbate the severity of opiate withdrawal (Spanagel et al, 1994). The potential 

contributions of MOR and KOR could be addressed in future studies using techniques that 

directly measure receptor occupancy, such as autoradiography, to examine changes in the 

occupancy of MOR and KOR across multiple brain structures in the hours following acute 

morphine administration.

Potential Neural Substrates for Anxiety and Dysphoria

During spontaneous withdrawal from acute morphine exposure, startle potentiation emerges 

before the rewarding effects of morphine have subsided, and thus prior to the onset of CPA. 

Our data suggest that startle potentiation may be caused by decreased opiate receptor 

occupancy. In contrast, CPA may instead represent an opponent process to the acute 

rewarding effects of morphine (Vargas-Perez et al, 2007). As such, CPA may reflect a 

decrease below baseline activity in the mesolimbic dopamine system. This type of change 

has been demonstrated during withdrawal from chronic opiate exposure (Diana et al, 1995; 

Rossetti et al, 1992; Spanagel et al, 1994), as well as acute amphetamine exposure (Barr et 

al, 2002), though we are not aware of similar studies performed after acute morphine 

administration. Adaptations within the reward system are thought to play a role in 

depression (Nestler et al, 2006), and depression-like changes during opiate withdrawal may 

be manifested as CPA (Vargas-Perez et al, 2007) and elevated ICSS thresholds (Liu et al, 

2004).
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In contrast, startle potentiation emerges while the reward system is still active, but its 

activity has decreased from peak levels (Di Chiara et al, 1988). This suggests the anxiety-

like manifestations of opiate withdrawal may be closely tied to a relative decrease in 

hedonic state (i.e., a negative slope), rather than an absolute decrease below baseline. 

Portions of the extended amygdala, including the bed nucleus of the stria terminalis and 

central nucleus of the amygdala, play a general role in states of withdrawal (Koob et al, 

2008) and anxiety (Walker et al, 2003), and are specifically involved in antagonist-

precipitated withdrawal from acute morphine administration (Cabral et al, 2008; Criner et 

al, 2007; Harris et al, 2006). This involvement could result from a direct and local effect of 

morphine, or may be secondary to morphine-induced elevations in extracellular dopamine 

(Carboni et al, 2000). The specific role of these circuits in different emotional 

manifestations of spontaneous withdrawal will be an important topic for future research.

This framework may help explain why baseline startle amplitude is not elevated during 

precipitated withdrawal from chronic opiate administration (Fendt and Mucha, 2001; 

Kalinichev and Holtzman, 2003; Mansbach et al, 1992). These conditions produce dramatic 

decreases in mesolimbic dopamine system activity (Diana et al, 1995; Pothos et al, 1991; 

Rossetti et al, 1992) and brain reward function (Schulteis et al, 1994). The resulting 

depression-like state could obscure or overwhelm the expression of anxiogenic 

manifestations of withdrawal. Indeed, human patients diagnosed with depressive illness do 

not exhibit increases in startle amplitude under conditions that normally produce startle 

potentiation in control subjects (Dichter and Tomarken, 2008; Forbes et al, 2005; Lang and 

McTeague, 2009).

Implications for Addiction

Our results clearly indicate that withdrawal is a complex and multifaceted construct. We 

have described distinct time courses for two specific emotional manifestations of acute 

withdrawal (i.e., startle potentiation and CPA). The spontaneous evolution of other signs of 

acute withdrawal may parallel one of the time courses we have described, or may follow 

other unique time courses. For example, spontaneous increases in ICSS threshold have been 

reported 24 hours after acute morphine exposure (Liu et al, 2004). We also note that 

spontaneous hyperalgesia has been observed following a single exposure to heroin (Laulin et 

al, 1998) or morphine (Sweitzer et al, 2004). The time course of hyperalgesia is complex, as 

it emerges and dissipates in the hours after opiate administration, then reappears 24 hours 

later and lasts several days (Laulin et al, 1998). Thus, the various emotional and physical 

manifestations of spontaneous withdrawal likely result from a cascade of numerous 

neurobiological events, which develop and evolve as a function of time.

