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Simple Summary: Chronic inflammatory diseases could impact central nervous system homeostasis,
being oxidative damage of the dorsal horn, a relevant mechanism mediating central sensitization.
Chronic inflammatory lameness in dairy cows is a painful condition that affects animal welfare,
affecting dairy production worldwide. This study reveals increased levels of reactive oxygen species,
malondialdehyde, and carbonyl groups, indicating lipid and protein damage in the spinal cord
of cows with chronic lameness. Moreover, antioxidant system activity was similar between lame
and non-lame cows which suggests that antioxidant dysregulation was not the cause of oxidative
damage, as has been proposed previously. Based on the fact that nociceptive pathways are strongly
conserved between species, there is no reason to neglect that chronic pain in cows promotes Central
Nervous System (CNS) alterations, such as oxidative damage. Moreover, lame cows develop central
sensitization, as allodynia and hyperalgesia are centrally and not peripherally mediated. Our results
support the current assumption that chronic pain is a central nervous system disease and lameness in
dairy cows is far beyond an inflammation of the hoof.

Abstract: Lameness in dairy cows is a worldwide prevalent disease with a negative impact on animal
welfare and herd economy. Oxidative damage and antioxidant system dysfunction are common
features of many CNS diseases, including chronic pain. The aim of this study was to evaluate the
levels of reactive oxygen species (ROS) and oxidative damage markers in the spinal cord of dairy
cows with chronic inflammatory lameness. Locomotion score was performed in order to select cows
with chronic lameness. Dorsal horn spinal cord samples were obtained post mortem from lumbar
segments (L2–L5), and ROS, malondialdehyde (MDA), and carbonyl groups were measured along
with the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and
total antioxidant response (TAR). Lame cows had increased levels of ROS, MDA, and carbonyl groups,
while no differences were observed between lame and non-lame cows in SOD, GPx, CAT, and TAR
activity. We conclude that painful chronic inflammatory lameness in dairy cows is associated with an
increase in ROS, MDA, and carbonyl groups. Nonetheless, an association between ROS generation
and dysfunction of the antioxidant system, as previously proposed, could not be established.
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1. Introduction

Chronic pain is considered a Central Nervous System (CNS) disease [1,2]. Central sensitization,
an inherent feature of chronic pain, has been associated with a reduced neuronal threshold and
increased activity that enhances nociceptive input to supraspinal levels [1]. It has been established
that central sensitization in the spinal cord in experimental models of neuropathic and inflammatory
pain is mediated by reactive oxygen species (ROS) and reactive nitrogen species (RNS) [3,4]. Increased
amounts of free radicals (FR) associated with oxidative stress have been found during central
sensitization in the spinal cord in neuropathic and inflammatory pain models. FR promote central
sensitization through various mechanisms, including increasing phosphorylation of the NR1 subunit
of the N-methyl-D-aspartate (NMDA) receptor [5], inhibition of the gamma-aminobutyric acid (GABA)
transmission [6], and activation of the transient receptor potential cation channel subfamily V member
1 (TRPV1) channels [7]. Furthermore, FR can induce glial activation [8], excitotoxicity, cytokine release,
and neuroinflammation [9,10]. Additionally, the role of oxidative stress during chronic pain states has
been confirmed through the administration of FR scavengers, which significantly attenuates chronic
pain behavior in humans and experimental models [11,12].

FR scavengers maintain an adequate balance between free radicals’ production and elimination [13].
For example, SOD accelerates the reaction of superoxide (O2

.-) to form hydrogen peroxide (H2O2) and
oxygen (O2), while glutathione peroxidase (GPx) reduces H2O2 into water, and lipids hydroperoxide
into alcohols. Other scavengers of importance are catalase, which decomposes H2O2 into water;
thioredoxins, which reduce oxidized proteins, and peroxiredoxins, which regulate H2O2 levels [14].
Nonetheless, in neuronal tissue FR can induce protein modifications, thus inactivating antioxidant
capacity and enhancing oxidative stress.

