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The SARS-CoV-2 pandemic is maintained by the emergence of successive

variants, highlighting the flexibility of the protein sequences of the virus.

We show that experimentally determined intrinsically disordered regions

(IDRs) are abundant in the SARS-CoV-2 viral proteins, making up to

28% of disorder content for the S1 subunit of spike and up to 51% for the

nucleoprotein, with the vast majority of mutations occurring in the 13

major variants mapped to these IDRs. Strikingly, antigenic sites are

enriched in IDRs, in the receptor-binding domain (RBD) and in the

N-terminal domain (NTD), suggesting a key role of structural flexibility in

the antigenicity of the SARS-CoV-2 protein surface. Mutations occurring

in the S1 subunit and nucleoprotein (N) IDRs are critical for immune eva-

sion and antibody escape, suggesting potential additional implications for

vaccines and monoclonal therapeutic strategies. Overall, this suggests the

presence of variable regions on S1 and N protein surfaces, which confer

sequence and antigenic flexibility to the virus without altering its protein

functions.

Introduction

Intrinsically Disordered Proteins (IDPs) are a wide-

spread class of diverse proteins characterized by lack

of a fixed 3D structure [1]. IDPs are well known play-

ers of multiple biological processes, such as nucleic

acid binding, signalling, cell cycle regulation, and play

a central role in a large number of physiological and

pathological processes [2]. Although widely distributed

in eukaryotes, the widest content is found among

viruses [3], where IDPs have evolved to support virus-

related biological functions [4,5]. Disordered proteins

represent an important class of antigens in a variety of

human pathogens and can be targets of protective

antibody responses [6].
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The presence of protein intrinsic disorder was also

highlighted in the Severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) proteome [7–9]. In par-

ticular, both spike glycoprotein (S) and nucleoprotein

(N) are nowadays well known to contain functionally

relevant disordered regions (IDRs) [7–9]. Since the

onset of the COVID-19 pandemic, several SARS-

CoV-2 variants have been identified worldwide [10],

affecting the epidemiology of the virus, and playing

an important role in pandemic surveillance and con-

trol [11,12]. Mutations that affect the viral genome

and potentially impact disease transmission and sever-

ity are referred to as variants of concern (VOC) and

variants of interest (VOI), and the scientific commu-

nity is increasingly dedicated to monitoring the emer-

gence of new viral lineages worldwide. The most

variable proteins are spike and nucleoprotein, which

are also the major antigenic proteins [13].

In this work, we use manually curated structural

data to describe the disordered regions of SARS-CoV-

2—as a collaboration between leading data resources,

UniProt [14], ViralZone [15] and DisProt [16,17]—fo-

cusing on the spike protein and nucleoprotein. Many

different SARS-CoV-2 variants have been observed:

there are 1737 lineages described in PANGO (https://

cov-lineages.org/index.html/cite) as of December 2021.

We chose to analyse the 13 Variants Of Concern

(VOC) and the Variants Of Interest (VOI)—including

Omicron—as they represent the most widespread and

best adapted to humans (https://www.who.int/en/

activities/tracking-SARS-CoV-2-variants/). We analyse

mutation localization for these 13 major variants of

the SARS-CoV-2 virus and uncover hotspots that cor-

relate not only with disordered regions but also with

immune evasion. Finally, we highlight the role of flexi-

ble regions in the major antigenic site of the spike pro-

tein, suggesting a role of intrinsic disorder in escaping

the host immune response.

Results

SARS-CoV-2 spike and nucleoprotein are

enriched in IDRs

Intrinsically disordered proteins are characterized by

the presence of unstructured segments, that is, intrinsi-

cally disordered regions (IDRs), that lack a stable ter-

tiary structure. Intrinsic disorder in proteins can be

identified by several experimental techniques, including

biophysical and biochemical methods, the most widely

used being X-ray crystallography, nuclear magnetic

resonance (NMR), circular dichroism and small-angle

X-ray scattering [18,19]. Using the information

available in DisProt, the major repository of manually

curated data of IDPs and IDRs from literature data,

we investigated the presence of IDRs in the SARS-

CoV-2 proteins, along with their interactions and func-

tions [16,17]. By analysing published structures and

raw experimental data, we investigated IDR regions in

nucleoprotein, spike, E protein, ORF1ab, ORF3a and

ORF7a proteins. We focused our analysis on those

proteins playing a crucial role in the virus–host inter-

action, and targets of vaccines and antibodies develop-

ment, that is, proteins spike and nucleoprotein [20,21].