It is important to note that anxiety-like signs of spontaneous withdrawal may represent one 

of the earliest manifestations of the withdrawal syndrome, developing prior to CPA and 

changes in ICSS threshold. Since spontaneous startle potentiation was delayed by re-

exposure to morphine, relief or prevention of anxiety may be particularly important for 

motivating continued drug use. The relief of anxiety states may provide primary negative 

reinforcement for ongoing drug use, perhaps by maintaining dopaminergic tone within the 

extended amygdala, since D1 receptor antagonism in the amygdala can enhance cocaine 
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intake, even while dopamine levels in NAc remain elevated (Hurd et al, 1997). In addition, 

anxiety-like states may motivate drug use because they predict the subsequent emergence of 

depression-like states, thus serving as secondary negative reinforcers. Finally, anxiety-like 

states generated by stressful experience could also contribute to stress-induced relapse, 

particularly given the common neural circuitry involved in stress-induced reinstatement 

(Shaham et al, 2003) and potentiated acoustic startle (Walker et al, 2003).

Events that occur during spontaneous withdrawal may also contribute to some of the unique 

effects of intermittent opiate exposure. For example, intermittent injections of morphine 

produce physiological changes similar to those caused by chronic stress (Houshyar et al, 

2003; Houshyar et al, 2004), changes not observed when morphine is administered 

continuously. The acute withdrawal state that follows each intermittent morphine injection 

may contribute to this stress-like profile. Indeed, changes in brain activity during 

spontaneous withdrawal could contribute to any difference between the consequences of 

continuous and intermittent opiate exposure. As human drug abuse is routinely interrupted 

by drug-free periods (Baker et al, 2004; Dole et al, 1966), it will be important to examine 

whether events that occur during spontaneous withdrawal contribute to adaptations in brain 

function during intermittent drug exposure.

These results add to a growing number of dissociations between anxiety- and depression-

like behavior under a variety of experimental conditions (Bosch et al, 2008; Land et al, 

2008a; Nestler et al, 2006; Sahuque et al, 2006; Wallace et al, 2009), and raise important 

considerations for future research. First, signs of withdrawal develop spontaneously 

following just one exposure to morphine, and are likely expressed following each 

intermittent exposure to an opiate. This means withdrawal is not unique to the termination of 

chronic drug use, but is an intrinsic component of drug taking that may play an important 

but often neglected role in the development of addiction. Second, anxiety-like 

manifestations of withdrawal emerge while the animal is still experiencing a state of reward. 

As dysphoria and other depression-like manifestations of withdrawal likely reflect decreases 

below baseline in reward system activity, symptoms of anxiety and depression may develop 

at different times as withdrawal unfolds, which could have important treatment implications. 

Therapeutic interventions that ameliorate symptoms of anxiety and depression, such as 

kappa-opiate receptor antagonists (Knoll et al, 2007; Land et al, 2008a; Land et al, 2008b; 

Nestler et al, 2006), may prove particularly effective. A clearer understanding of the 

neurobiological underpinnings of opiate withdrawal could potentially advance our 

understanding of mood and anxiety disorders, in addition to improving treatment of 

addiction itself.
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Figure 1. 
Startle time course during spontaneous and naloxone-precipitated withdrawal from acute 

morphine administration. (A) Top: Experimental timeline - baseline startle was tested before 

initial injection of morphine (Mor; 10 mg/kg), followed two hours later by injection of 

naloxone (Nx; 2.5 mg/kg) or saline (Sal). Startle was tested 2, 3, 4, or 5 hours after initial 

injection. Bottom: Percent change in startle following injection of Mor alone (filled circles) 

or Mor + Nx (open circles). (B) Top: Experimental timeline - parallel control groups were 

injected with Sal at 0:00. Bottom: Percent change in startle following injection of Sal alone 