Naturally occurring painful diseases have recently gained attention based on their potential to
complement the results obtained from experimental pain models [15]. Accordingly, transitional pain
models could increase the development of new analgesic compounds [16]. Currently, different chronic
painful diseases in animals considered to be transitional include osteoarthritis in dogs and cats [17,18].
Interestingly, the potential use of chronic pain conditions in large animals as a translational model has
not been studied in detail [19].

Lameness indairycowsisahighlyprevalentdisease thatseverelyaffectsanimalwelfare [20]. Additionally,
lameness-associated pain causes a negative economic impact, reducing milk production, reproductive index,
among others [21,22]. The inflammatory response associated with the hoof lesion is the primary event
that leads to chronic pain [23]. Many features of chronic painful lameness in dairy cows resemble chronic
pain in other species, including humans, including chronicity and comorbidity development [24,25]. Claw
lesions promote histological changes in bone tissue, which is often observed in chronic painful diseases in
humans. Recently, an interesting radiographic analysis of claw confirmed these findings [26]. Additionally,
thermographic analysis of hooves could facilitate early identification of lameness [27,28]

Previous studies have reported a systemic increase in oxidative stress biomarkers in dairy cows
which has been associated with hoof lesions and lameness [29,30]. Nonetheless, the pro-oxidative
status of the spinal cord in cows with chronic inflammatory lameness has not yet been elucidated.
The aim of this study was to investigate the redox status in the spinal cord and oxidative damage
markers in cows with chronic pain associated with inflammatory lameness.

2. Materials and Methods

2.1. Bioethics Statement

The experimental protocol was approved by the Ethics Committee of Animal Research of the
Universidad Austral de Chile (NO 323/2018).
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2.2. Animals

Four lame cows were selected from a dairy farm, and six control animals were selected from
a local slaughterhouse. Animals were Friesian and kiwi crossed with a range of parity between 2
and 6. The inclusion criteria for the animal selection of lame animals included a history of hind
limb lameness of at least five months, with lameness being one of the most prevalent diseases in
Southern Chile (e.g., white line disease, sole hemorrhage, sole ulcer, and digital dermatitis). Cows were
euthanized after general intravenous anesthesia by administering an intrathecal injection of lidocaine
in the atlanto-occipital foramen (farm animals) or according to the national regulations by mechanical
stunning and exsanguination (slaughterhouse animals).

2.3. Lameness Assessment

Cows were classified into two groups: Lame (n = 4) or Non-lame (n = 6). Lameness was confirmed
and classified according to the mobility score previously described [31]. The exclusion criteria for both
groups included the presence of visible acute wounds, visible neurological gait alterations (central or
peripheral ataxia), and acute or chronic mastitis.

2.4. Spinal Cord Processing, Protein Extraction, and Quantification

Immediately post mortem, a 20 cm segment of the spinal cord (L2–L4) was aseptically obtained after
removal of the dorsal aspect of the lumbar vertebrae dorsal laminae. Dura mater and arachnoids meninges
were gently dissected and washed with phosphate-buffered saline (PBS). Samples were sectioned and
snap-frozen in liquid nitrogen and transported to the laboratory for further processing. Spinal cord segments
of approximately 250 mg were homogenated in 1 mL of PBS using an Ultra Turrax tissue homogenizer (T10,
IKA®, Staufen, Germany) at 16,000 rpm three times for 30 s each at 4 ◦C. Samples were then centrifuged
at 2000 g for 3 min, and the supernatant was collected. Protein quantification was performed using the
PierceTM bicinchoninic acid (BCA) protein assay kit (Thermo Scientific, Rochford, USA).

2.5. Laboratory Analysis

The following indicators of redox status were analyzed ROS, MDA, carbonyl groups, total
antioxidant potential and SOD, CAT, and GPx activity. All analysis was performed in triplicates.

ROS concentration was determined according to the method previously reported by Gao et al. [32].
Briefly, 100 µL of supernatant were mixed with 10 µL of 0.5 mM 2’, 7’-dichlorofluorescin diacetate
(DCFH2-DA) (Sigma-Aldrich, Santiago, Chile) and loaded into a 96-well plate and incubated at 37 ◦C
for 30 min. Samples were read using a fluorometry microplate reader with an excitation wavelength of
500 nm and an emission wavelength of 525 nm. ROS levels were expressed as fluorescence/mg of protein.