Analysis revealed that several regions are omitted in

the structures of SARS-CoV-2 spike glycoprotein (pro-

tein S, DisProt: DP02772) due to their flexibility. No

apparent density can be detected for region 455-490

[7]: this region of the Receptor-Binding Motif (RBM)

is indeed unstructured and flexible in the unbound

conformation [7,8] and undergoes folding-upon-

binding in the ACE2-bound form [22,23].

The IDR between S1 and S2 (673–686) [7] is

required for the proteolytic processing essential for the

viral entry into host cells [24]. An insertion at position

680–687, that includes the specific furin-like cleavage

motif RRxR, has been shown to be absent in other

beta coronaviruses such as SARS-CoV [25].

Several sterically accessible complex-type glycans

were identified inside the IDRs of SARS-CoV-2 spike

glycoprotein (N74, N149 and three positions in the

unstructured C terminus, N1158, N1173, N1194) as

characterized by mass spectrometry experiments [26].

As protein glycosylation is a well-established strategy

adopted by viruses to evade host immunity [27],

molecular dynamic simulations highlighted that gly-

cans extensively shield the spike protein surface from

antibody recognition [28]. Nevertheless, we found no

significant correlation between glycan sites and IDR in

spike protein.

SARS-CoV-2 nucleoprotein (protein N, DisProt:

DP03212) is a 419-residue multidomain protein charac-

terized by 52% of disorder content that include the

unstructured N- and C-termini, along with a disordered

flexible linker connecting the RNA-binding domain

(RBD) and the dimerization domain [29]. The disor-

dered N terminus plays a role in liquid–liquid phase

separation of protein N, indeed its deletion strongly

decreases phase separation in the presence of RNA,

while slightly increasing turbidity and droplet formation

in the absence of RNA [30]. Similarly, a deletion of

the flexible linker (region 174-247) strongly reduces

LLPS-associated droplet formation and turbidity [30].

NMR titration experiments characterizing the interac-

tion of polyU with the protein N SR-peptide, region

182-197 inside the flexible linker that connects the two
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globular domains, indicate that the interaction strength

decreases in the phosphorylated form. Moreover, phos-

phorylation of full-length nucleoprotein affects its

RNA-induced phase separation, resulting in a weaker

interaction of protein N with RNA and an increased

diffusion of the phosphorylated species inside polyU-

induced droplets [31]. The C-terminal IDR, instead, is

not required for nucleoprotein condensation with RNA

via LLPS [31]. The N-terminal and C-terminal IDRs

were also found to be involved in the binding of

nucleocapsid-targeting single-domain antibodies

(sdAbs), sdAbs-N5 and sdAb-N6, whose interaction

with the nucleoprotein requires the presence of its

intrinsically disordered termini [32]. Size-exclusion

chromatography studies of the nucleoprotein in RNA-

bound states and RNA-free state showed that

truncations of its N-terminal IDR impair the RNA

binding and that both the N-terminal and C-terminal

IDRs contribute to RNA-binding activity of the SARS-

CoV-2 nucleoprotein [33]. Finally, the C-terminal disor-

dered region seems to play a role in droplet formation

[33].

