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Abstract

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring of the lung parenchyma, leading to
respiratory failure and death. High resolution computed tomography of the chest is often diagnostic for IPF, but its
cost and the risk of radiation exposure limit its use as a screening tool even in patients at high risk for the disease.
In patients with lung cancer, investigators have detected transcriptional signatures of disease in airway and nasal
epithelial cells distal to the site of disease that are clinically useful as screening tools. Here we assessed the
feasibility of distinguishing patients with IPF from age-matched controls through transcriptomic profiling of nasal
epithelial curettage samples, which can be safely and repeatedly sampled over the course of a patient’s illness. We
recruited 10 patients with IPF and 23 age-matched healthy control subjects. Using 3′ messenger RNA sequencing
(mRNA-seq), we identified 224 differentially expressed genes, most of which were upregulated in patients with IPF
compared with controls. Pathway enrichment analysis revealed upregulation of pathways related to immune
response and inflammatory signaling in IPF patients compared with controls. These findings support the concept
that fibrosis is associated with upregulation of inflammatory pathways across the respiratory epithelium with
possible implications for disease detection and pathobiology.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is an age-related,
chronic, progressive, and usually lethal fibrosing interstitial
pneumonia of unknown etiology [1]. The pathogenic mech-
anisms have not been elucidated, but a growing body of
evidence suggests that the convergence of genetic suscepti-
bility, accelerated lung aging, and a profibrotic epigenetic
reprogramming provoke an aberrant activation of the lung
epithelium and consequently the expansion and activation
of the fibroblast/myofibroblast population and the recruit-
ment of profibrotic macrophages that lead to the exagger-
ated accumulation of extracellular matrix [2–4].

Currently, high resolution computed tomography
(HRCT) of the chest is the only non-invasive tool available
to screen for the presence of IPF [1]. Widespread HRCT
screening for pulmonary fibrosis is not feasible given the
relatively low disease prevalence, the high cost of HRCT
scanning, and the risk of radiation exposure. As a result,
the diagnosis of IPF is often delayed until patients have
advanced, functionally limiting disease. Studies of serum
biomarkers and transcriptomic profiling of peripheral
blood mononuclear cells have failed to identify biomarkers
or gene signatures with sufficient sensitivity for screening
[5]. Accordingly, there is an unmet clinical need for bio-
markers that can be used to identify patients and define
disease endotypes that guide clinical therapy.
Studies of the transcriptional signature in the IPF lungs

have shown that the disease is characterized by the upregu-
lation of several matrix metalloproteinases, extracellular
matrix proteins, molecules involved in developmental
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pathways, growth factors, and epithelial-related genes such
as cytokeratins, mucin-5B, and desmoplakin [6–11]. These
studies require access to fibrotic lung tissue from alveolar
biopsies, limiting their utility for screening or disease man-
agement. In patients with lung cancer, Spira and colleagues
observed transcriptomic changes associated with smoking
injury and malignancy in respiratory epithelial tissues from
the bronchi [12]. They found that a composite score
based on the expression of 11 of these genes was suffi-
ciently sensitive to aid in the management of small
asymptomatic nodules in the distal lung detected by
computed tomography screening, and this gene signa-
ture is now FDA approved for use in clinical practice.
Since publication of these results, the Spira group has
gone on to show that a similar signature can be
detected in transcriptomes obtained by nasal epithelial
curettage, opening the possibility for a truly
non-invasive test to inform the management of sus-
pected cancer in the distant lung [13, 14]. While less
well studied, transcriptomic analysis of lung tissue from
uninvolved areas of the lung from patients with pul-
monary fibrosis suggests an analogous “field of injury”
may be present in these patients [15, 16]. Accordingly,
we undertook a study to compare the transcriptome of
the nasal epithelium from patients with IPF compared
with a set of age-matched controls. We observed con-
sistent changes in gene expression suggesting upregula-
tion of inflammatory pathways in the nasal epithelium
of patients with IPF compared with controls. These
findings support further studies of the nasal transcrip-
tome to identify biomarkers that can identify patients
with or at risk for IPF earlier in their disease.

