Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Rietveld refinement of $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ from high-resolution synchrotron data

Anthony M. T. Bell, ${ }^{\text {a* }}{ }^{*}$ C. Michael B. Henderson, ${ }^{\text {b }}$<br>Richard F. Wendlandt ${ }^{\text {c }}$ and Wendy J. Harrison ${ }^{\text {c }}$<br>${ }^{\text {a }}$ Synchrotron Radiation Source, STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, England, ${ }^{\mathbf{b}}$ School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, England, and<br>${ }^{\text {c }}$ Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA<br>Correspondence e-mail: a.m.t.bell@dl.ac.uk<br>Received 30 July 2008; accepted 20 August 2008<br>Key indicators: powder synchrotron study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{As}-\mathrm{O})=0.040 \AA$;<br>$R$ factor $=0.059 ; w R$ factor $=0.082 ;$ data-to-parameter ratio $=22.1$.

The apatite-type compound $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$, pentabarium tris[arsenate $(\mathrm{V})$ ] chloride, has been synthesized by ion exchange at high temperature from a synthetic sample of mimetite $\left(\mathrm{Pb}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}\right)$ with $\mathrm{BaCO}_{3}$ as a by-product. The results of the Rietveld refinement, based on high resolution synchrotron X-ray powder diffraction data, show that the title compound crystallizes in the same structure as other halogenoapatites with general formula $A_{5}\left(Y_{\mathrm{O}_{4}}\right)_{3} X(A=$ divalent cation, $Y=$ pentavalent cation, $X=\mathrm{Cl}, \mathrm{Br})$ in space group $P 6_{3} / m$. The structure consists of isolated tetrahedral $\mathrm{AsO}_{4}{ }^{3-}$ anions ( $m$ symmetry), separated by two crystallographically independent $\mathrm{Ba}^{2+}$ cations that are located on mirror planes and threefold rotation axes, respectively. The $\mathrm{Cl}^{-}$anions are at the $2 b$ sites ( $\overline{3}$ symmetry) and are located in the channels of the structure.

## Related literature

For crystal chemistry of apatites, see: Mercier et al. (2005); White \& ZhiLi (2003); Wu et al. (2003). For powder diffraction data on Ba-containing As-apatites, see: Kreidler \& Hummel (1970); Dunn \& Rouse (1978). Atomic coordinates as starting parameters for the Rietveld (Rietveld, 1969) refinement of the present phases were taken from Chengjun et al. (2005); Dai et al. (1991); de Villiers et al. (1971). For related $\mathrm{Ba}-\mathrm{Cl}$-apatites, see: Đordevic et al. (2008); Hata et al. (1979); Reinen et al.(1986); Roh \& Hong (2005); Schiff-Francois et al. (1979). For synthetic work, see: Baker (1966); Essington (1988); Harrison et al. (2002).

## Experimental

Crystal data
$\mathrm{As}_{3} \mathrm{Ba}_{5} \mathrm{ClO}_{12}$
$M_{r}=1138.85$
Hexagonal, $P 6_{3} / \mathrm{m}$
$a=10.5570$ (1) А
$c=7.73912$ (8) A
$V=746.98$ (1) $\AA^{3}$
$Z=2$
Synchrotron radiation
Data collection
In-house design diffractometer
Specimen mounting: capillary Specimen mounted in transmission mode

Refinement
$R_{\mathrm{p}}=0.059$
$R_{\text {wp }}=0.082$
$R_{\text {exp }}=0.067$
$R_{\mathrm{B}}=0.090$
$S=1.23$
Excluded region(s): 2-6 degrees $2 \theta$.
$\lambda=0.998043 \AA$
$\mu=56.07$ (1) $\mathrm{mm}^{-1}$
$T=298 \mathrm{~K}$
Specimen shape: cylinder
$40 \times 0.7 \times 0.7 \mathrm{~mm}$
Specimen prepared at 100 kPa
Specimen prepared at 1258 K
Particle morphology: powder, white

Scan method: step
Absorption correction: none
$2 \theta_{\text {min }}=2,2 \theta_{\text {max }}=70^{\circ}$
Increment in $2 \theta=0.01^{\circ}$

Profile function: Fundamental Parameters
464 Bragg reflections
21 parameters
Preferred orientation correction: none

Table 1
Selected geometric parameters ( $\left(\AA,{ }^{\circ}\right)$.

| $\mathrm{Ba} 1-\mathrm{O} 1$ | $2.67(5)$ | $\mathrm{Ba} 2-\mathrm{O} 1^{\mathrm{v}}$ | $3.14(4)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$ | $2.81(4)$ | $\mathrm{Ba} 2-\mathrm{Cl} 1^{\mathrm{iv}}$ | $3.281(5)$ |
| $\mathrm{Ba} 1-\mathrm{O}^{\mathrm{i}}$ | $3.12(3)$ | $\mathrm{As} 1-\mathrm{O} 3$ | $1.64(2)$ |
| $\mathrm{Ba} 2-\mathrm{O}^{\mathrm{ii}}$ | $2.59(4)$ | $\mathrm{As} 1-\mathrm{O} 1$ | $1.70(8)$ |
| $\mathrm{Ba} 2-\mathrm{O} 3^{\mathrm{iii}}$ | $2.62(4)$ | $\mathrm{As} 1-\mathrm{O} 2$ | $1.70(4)$ |
| $\mathrm{Ba} 2-\mathrm{O} 3^{\mathrm{iv}}$ | $3.05(4)$ |  |  |
| $\mathrm{O} 3-\mathrm{As} 1-\mathrm{O}^{\text {vi }}$ | $118(2)$ | $\mathrm{O} 3-\mathrm{As} 1-\mathrm{O} 2$ | $108(2)$ |
| $\mathrm{O} 3-\mathrm{As} 1-\mathrm{O} 1$ | $108(1)$ | $\mathrm{O} 1-\mathrm{As} 1-\mathrm{O} 2$ | $106(2)$ |