S1 and N mutation hotspots cluster in

unstructured regions

Since late 2020, the SARS-CoV-2 pandemic has been

driven by the emergence of variants [34]. These lin-

eages carry fixed mutations that increase the viral fit-

ness while enhancing the spread of the virus at

population level. Our analysis reveals that nonsynony-

mous mutations tend to cluster in hotspots (Fig. 1,2),

Fig. 1. Amino acid changes in the spike protein of Variants of Concern (VOC) Alpha, Beta, Gamma, Delta, Omicron BA.1 and BA.2; Variants

of Interest (VOI) Lambda, Mu, Epsilon, Zeta, Eta, Theta, Iota and Kappa. Disordered regions are indicated by cyan columns, and variants in

disordered regions are coloured in red. Parentheses indicate variants whose prevalence is < 80% but > 10%. The main regions are

annotated: S1 with N-terminal domain (NTD) and receptor-binding domain (RBD); S2 with fusion peptides, heptad repeat 1 (HR1) and 2

(HR2) and the transmembrane domain (TM) [73]. Major antigenic sites are shown below with the NTD supersite [56], and monoclonal

antibody-binding regions for sotrovimab [74], casirivimab and imdevimab [75,76].
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suggesting the presence of variable disordered regions.

Such features in viral surface proteins may influence

viral antigenicity and/or tropism. The external loop

domain III of dengue virus envelope protein is disor-

dered and plays a role in selective host binding ([35],

DisProt: DP00876). Moreover, it is the major target of

highly neutralizing and protective serotype-specific

antibodies [36]. Similarly, the HIV-1 glycoprotein

is characterized by multiple variable loops that are in-

trinsically disordered [37] and play a role in immune

evasion [38] and coreceptor binding [39]. To assess the

presence of variable disordered regions in SARS-CoV-2,

we compared the substitutions/deletions found in the 13

major variants classified by WHO (January 2022)

(https://www.who.int/en/activities/tracking-SARS- CoV-

2-variants/) with the experimentally determined IDRs

(Fig. 1,2,3), identifying a strong correlation among

mutations and disordered regions in SARS-CoV-2 spike

protein and nucleoprotein. For instance, mutations in

the S1 subunit of the spike glycoprotein tend to cluster

in hotspots at the N terminus and occur in its unstruc-

tured regions—32 out of 45 mutated positions account-

ing for 71% of variants are localized inside S1 IDRs,

whereas the S2 chain variants do not (Table 1). Simi-

larly, 16 out of 18 mutated positions in SARS-CoV-2

nucleoprotein (N) are localized inside its IDRs,

accounting for 89% of variants affecting protein N

(Table 1).

For all the other SARS-CoV-2 proteins for which

we gathered intrinsic disorder data, the observed muta-

tions either did not correlate with known IDRs, or

there were too few mutations to be significant. Here,

we provide an insight on the intrinsic disorder and

mutation content of SARS-CoV-2 ORF3a, E protein,

ORF7a and ORF1ab (Table 2, Fig. 4,5).

ORF3a (DisProt: DP03003): electron cryomi-

croscopy experiments of the protein shed light on the

intrinsic disorder of its N- and C-terminal regions [40].

Point mutations disrupting the TRAF-binding region

of ORF3a (residues 36–40) lack the ability to activate

Fig. 2. Amino acid changes in the

nucleoprotein of Variants of Concern Alpha,

Beta, Gamma, Delta, Omicron BA.1 and

BA.2; Variants of Interest (VOI) Lambda,

Mu, Epsilon, Zeta, Eta, Theta, Iota and

Kappa. Disordered regions are indicated by

cyan columns, and variants in disordered

regions are coloured in red. Parentheses

indicate variants whose prevalence is

< 80% but > 10%.
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either IL-1b or IL-8–Luc secretion, highlighting the

role of ORF3a in NF-jB and NLRP3 inflammasome

activation [41]. The ORF3a unstructured N terminus is

also responsible for its subcellular localization, for

instance a deletion of the first 41 residues increases its

expression in the plasma membrane while impairing

localization to internal membranes [40]. Finally, 42%

of the mutations affecting ORF3a in the variants here

described are localized in its disordered N- and C

termini: T9I (peculiar to Omicron variant), I20M

(Mu), S26L (Delta and Kappa), S253P (Gamma),

del257 and V259L (Mu).

E protein (DisProt: DP03450): NMR data indicate

that E, a 75-residue-long protein, exhibits a higher

mobility in its N-terminal (2–7) and C-terminal

(61–75) regions. The central region is characterized by

structured elements, that is, a transmembrane helix

(8–43) and a cytoplasmic helix (53–60) [42]. A single

mutation, P71L in the Beta variant, is localized in the

highly mobile C-terminal region of the E protein.