Patients and methods
Study population
Approval for this study was obtained by the institutional
review boards at Northwestern University (Chicago, IL,
USA) and Instituto Nacional de Enfermedades Respira-
torias Ismael Cosio Villegas (INER; Mexico City,
Mexico). Patients and controls were explained about the
study and signed a consent letter. Nasal mucosal biopsy
procedures took place at a single center (INER). A total
of 10 subjects (1 female, 9 male) meeting criteria for def-
inite IPF [1] underwent nasal curettage. All IPF patients
were clinically stable and without apparent viral or bac-
terial infection when the nasal epithelial cells were ob-
tained. A total of 24 age-matched control subjects
without a history of respiratory disease underwent bi-
opsy. All biopsies were performed in an outpatient set-
ting. The demographic characteristics of the enrollees
are listed in Table 1. Patients and controls were unre-
lated individuals with Mexican-Mestizo ancestry and
long-time residency in Mexico City. No differences were
found in age and cigarette smoke exposure.

Nasal curettage
Nasal epithelial cells were obtained by mucosal scrape
biopsy of the inferior turbinate using a sterile plastic
curette (Rhino-Pro curette, Arlington Scientific) as pre-
viously described to obtain a predominantly epithelial
cell population [17, 18]. A total of 5 single-pass biopsies
were performed per subject. Curettes were discarded if
gross blood was visible on the curette. The curette tips
were cut and placed into RNase-free collection tubes
containing 200 μL of MagMAX cell lysis buffer and
2-mercaptoethanol, vortexed vigorously, and stored at −
80 °C. RNA was isolated using the commercially avail-
able MagMAX 96 extraction kit (ThermoFisher Scien-
tific) adapted for the Bravo automated liquid handling
platform (Agilent Technologies).

Library preparation
RNA sequencing was performed at the RNA-Seq Center
at the Division of Pulmonary and Critical Care, Feinberg
School of Medicine, NU. Following RNA extraction, the
RNA integrity number (RIN) was measured using the Agi-
lent TapeStation 4200 (Additional file 1: Figure S1A and
S1B). RNA-seq libraries were prepared using a QuantSeq
3′ mRNA-seq kit (Lexogen). Fragment size distribution
for the libraries was assessed using the TapeStation 4200.
Libraries were multiplexed and sequenced on the NextSeq
500 platform (Illumina) to an average depth of 7 × 106

single-end reads. FASTQ files were processed using the
QuantSeq 3′ mRNA-seq pipeline implemented on the
Bluebee genomic platform (Bluebee) with the following
steps: files were trimmed with BBDuk and aligned with
STAR to the human genome (GRCh38.77), and a table of
gene counts was generated from aligned reads with
HTSeq. A MultiQC report [19] was created to evaluate
RNA sequence quality (non-normalized data are shown in
Additional file 2: Table S1, and normalized counts are
shown in Additional file 3: Table S2, S3 and S4, and
Additional file 4: Table S5).

Differential expression analysis
Different pipelines using R version 3.4 [20] with Bio-
conductor version 3.6 [21], were used to select differ-
entially expressed genes. Non-expressed genes were
removed, those that had more than five reads in at
least two samples for each gene were selected, and
different normalization approaches using RUV (re-
move unwanted variation) as in Risso et al. [22] were
tested. EdgeR [23, 24] and DESeq, which uses nega-
tive binomial distribution and a shrinkage estimator
for the distribution’s variance [25], were used for esti-
mating differentially expressed transcripts, and those
genes with common results between the different
methods were chosen. Gene annotations were
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implemented through biomaRt [26, 27]. Venn dia-
gramming was performed using UpSetR [28].

Functional analysis
We used the ToppGene suite, a portal for gene list en-
richment analysis and candidate gene prioritization
based on functional annotations and protein interaction
networks to examine molecular functions and biological
processes/pathways from the differentially expressed
genes [29]. Enrichr, a gene set enrichment analysis web
server, was used to compare our data with upregulated
genes from signatures of microbe perturbations proc-
essed from GEO and to visualize top enriched terms
using Clustergrammer [30].

Results
Baseline characteristics
The study involved 10 IPF patients and 24 age-matched
control subjects. One control sample was removed from
downstream analyses due to the low number of total
reads and lower mapping rate. The average time of
symptoms before IPF diagnosis was 28 + 16months, and
all of them had pulmonary impairment with a mean
forced vital capacity of 60% predicted and a mean diffus-
ing capacity of the lungs for carbon monoxide of 36%
predicted at the time of the study. Seven patients were
receiving pirfenidone, two were receiving nintedanib,
and one of them had no treatment when samples were
collected. Table 1 shows the demographic and functional
characteristics of the enrollees.