MDA levels were measured using the thiobarbituric acid (TBARS) assay, as previously described
by Ohkawa et al. [33]. Briefly, 70 µL of supernatant were mixed with 150 µL of 0.8% thiobarbituric
acid (TBA) (Sigma-Aldrich, Santiago, Chile) and 150 µL of 20% acetic acid Sigma-Aldrich, Santiago,
Chile). Samples were then incubated at 95 ◦C for 45 min. After cooling at room temperature (18–20 ◦C),
samples were mixed with a 500 µL of butanol-pyridine (15:1, p/v) (Sigma-Aldrich, Santiago, Chile) and
rocked for 30 s. The butanol layer was then separated by centrifugation at 10,000 rpm for 3 min, and
quantitation of the organic layer was performed measuring absorbance at 540 nm. MDA concentration
was expressed as µmol/gr of protein.

Carbonyl groups were measured according to that previously reported by Mesquita et al. [34].
Briefly, 2,4-dinitrophenylhydrazine (DNPH) (Sigma-Aldrich, Santiago, Chile) was used to conjugate
carbonyl groups in an alkaline medium. The molar extinction coefficient of carbonyl conjugated
complex was used to calculate its concentration in a microplate reader Sunrise (Tecan), and the
concentration was expressed as nmoles/mg of protein.

Total antioxidant response (TAR) was measured according to that previously reported [35].
Briefly, hydroxyl radicals were produced using the Fenton reaction by mixing a standard solution
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of ortho-dianisidine/Fe++ with a standard solution of H2O2. Ortho-dianisidine undergoes oxidation
into dianisidyl radicals yielding to a bright yellow-brown color compound. Antioxidants in the
sample suppress this color formation proportional to their concentration. The rate of this reaction was
measured at 444 nm, and the result was expressed in mmol equiv Trolox/L.

Superoxide dismutase (SOD; EC. 1.15.1.1) activity was measured using the reactive kit RANSOD
(Randox, Crumlin, UK) at 37 ◦C. The method used the xanthine-xanthine oxidase complex to produce
superoxide radicals that reacted with feniltetrazolium. The absorbance of this reaction was measured
at 560 nm, and the enzymatic activity was expressed as U/mg of protein.

Catalase (CAT) activity was measured at 37 ◦C, according to Hadwan and Ali [36]. For this,
ammonium vanadate reacts with hydrogen peroxide in an acidic solution, forming a peroxovanadium
complex which is inversely proportional to CAT activity. The reaction was measured at 452 nm, and
activity was expressed as U/mg of protein.

Glutathione peroxidase (GPx; EC. 1.11.1.9) activity was measured using the RANSOD (Randox,
Crumlin, UK) kit at 37 ◦C, according to that previously reported [37]. Briefly, GPx catalyzes the
oxidation of glutathione in the presence of tert-butyl hydroperoxide. Glutathione reductase reduces
oxidized glutathione in the presence of NADPH, while NADPH is oxidized to NADP. The reaction
was measured at 340 nm, and its activity was expressed as U/mg of protein.

2.6. Statistical Analysis

The normality of the data and variance homoscedasticity were evaluated using the
Kolmogorov–Smirnov and the Shapiro–Wilk test, respectively. Accordingly, differences between
lame and non-lame animals for each variable were evaluated using the t-test. A p-value of less than
0.05 was considered significant.