(filled squares) or Sal + Nx (open squares). Startle was tested at one time point each day 

over the course of four days using a Latin Square design; drug treatment remained the same 

on each day of testing. All data represent mean +/- SEM. * Significant difference between 

groups (8-16 rats/group)
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Figure 2. 
Morphine re-exposure delays the onset of startle potentiation. (A) Experimental timeline: 

baseline startle was tested before initial injection of morphine (Mor; 10 mg/kg) or saline 

(Sal), followed three hours later by a second injection of Mor or Sal. Treatment 

combinations are shown in the box between panels B and C; gray bars indicate Mor 

injection at 0:00. (B) Startle test four hours after initial injection. (C) Startle test seven hours 

after initial injection in the same group of animals. Startle was tested over two days using a 

crossover design; the initial injection was the same on both days, while the second injection 

changed each day in counterbalanced order. * Significant increase compared to saline 

control group; # significant decrease compared to morphine alone (17 rats/group)
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Figure 3. 
Anxiolytic drugs (chlordiazepoxide and propranolol) prevent spontaneous withdrawal-

potentiated startle. (A) Experimental timeline: baseline startle was tested before initial 

injection of morphine (Mor; 10 mg/kg) or saline (Sal), followed 3.5 hours later by injection 

of chlordiazepoxide (CDZ; 10 mg/kg), propranolol (Prop; 10 mg/kg), or vehicle. Treatment 

combinations are shown in the box below each graph; gray bars indicate Mor injection at 

0:00. (B) Results for chlordiazepoxide (16 rats/group). (C) Results for propranolol (11 rats/

group). Startle was tested over two days using a crossover design; the initial injection 

changed each day in counterbalanced order, while the second injection was the same on both 

days. * Significant increase compared to saline alone; # significant decrease compared to 

morphine alone
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Figure 4. 
An NMDA receptor antagonist (LY235959) attenuates spontaneous withdrawal-potentiated 

startle. (A) Experimental timeline: baseline startle was tested before initial injection of 

morphine (Mor; 10 mg/kg) or saline (Sal), followed three hours later by LY235959 (LY; 1-3 

mg/kg) or saline. Treatment combinations are shown in the box below the graph. (B) Results 

for LY235959. Startle was tested over two days using a crossover design; the initial 

injection changed each day in counterbalanced order, while the second injection was the 

same on both days. * Significant linear effect of LY235959 dose (12 rats/group)
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Figure 5. 
Place conditioning time course following acute morphine administration. Two morphine and 

two saline conditioning sessions (50 minutes each) were conducted over four days in 

counterbalanced order. Each pair of bars represents a separate group of animals. * 

Significant change from baseline to test (11-23 rats/group)
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Figure 6. 
Conditioning with naloxone two or 24 hours after morphine causes CPA. One saline and one 

drug conditioning session (30 minutes each) were conducted over two days. On the first day 

of conditioning, all rats were injected with saline or naloxone (2.5 mg/kg) immediately 

before exposure to the non-drug side. On the second day of conditioning, all rats received 

the same treatment (naloxone or saline) immediately before exposure to the drug side. 

Naloxone was given on both sides to control for non-specific aversive effects. Treatment 

combinations are shown in the box between panels A and B; each pair of bars represents a 

separate group of animals. (A) Place conditioning after saline or morphine (10 mg/kg) 

injection in the colony two hours before the second conditioning session (8-14 rats/group). 

(C) Place conditioning after saline or morphine injection in the colony 24 hours before the 

second conditioning session (15-16 rats/group). * Significant change from baseline to test
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Figure 7. 
Effect of naloxone (2.5 mg/kg - hatched bars) on acoustic startle after injection of saline 

(white bars) or at different time points after a single injection of morphine (10 mg/kg; gray 

bars). Saline data and the 2:00 time point are reproduced from Figure 1 for comparison; gray 

bars indicate groups exposed to morphine. * Significant increase compared to adjacent 

control group (6-16 rats/group)
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