Transcriptomic profiling of the nasal epithelial Cells from
IPF patients identifies differentially expressed genes
We used two methods (EdgeR and DESeq) to compare
gene expression changes in the nasal epithelium from
patients with IPF and controls. The data were normal-
ized using upper quartile or RUV, which gave us four
different pipelines. We then selected the differentially
expressed genes that were shared by all of them and
passed the false discovery rate (FDR) cutoff of < 0.05
(Fig. 1). Most of the differentially expressed genes (222)
were upregulated, and only two were downregulated in

patients with IPF (Fig. 2; Additional file 5: Table S6).
The ToppGene suite was used to generate a report of
gene ontologies (GOs) related to molecular gene func-
tions. As shown in Table 2, genes differentially expressed
between controls and patients with IPF were associated
with pattern-recognition receptor (PRR) functions, re-
ceptor activity, binding to the major histocompatibility
complex (MHC), peptide antigen binding, and enzyme
and cytokine binding.

Biological processes and specific pathways
The ToppGene suite was also used to generate biological
processes and specific pathways from the differentially
expressed genes. Overrepresented biological processes in-
cluded immune response, defense response, response to
external biotic stimulus, cytokine production, leukocyte
and lymphocyte activation, and response to bacteria and
virus (Additional file 6: Table S7). Regarding specific path-
ways, as shown in Fig. 3 and Additional file 6: Table S8,
primarily signaling pathways related to innate and adap-
tive immune system, interferons (alpha, beta, and gamma),
neutrophil degranulation, nuclear factor κB (NF-κB) sig-
naling pathway, ER-phagosome pathway, Toll-like recep-
tor cascades, antigen presentation, chemokine signaling
pathway, and response to bacteria and influenza A virus
were overrepresented. Taken together, these findings re-
veal a coordinated expression pattern consistent with the
activation of immune and inflammatory defense mecha-
nisms against bacteria and virus infection.
Accordingly, we found using an enrichment analysis

tool (Enrichr), that 20 of the upregulated genes were also
found in the gene set library Microbe Perturbations from
GEO [24]. Our shared genes include those observed in
human macrophages infected with Staphylococcus aur-
eus, in mouse lungs infected with influenza A virus, in
dendritic cells following infection with Leishmania
major, in macrophages infected with the virulent strain
H37Rv of Mycobacterium tuberculosis, and in primary
human macrophages after infection with influenza A
(H5N1) virus ([31–35]; Fig. 4).
Given the disparity in gender (90% male in the IPF

group, and 35% in the control group), we analyzed

Table 1 Demographic and functional characteristics of enrollees

Variable IPF Patients (n = 10) Controls (n = 23) p

Age (years) 68 ± 8.6 64.4 ± 8.6 0.2

Gender (male:female) 9:1 8:15 0.009

Smoking (never:former) 2:8 9:14 0.2

FVC (% predicted) 60.6 ± 14.7 95.7 ± 8.3 < 0.0001

DLCO (% predicted) 36.3 ± 8.3 112.4 ± 18.8 < 0.0001

Saturation at rest (%) 94.8 ± 2.3 95.3 ± 1.9 0.2

Saturation post exercise (%) 85.4 ± 6.2 94 ± 4 0.0006

Abbreviations: FVC forced vital capacity, DLCO diffusing capacity of the lungs for carbon monoxide
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whether some of the found differences could be attrib-
uted to gender. For this purpose, we compared in the
control group the global gene expression of males and
females, and we did not find significant differences ac-
cording to gender in any of the genes or pathways that

were dysregulated in IPF (Additional file 7: Table S9).
Moreover, using the DESeq with Wald RUV approach,
we compared IPF males versus control males, and many
of the genes and the biological processes that differenti-
ate IPF versus controls were preserved.

Fig. 1 Volcano plots obtained with four pipelines. Pipelines: a EdgeR glmLRT normalization, b EdgeR glmLRT normalization with RUV, c EdgeR
glmQLF normalization with RUV, d DESeq Wald normalization with RUV. Differentially expressed genes between control subjects and IPF patients
are shown in blue (FDR q < 0.05). The upregulated genes associated with pattern-recognition receptor (PRR) molecular function are highlighted
in red

Fig. 2 UpSet plot showing overlapping genes identified from the four pipelines (horizontal bar). Each column represents shared genes between
the pipelines (linked dots)
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Likewise, we wondered whether smoking exposure, an
important environmental risk, influenced our findings. For
this purpose, we compared the transcriptome of IPF former
smokers versus controls former smokers using the DESeq
with Wald RUV approach, and also found that most of the
genes and ontology terms that differentiate IPF versus con-
trols remained (Additional file 8: Table S10).