3. Results

Lame cows had higher ROS (350.5 ± 75.22 fluorescence/mg of protein) compared to non-lame
cows (152.5 ± 28.62 fluorescence/mg of protein) (p < 0.05) (Figure 1A). Similarly, the thiobarbituric
acid reaction product was increased (p < 0.01) in lame cows compared to non-lame (1.23 ± 0.2 versus
0.52 ± 0.06 µmol/gr of protein), indicating an increase in MDA (Figure 1B). The carbonyl groups
concentration in the spinal cord of lame cows were higher (p > 0.05) than control cows (8.9 ± 3.9 versus
3.5 ± 1.6) (Figure 1C). A numeric, non-significant increase in SOD, and CAT activity was observed in
lame cows (Figure 2A,B). In contrast, lame cows showed a numeric and non-significant decrease in
GPx activity and TAR compared to control cows (Figure 2C,D).
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4. Discussion

Increased levels of ROS were observed in the spinal cord of lame cows (Figure 1). Nociceptive
stimulation increases metabolic rate and ROS production in the spinal cord, which might explain one
possible source of spinal ROS in lame cows [38]. Concomitant to ROS increase, lame cows demonstrated
higher levels of lipid and protein oxidation markers. Similar to our findings, several previous studies
using inflammatory and neuropathic pain models have described a potential association between
ROS and chronic pain [3,11,12]. Also, central sensitization leading to chronic pain maintenance has
been associated with molecular changes and proteome modifications in the spinal cord and peripheral
nerve [39–42]. These changes in the spinal cord lead to protein synthesis and protein folding leading
to ROS generation [43]. Oxidative signaling regulates various molecular mechanisms involved in
central sensitization, especially those mediated by phosphorylation, such as activation of Protein
Kinase C (PKC) and NMDA receptor [5]; TRPV1 channels [7], along with inhibition of GABAergic
transmission [6]. Moreover, mitochondrial and endoplasmic reticulum (ER) ROS generation has
been linked to ER stress and an unfolded protein response (UPR) in the dorsal root ganglion and
spinal cord [44,45]. These responses have been recently shown to be involved in both inflammatory
and neuropathic chronic pain [46–48]. In our study, ROS determination was performed using the 2’,
7’-dichlorofluorescin diacetate (DCFH2-DA) probe, which has been described as a suitable method for
measuring intracellular ROS production [49,50]. DCFH2-DA has been previously used to determine
ROS levels in the spinal cord of rats after experimental trauma [51] and in the plasma of cows with
chronic lameness [52]. A limitation of using DCFH2-DA, is its lack of specificity, as it gets reduced by
O2

.-, H2O2, -OH and by peroxynitrites [49,50]. Based on this, the oxidation of DCFH2-DA must be
used only as an indicator of oxidative stress and not as a specific ROS marker [49,50].

Malondialdehyde is a lipoperoxidation product that has been extensively used as a biomarker of
lipid peroxidation and oxidative damage [53]. Experimental pain models have shown increased levels
of MDA in the spinal cord and sciatic nerve [54]. Similarly, chronic pain attenuation after antioxidant
treatment has been associated with a reduction in MDA and other lipoperoxidation products in the
spinal cord [55,56]. Plasma levels of MDA have also been studied as an indicator of oxidative stress
and pain. MDA increases in the plasma of cows with chronic inflammatory lameness [29] and human
patients with low back pain and rheumatoid arthritis [54]. Moreover, in humans, an improvement in
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motor function and pain relief was associated with lower levels of plasma MDA [57]. Nonetheless,
the mechanism by which MDA promotes maintenance of pain has not been elucidated yet. However,
lipid peroxidation products can easily diffuse across membranes and alter protein structure, acting
as second messengers [53]. Moreover, one of the main mechanisms of MDA-mediated damage is its
capacity to form highly immunogenic adducts [58], such as malondialdehyde-acetaldehyde, which has
been proven to induce autoantigen synthesis promoting pain and inflammation in humans’ patients
with osteoarthritis [59].