ORF7a protein (DisProt: DP03460): X-ray crystallog-

raphy of the SARS-CoV-2 ORF7a ectodomain (PDB:

7CI3, residues 14–96) shows that this protein (121 aa) is

characterized by a well-defined structure and visible

electron density from residues 14 to 82. Residues 83–96
are instead not visible in the electron density map, indi-

cating the presence of structural disorder in the ORF7

protein, followed by a transmembrane domain (97–116)
and an ER-retention signal (117–121) not included in

the crystal structure [43]. No mutations are found inside

the IDR of ORF7a identified so far.

ORF1ab (DisProt: DP02925): Several unstructured

regions were identified in the replicase polyprotein

1ab, although the structural characterization of several

of its regions is still missing in the scientific literature.

Residues 1–147 of ORF1ab:NSP1 are unstructured

and include a flexible linker, spanning region 129–147,
that connects the disordered N-terminal domain of

Nsp1 and its C-terminal domain [44]. Similarly, IDRs

are found in ORF1ab:NSP3 (residues 1782–1796),
ORF1ab:NSP8 (residues 3931–4020) and ORF1ab:

NSP10 (residues 4254–4271) [45–48]. To date, only

mutation S135R in the Omicron BA.2 lineage maps to

an IDR.

Fig. 3. Immune escape-related mutations

mapped on the IDRs of the spike protein

(structure in closed conformation) [61].

The disordered regions—according to the

DisProt database (protein S, DisProt:

DP02772) - are coloured in light brown on

the structure, while mutations are

highlighted in dark brown. Molecular

graphics were performed using UCSF

Chimera [71].

Table 1. Disorder content in SARS-CoV-2 proteins according to

DisProt, mutation prevalence across 12 VOC and VOI lineages

(except Omicron) (mut) and the mutations mapped to the IDRs of

spike and nucleoprotein (mutIDR/mut). Mutations and variants data

retrieved from https://outbreak.info/, intrinsic disorder data from

https://disprot.org/.

disorder

content (%) mut mutIDR mutIDR/mut

Spike (S1) 28 45 32 0.71

Spike (S2) 26 10 1 0.10

Nucleoprotein (N) 52 18 16 0.89

Table 2. Disorder content in SARS-CoV-2 proteins according to

DisProt, mutation prevalence across VOC and VOI lineages (mut)

and the mutations mapped to the IDRs of ORF3a, E protein,

ORF7a and ORF1ab (mutIDR/mut). Mutations and variants data

retrieved from https://outbreak.info/, intrinsic disorder data from

https://disprot.org/.

disorder content (%) mut mutIDR mutIDR/mut

ORF3a 28 12 5 0.42

E protein 20 3 1 0.33

ORF7a 11.6 3 0 0

ORF1ab 3.9 55 1 0.02
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Fig. 4. Mutations in the VOCs and VOI

lineages mapped on the sequences of

ORF3a, E protein and ORF7a. VOCs and

VOIs lineages are represented, along with

the mutations falling inside (red) and

outside (black) IDRs. IDRs are represented

as cyan columns while transmembrane

regions are in grey.

Fig. 5. Mutations in the VOCs and VOI lineages mapped on the sequences of ORF1ab polyprotein. VOCs and VOIs lineages are

represented, along with the mutations falling inside (red) and outside (black) IDRs. IDRs are represented as cyan columns.
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Omicron variant

During the time this paper was submitted, the Omi-

cron variant appeared [49]. This variant is unusual in

that it has more than 30 mutations localized in the

spike glycoprotein, so many that it escapes most thera-

peutic monoclonal antibodies and, to a large extent,

vaccine-triggered antibodies [50,51]. The variant pre-

sents a large number of mutated positions in the S1

region (n = 31), with a significant number mapping to

disordered regions (53%) although less than the 12

previous variants (71%) (Table 3). This may be due to

the tremendous acceleration of evolution that has led

to omicron emergence, not yet completely understood

[52]. Interestingly, in the Omicron variant and its lin-

eages, all the mutated positions in the nucleoprotein

are found in disordered regions. Specifically, P13L and

del31-33 are localized in the unstructured N terminus,

while R203K and G204R are inside the intrinsically

disordered linker connecting the N-terminal domain

with the C-terminal domain. Finally, although the

P13L, R203K and G204R substitutions have already

been identified in other variants, the deletion affecting

positions 31–33 and S413R missense mutation are

peculiar to Omicron (https://outbreak.info/compare-

lineages?pango=Omicron).