Finally, to identify a simplified nasal epithelial gene
signature, we examined the most highly upregulated
genes across the cohort (FDR cutoff of < 0.005 and fold
change > 3, in all methods used) and obtained a list
of 12 genes that were upregulated in most of the pa-
tients keeping most of the revealed biological pro-
cesses (Additional file 9: Table S11).

Table 2 Gene ontologies: Molecular functions of differentially expressed genes

ID Name p-value q-value,
Bonferroni

q-value,
FDR B&H

q-value,
FDR B&Y

Hit Count
in Query
List

Hit
Count in
Genome

Hit in Query List

GO:0038187 pattern recognition
receptor activity

5.52E− 07 3.76E− 04 1.88E− 04 1.34E− 03 5 17 CLEC7A, LY96, PTAFR, CD14, TLR2

GO:0008329 signaling pattern
recognition receptor
activity

5.52E−07 3.76E−04 1.88E− 04 1.34E−03 5 17 CLEC7A, LY96, PTAFR, CD14, TLR2

GO:0001875 lipopolysaccharide
receptor activity

9.92E−06 6.75E−03 2.25E− 03 1.60E− 02 3 5 LY96, PTAFR, TLR2

GO:0042497 triacyl lipopeptide
binding

1.02E−04 6.95E− 02 1.39E− 02 9.87E− 02 2 2 TLR1, TLR2

GO:0016230 sphingomyelin
phosphodiesterase
activator activity

1.02E−04 6.95E−02 1.39E− 02 9.87E− 02 2 2 STX4, NSMAF

GO:0042277 peptide binding 1.24E−04 8.44E−02 1.41E− 02 9.99E− 02 11 278 HLA-B, HLA-E, FFAR4, NFKBIA, TAP1,
NUP98, PPIF, FURIN, TLR1, TLR2, SLC7A5

GO:0016004 phospholipase
activator activity

2.07E−04 1.41E−01 1.92E−02 1.36E−01 3 12 STX4, CCL3, NSMAF

GO:0042287 MHC protein binding 2.54E−04 1.73E−01 1.92E−02 1.36E−01 4 31 LILRB2, HLA-E, CLEC7A, TAP1

GO:0042605 peptide antigen
binding

2.88E−04 1.96E−01 1.92E−02 1.36E−01 4 32 HLA-B, HLA-E, TAP1, SLC7A5

GO:0033218 amide binding 3.09E−04 2.11E−01 1.92E−02 1.36E−01 11 309 HLA-B, HLA-E, FFAR4, NFKBIA, TAP1,
NUP98, PPIF, FURIN, TLR1, TLR2, SLC7A5

GO:0005102 receptor binding 3.11E−04 2.12E−01 1.92E−02 1.36E−01 31 1601 RELN, HLA-B, LILRB2, HLA-E, ETS2, CLEC7A,
LRG1, ADM, CMTM6, TYROBP, TMC8, CCL3,
CCL4, FGR, TAP1, PLSCR1, NSMAF, SECTM1,
PROK2, SELPLG, ICAM1, CCL3L3, SH2B2,
NAMPT, GNA13, TNFSF13B, TLR1, TLR2,
IRS2, LYN, IL1RN

GO:0060229 lipase activator
activity

3.38E−04 2.30E−01 1.92E−02 1.36E−01 3 14 STX4, CCL3, NSMAF

GO:0019899 enzyme binding 4.15E−04 2.83E−01 2.17E−02 1.54E−01 35 1929 LILRB2, RNF19B, TNFRSF14, GBP1, PTAFR,
CKB, SERPINB9, STX4, FGD4, CXCR4, XPO6,
PLIN5, NFKBIA, EHD1, FGR, PLEK, NOS1,
PLSCR1, ALOX5AP, SELL, RICTOR, LCP1,
SH2B2, ZFP36, RHOH, LMNB1, FURIN,
PPP1R18, IRS2, TNFAIP3, TNFRSF1B, LYN,
TRIB1, MARCKS, SOD2