Carbonyl groups were also significantly increase in the spinal cord of lame cows. Carbonyl
groups are frequently used as indicators of protein oxidation and are considered consistent markers
of irreversible oxidative damage [60]. Moreover, lipids, DNA, and proteins could strongly bind
to carbonyl groups [61]. Carbonylated proteins cannot be repaired by cellular enzymes, and their
accumulation impairs protein function [62], promotes protein aggregates [63], and activates several
signaling pathways [64]. Carbonyl modification could activate an inflammatory response. A nexus has
been established between carbonylation of thiol groups in thioredoxins and NF-κB activation, nuclear
migration, and expression of pro-inflammatory genes [65]. Certain carbonylated proteins could also be
recognized as damage-associated molecular patterns (DAMP’s) by pattern recognition receptors (PRR)
in order to promote the immune response [66]. Similarly, the potential role of carbonyl groups in the
development of several human diseases including cardiac failure, sepsis, chronic renal failure, chronic
lung disease, and Alzheimer’s disease has been described [62]. In the spinal cord, protein carbonylation
increases in rats with autoimmune encephalitis (EAE). Moreover, protein carbonylation has been
shown to increase in the cerebrospinal fluid of human patients with demyelinating diseases [67]. It’s
been suggested that carbonyl groups could also bind to astrocytes promoting glutamate excitotoxicity
by interfering with glutamate reuptake from the synaptic cleft [68], and thus, affecting astrocyte
function [69]. Similarly, an increased number of carbonyl groups have been detected in astrocytes after
traumatic brain injury (TBI) and EAE [68]. This mechanism mediated by oxidative stress could be of
increasing importance, given that glutamate reuptake inhibition is an important pathway to central
sensitization maintenance and chronic pain [70].

An interesting finding here reported is that despite the increased levels of lipid and protein
damage, no evidence of antioxidant system dysfunction in the spinal cord of lame cows was found.
Superoxide dismutase, CAT, GPx, and TAR activity in lame cows were similar to that observed in
non-lame cows. Contrary to our findings, a reduction in the activity of the spinal mitochondrial
SOD (Mn-SOD) after intraplantar injection of formalin in rats has been described [11]. SOD activity
was reduced in the spinal trigeminal nucleus after an experimental model of facial inflammatory
pain [71]. Some authors report that antioxidant system dysfunction mediated by Mn-SOD inhibition is
one of the main mechanisms by which free radicals increase and promote central sensitization [4,11].
This finding has been previously confirmed using compounds that mimic SOD activity, including
phenyl N-tert-butylnitrone (PBN), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol), M40403
and M40401, which drastically and transitory reduced pain [11,12,72]. However, it is possible that
spinal antioxidant dysfunction might not be the main mechanism of ROS generation in the lame cows
at the time we performed the study. Our results suggest that ROS can promote oxidative damage and
pain regardless of the state of the antioxidant system. Accordingly, [54] reported a marked increase
in spinal SOD activity concomitant to increased oxidative damage in the spinal cord of rats with
neuropathic pain. Similarly, Guedes et al. [73] described increased GPx activity in the spinal cord of
rats after sciatic nerve transection.

Total antioxidant potential (TAR) was evaluated in order to analyze the complete antioxidant
activity present in the spinal cord of lame cows, and to the authors’ knowledge, there is no previous
report of spinal TAR measurement in experimental pain models. However, TAR has been evaluated
in serum and plasma of human patients with persistent pain [74,75]. TAR in patients with chronic
migraine was not different from controls, despite a significant increase in oxidative DNA damage
detected in patients with pain [75]. In contrast, serum TAR has confirmed a negative correlation
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between pain intensity and antioxidant activity in human patients with fibromyalgia [74]. Moreover,
plasma TAR has been evaluated in dairy cows in order to identify a possible association between
oxidative status and lameness development during the peripartum. Nonetheless, similar to our
findings, no significant difference between non-lame and lame cows was found [52].

Some limitations in our study include a low number of lame cows, which can increase the
chance for beta error associated, decreasing the power of a statistical test. Nonetheless, posthoc
power analysis was performed revealing that the statistical power fluctuated between 89 and 92%.
Additionally, newer and more sophisticated techniques, such as gas chromatographymass spectrometry
(GC-MS/MS), and liquid chromatography-mass spectrometry (LC-MS/MS) could increase the accuracy
of the measurement of oxidative variables.

5. Conclusions

The results presented confirm that painful chronic inflammatory lameness in dairy cows is partially
associated with an increase in ROS, lipoperoxidation products, and irreversible posttranslational
proteins modification mediated by carbonyl groups. Nonetheless, an association between ROS
generation in the spinal cord of lame cows and dysfunction of the antioxidant system as previously
proposed could not be established.
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