Antigenic drift is closely associated with SARS-

CoV-2 IDRs

The major SARS-CoV-2-specific antibody responses

target the spike glycoprotein (S1 subunit) [8,53].

Two major antigenic regions are present in the S1

subunit: the receptor-binding domain (RBD) and the

N-terminal domain (NTD) [54].

The RBD is the main antigenic site to which neu-

tralizing antibodies bind, and this region includes three

IDRs. Many neutralizing antibodies target the recep-

tor-binding motif (RBM, pos. 438-506) in the RBD

[8,55]. They act by preventing binding to the host

receptor or reducing attachment to the host cell

[54,55]. The inner part of this region is unstructured

(pos. 455–490) [7,8] and it folds when interacting with

the ACE2 receptor [22,23].

The NTD contains an antigenic supersite to which

neutralizing antibodies bind [56]. Interestingly, this

supersite corresponds to the first three IDRs where

most of the variation occurs [54,57]. These three

regions behave similarly to the variable loops in fla-

vivirus envelope or HIV gp120: unstructured regions

that allow the virus to escape immunity through a high

potential for variation [56,58].

Antibody recognition of disordered epitopes is par-

ticularly sensitive to epitope variation [6]. A recent

study analysed viral mutations that occurred in

immunocompromised patients, and found out that

most mutations are observed in either the NTD super-

site or the RBM [59]. The flexibility of the IDR

regions allows variants to escape neutralization by

many antibodies, as shown by the resistance of Beta

and Gamma variants to bamlanivimab and casirivimab

treatments [50]. In particular, E484K substitution—lo-

calized in the IDR within the RBM—triggers immune

evasion against casirivimab monoclonal antibodies

[60]. In addition, Q677H and deletion 246-253 in the

eta and lambda variants confer a better resistance to

neutralizing antibodies [61].

A superantigen-like motif—absent in other SARS

family beta coronaviruses—has been identified in the

spike of SARS-CoV-2. This motif, corresponding to

the furin cleavage site at position 681–684 (PRRA)

[62], was proposed to be a high-affinity site for T-cell

receptor (TCR) b-Chain and may play a crucial role in

the immune inflammation responsible for severe cases

of COVID [63]. Strikingly this motif at position 681–
684 maps to an intrinsically disordered region of the

spike protein, moreover P681 is a mutational hotspot

in SARS-CoV-2 variants Alpha, Delta, Kappa, Mu

(Fig. 1,3).

The nucleocapsid is the second major antigen of

SARS-CoV-2 [64]. Early studies on SARS-CoV

showed that the immunodominant epitopes are located

in regions 1–69, 153–235 and 354–422 [65], corre-

sponding to the three disordered domains conserved in

both SARS-CoV and SARS-CoV-2.

Collectively, these findings suggest that the immun-

odominant epitopes of the S1 subunit and of the N

protein are closely associated with the disordered

regions in the SARS-CoV-2 proteins.

Discussion

Intrinsically disordered regions (IDRs), protein regions

characterized by a lack of stable three-dimensional

structure, are present and abundant in native SARS-

Table 3. Disorder content in Omicron BA.1 and BA.2 SARS-CoV-2

proteins according to DisProt, mutation prevalence (mut) and the

mutations mapped to the IDRs of spike and nucleoprotein (mutIDR/

mut). Mutations and variants data retrieved from https://outbreak.

info/, intrinsic disorder data from https://disprot.org/.