GO:0023029 MHC class Ib protein
binding

5.98E−04 4.07E−01 2.91E−02 2.07E−01 2 4 LILRB2, TAP1

GO:0070891 lipoteichoic acid
binding

9.90E−04 6.74E−01 4.49E−02 3.19E−01 2 5 CD14, TLR2

GO:0042288 MHC class I protein
binding

1.17E−03 7.97E−01 4.74E−02 3.37E−01 3 21 LILRB2, HLA-E, TAP1

GO:0042802 identical protein
binding

1.18E−03 8.07E−01 4.74E−02 3.37E−01 26 1359 CEBPD, DDX58, B2M, GBP1, BCL2A1,
TYROBP, BNIP3L, GBP5, DGAT2, PLIN5,
NFKBIA, GLUL, GCA, CCL3, CCL4, PLEK,
NOS1, TAP1, ALOX5AP, RILPL2, LCP1,
SH2B2, IFIT3, NAMPT, FTL, SOD2
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Discussion
IPF is a devastating and destructive lung disease of un-
known etiology and unclear pathogenesis. Unbiased gen-
ome wide association studies in patients with pulmonary
fibrosis and targeted genomic studies in patients with a
family history of IPF have identified rare and common
variants in genes that encode proteins expressed in the
airway and alveolar epithelium that incur an increased
risk of developing disease [36–39]. Because the onset
and progression of symptoms in patients with IPF is

insidious, even patients with these known risk factors
often present with late stage disease. High resolution
computed tomography can be diagnostic for IPF and can
detect early disease; however, its utility as a screening is
limited by its cost and risk for radiation exposure. Ac-
cordingly, safe and inexpensive tests that can be serially
performed to identify patients early in their disease are
needed.
Transcriptomic profiling of the nasal epithelium for

disease diagnosis is an attractive alternative to profiling

Fig. 3 Selected signaling pathways obtained by the ToppGene suite. See Additional file 3: Table S3 for the complete list
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of the whole lung tissue obtained via biopsy, or bron-
chial epithelium obtained via bronchoscopy. This ap-
proach assumes that a regional epithelial abnormality in
the lung is a consequence of changes in gene expression
in epithelial cells throughout the respiratory tract, often
described as a “field of injury”. Nasal transcriptomic pro-
filing has already demonstrated its utility in detecting
patients with lung cancer, cystic fibrosis, and chronic ob-
structive pulmonary disease, and identifying disease
endotypes in asthma [40–44].
In this study, we observed consistent differences in the

nasal transcriptome of patients with IPF compared with
age-matched healthy controls. Upregulated pathways in-
cluded interferon signaling, cytokine signaling in the im-
mune system, neutrophil degranulation, NF-κB signaling
pathway, interferon gamma signaling, and interferon
alpha/beta signaling. Our results are consistent with those
described by Luzina and colleagues, who observed a simi-
lar increase in the expression of inflammatory genes in
macroscopically “normal” regions (although with micro-
scopic signs of lung damage) of lung explants from pa-
tients with IPF [16]. Further supporting the concept of a
field effect, Pankratz et al. observed that a machine learn-
ing tool applied to transcriptomic data from transbron-
chial biopsies performed equally well as a classifier of UIP
compared with other fibrotic pathologies irrespective of
the amount of alveolar tissue in the biopsy [15].
Upregulated genes in the nasal epithelium of patients

with IPF did not include genes previously implicated in
the pathogenesis of the disease. As the nasal epithelium
is not pathologically abnormal in patients with pulmon-
ary fibrosis, this result is perhaps unsurprising. The
upregulation of inflammatory genes may reflect a non-
specific response to abnormalities in the distal lung. In
support of this hypothesis, a similar inflammatory signa-
ture was observed in the transcriptome of lung tissue
distant from the primary tumor in patients with lung
cancer [45]. It is possible, however, that factors more dir-
ectly related to the pathobiology of pulmonary fibrosis
induce the upregulation of inflammatory genes. Support-
ing this point of view, a recent study using single-cell
RNAseq to distinguish the transcriptional profiles of epi-
thelial subtypes in IPF from healthy lungs, corroborated
the profound loss of normal epithelial cell identities and
interestingly, it demonstrated that upregulated pathways
in IPF included chemokine signaling pathway, leukocyte
transendothelial migration, bacterial invasion of epithe-
lial cells and natural killer cell-mediated cytotoxicity
[46]. Moreover, in our own dataset of patients with pul-
monary fibrosis in which we sequenced whole lung tis-
sue, flow sorted alveolar type II cells and alveolar
macrophages through single cell RNA-Seq, although we
did not see significant overlap in specific genes identified
in previous studies of whole lung tissue, we observed the