disorder

content (%) mut mutIDR mutIDR/mut

Spike (S1) 28 39 20 0.51

Spike (S2) 26 8 0 0

Nucleoprotein (N) 52 6 6 1
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CoV-2 proteins. The IDRs described here were identi-

fied by screening the associated scientific literature and

the data retrieved were subsequently manually curated

into DisProt and integrated with information from

ViralZone. These IDRs have been shown to be associ-

ated with hotspots of mutations in spike S1 protein

and nucleoprotein. Substitutions and deletions falling

inside unstructured regions are likely to have a minor

impact on the protein folding [66,67]. Moreover we

show that these disordered regions overlap with major

antigenic sites. IDRs are known to be specific targets

of antibody recognition [6] and this variability might

have an impact on antibodies’ binding specificity. Our

results suggest that SARS-CoV-2 displays disordered

regions (IDRs) on the spike S1 subunit and on the N

protein, and that these regions are enriched in muta-

tions that could provide the virus with an advantage

both for genetic and antigenic drift.

These findings are particularly important in light

of emerging variants, such as the delta subvariant

AY.4.2, which is being monitored by the European

Centre for Disease Prevention and Control (ECDC,

https://www.ecdc.europa.eu/) and the World Health

Organization (WHO, https://www.who.int/). The major

mutation associated with the AY.4.2 variant, Y145H,

is located in an IDR of the spike glycoprotein and is

structurally close to the known immunodominant epi-

tope at position 153–235 (Fig. 1,3), possibly playing a

role in viral immune defence. Omicron variants have a

higher amount of mutations in S1 IDRs (20) than any

other variants. It combines all the high-consequence

mutations identified in previous variants and has an

unexpected ability to evade vaccine protection. In

addition, it has an enormous number of mutations

(19) in structured regions of the protein, making it dis-

tinctly different from previous variants. This suggests

that Omicron arose under different selective pressures.

Indeed, early studies suggest that the Omicron may

have arisen in chronically infected COVID-19 patients

[52] or infected animals [68].

The proposed correlation between intrinsic disorder

with mutational hotspots and major antigenic sites

may have potential implications for the management

of the SARS-CoV-2 pandemic and associated disease.

Treatment of severe COVID patients depends on mon-

oclonal antibodies, which in turn relies on their ability

to recognize specific epitopes. Mutations in the tar-

geted epitopes may inhibit the binding of monoclonal

antibodies and reduce the therapeutic effect of this

treatment [69]. Given the established link between

IDR and mutation hotspot, it may be beneficial in the

long term to select monoclonal antibodies that target

ordered regions. Similarly, vaccine development could

benefit from knowing where the key variable regions

of the spike protein are located.

Materials and methods

Identification and annotation of intrinsically

disordered regions

The presence of IDRs in each SARS-CoV-2 protein was

manually curated based on the most relevant literature data

as well as with manual visual inspection of crystallographic

and raw structural data. In addition, we combined our

annotations with information retrieved from UniProt [14],

(https://www.uniprot.org/) and ViralZone [15] (https://

viralzone.expasy.org/). The intrinsically disordered regions

(IDRs) were then annotated in DisProt, the database for

manually curated intrinsically disordered proteins [16,17]

(https://disprot.org/). Each SARS-CoV-2 protein described

corresponds to a specific entry in DisProt: spike glycopro-

tein (DisProt: DP02772), nucleoprotein (DisProt:

DP03212), ORF1ab (DisProt: DP02925), E protein (Dis-

Prot: DP03450), ORF7a protein (DisProt: DP03460) and

ORF3a (DisProt: DP03003).

Identification and mapping of mutations on IDRs

The analysis of SARS-CoV-2 mutations, both missense and

deletions, relies on variants of concern (VOC), that is,

Alpha, Beta, Gamma, Delta and Omicron, and variants of

interest (VOI), that is, Epsilon, Zeta, Eta, Theta, Iota,

Kappa, Lambda and Mu, by using the outbreak.info

resource (https://outbreak.info/). Mutations with at least a

minimum prevalence of 80% were considered for the

analysis and then mapped on the previously identified

IDRs in the spike glycoprotein and Nucleoprotein of

SARS-CoV-2.

The trimeric spike protein structure (PDB: 6ZGG [70])

was built using Chimera to display mutations specifically

affecting viral immune escape and antibody evasion [71].

Disordered region 677–689, missing from the spike struc-

ture, was modelled on the chain A starting from the

sequence using RANCH [72].
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