Fig. 4 Clustergram of enriched terms showing upregulated gene
enrichment using Microbe Perturbations from GEO.
Staphylococcus aureus human monocyte-derived macrophages
GDS4931 microbe:62 (adjusted p-value 4.004 × 10− 54);
Staphylococcus aureus human macrophage GDS4931 microbe:60
(adjusted p-value 1.413 × 10− 41); Influenza A mouse lung 4 days
post-infection GSE57452 microbe:311 and microbe: 310
(adjusted p-value 8.992 × 10− 37 and adjusted p-value 6.882 × 10−
36); Mycobacterium tuberculosis human THP-1 macrophages
GDS4781 microbe:224 (adjusted p-value 7.781 × 10− 33);
Leishmania major human dendritic cells GDS5086 microbe:150
(adjusted p-value 4.298 × 10− 30); H5N1 influenza virus human
macrophage GDS3595 microbe:93 (adjusted p-value 1.5333 × 10−
31); Influenza human whole blood GDS57452 microbe:312
(adjusted p-value 1.361 × 10− 29); Influenza A mouse lung 5 post-
infection GSE57452 microbe:312 (adjusted p-value 3.042 × 10− 29);
Influenza virus human whole blood GDS3919 microbe:45
(adjusted p-value 6.551 × 10− 28)
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upregulation of pathways involved in inflammatory pro-
cesses (available in preprint form https://www.biorxi-
v.org/content/early/2018/04/06/296608).
The factors that might influence this immune/inflamma-

tory response include changes in the respiratory micro-
biome [47–49] or respiratory viral infections [50, 51], both
of which have been suggested to contribute to the progres-
sion of the disease. Thus for example, progression of IPF
has been associated with the presence of specific members
within the Staphylococcus and Streptococcus genera [47].
Likewise, in a comprehensive analysis of host-microbiome
interaction in which peripheral blood gene signature, lung
microbial community, and IPF outcomes were integrated, it
was shown that changes in the lung microbiome was asso-
ciated with the induction of immunologic signaling path-
ways which in turn was significantly associated with poorer
progression-free survival [52].
Interestingly, neither gender nor smoking seem to in-

fluence our results.
Our study has several important limitations, most im-

portantly the small sample size of our cohorts. Further-
more, our nasal sequencing studies used 3′ mRNA-seq,
precludes analysis of differences in isoform expression and
non-coding RNA molecules, and largely precludes analysis
of bacterial or viral transcripts. Furthermore, our depth of
sequencing in the nasal transcriptome was low. In addition,
only one of the IPF patients in the nasal transcriptome
study was therapy naïve, and it is possible that some of the
changes we saw represent effects of treatment. The finding
of robust gene expression changes despite these limitations
strongly supports further investigation of this approach in
larger, longitudinal studies with deeper sequencing. These
studies could be paired with analysis of the nasal micro-
biome and examination of epithelial RNA for viral and bac-
terial transcripts.

Conclusion
In summary, this feasibility study indicates consistent dif-
ferences in the nasal transcriptome from patients with IPF
and age-matched healthy controls. As nasal sampling is
fast, nearly painless and inexpensive, these findings sup-
port further research to explore the utility of the gene ex-
pression in the nasal epithelium as a biomarker for the
identification of patients with pulmonary fibrosis. More-
over, in our small dataset, we were able to identify a small
number of genes that were consistently upregulated in pa-
tients with IPF compared with controls. If validated in lar-
ger cohorts of IPF patients, upregulation of a small
number of genes might be used to identify patients for
more comprehensive screening (e.g. low dose CT).
In addition, many patients with interstitial lung abnor-

malities are identified on screening CTs for lung cancer
or other reasons, and there are no markers that distin-
guish which of these patients are at increased risk for

progressive disease [53]. Even if the inflammatory gene
signature we identified is not related directly to disease
pathobiology, a non-invasive biomarker that could iden-
tify patients with interstitial lung abnormalities inciden-
tally found on CT at increased risk for progression to
IPF would be clinically valuable.
The finding that genes involved in inflammation are

upregulated in the nasal epithelium of patients with
fibrosis suggests pairing of nasal transcriptome mea-
surements with simultaneous measures of the nasal
bacterial and viral DNA microbiome may be inform-
ative. These future studies should take advantage of
the non-invasive aspects of this test, which allows ser-
ial measurements in patients at increased risk for de-
veloping fibrosis, or monitoring of patients who are
initiating antifibrotic therapy.
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