Symmetry codes: (i) $x-y, x,-z$; (ii) $-y+1, x-y+1, z$; (iii) $y,-x+y+1,-z$; (iv)
$x, y+1, z ;$ (v) $-x+y,-x+1, z$; (vi) $x, y,-z+\frac{1}{2}$.
Data collection: local software; cell refinement: CELREF (Laugier \& Bochu, 2003); data reduction: local software; method used to solve structure: coordinates taken from a related compound; program(s) used to refine structure: TOPAS (Coelho, 2000); molecular graphics: Balls and Sticks (Kang \& Ozawa, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).

AMTB acknowledges the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996). AMTB also acknowledges the referees and Co-editor whose suggestions and comments helped to improve this paper.

[^0]
## References

Baker, W. E. (1966). Am. Mineral. 51, 1712-1721.
Chengjun, D., Xueyan, W., Wei, L., Haohong, C., Xinxin, Y. \& Jingthai, Z. (2005). J. Alloys Compd, 396, 86-91.

Coelho, A. (2000). TOPAS. http://members.optusnet.com.au/~alancoelho/.
Dai, Y.-S., Hughes, J. M. \& Moore, P. B. (1991). Can. Mineral. 29, 369-376.
Đordević, T., Sutović, S., Stojanović, J. \& Karanović, Lj. (2008). Acta Cryst. C64, i82-i86.
Dunn, P. J. \& Rouse, R. C. (1978). Can. Mineral. 16, 601-604.
Essington, M. E. (1988). Soil Sci. Soc. Am. J., 52, 1566-1570.

## inorganic compounds

Fletcher, D. A., McMeeking, R. F. \& Parkin, D. J. (1996). Chem. Inf. Comput. Sci. 36, 746-749.
Harrison, W. J., Wendlandt, R. F. \& Wendlandt, A. E. (2002). International Mineralogical Association 18th General Meeting, Sept 1-6, 2002, Edinburgh, Scotland. Abstract A18-10, meeting program with abstracts, p. 185. Hata, M., Marumo, F., Iwai, S. \& Aoki, H. (1979). Acta Cryst. B35, 2382-2384. Kang, S. J. \& Ozawa, T. C. (2003). Balls and Sticks. http://www.softbug.com/ toycrate/bs/index.html.
Kreidler, E. R. \& Hummel, F. A. (1970). Am. Mineral. 55, 170-184.
Laugier, J. \& Bochu, B. (2003). CELREF. http://www.CCP14.ac.uk/tutorial/ lmgp/CELREF.htm.

Mercier, P. H. J., Le Page, Y., Whitfield, P. S., Mitchell, L. D., Davidson, I. J. \& White, T. J. (2005). Acta Cryst. B61, 635-655.
Reinen, D., Lachwa, H. \& Allmann, R. (1986). Z. Anorg. Allg. Chem. 542, 7188.

Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Roh, Y.-H. \& Hong, S.-T. (2005). Acta Cryst. E61, i140-i142.
Schiff-Francois, A., Savelsberg, G. \& Schaefer, H. (1979). Z. Naturforsch. Teil B, 34, 764-765.
Villiers, J. P. R. de (1971). Am. Mineral. 56, 758-766.
Westrip, S. P. (2008). publCIF. In preparation.
White, T. J. \& ZhiLi, D. (2003). Acta Cryst. B59, 1-16.
Wu, P., Zeng, Y. Z. \& Wang, C. M. (2003). Biomaterials, 25, 1123-1130.

## supplementary materials

Acta Cryst. (2008). E64, i63-i64 [doi:10.1107/S1600536808026901]

## Rietveld refinement of $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ from high-resolution synchrotron data

A. M. T. Bell, C. M. B. Henderson, R. F. Wendlandt and W. J. Harrison

## Comment

Apatites are minerals and synthetic compounds with general formula $A_{5}\left(\mathrm{YO}_{4}\right)_{3} X$, containing tetrahedrally coordinated $\mathrm{OO}_{4}{ }^{3-}$ anions $\left(Y=\right.$ pentavalent cation) and a monovalent anion $X$ such as $\mathrm{F}^{-}, \mathrm{Cl}^{-}$or $\mathrm{OH}^{-}$. The divalent cations frequently belong to the alkaline earth group, but other cations like $\mathrm{Pb}^{2+}$ are also known. For a review of the structures and crystal-chemistry of these materials, see Mercier et al. (2005) and White \& Dong (2003). Apatites containing arsenic (As-apatites) are of interest as hosts for storage of arsenic removed from contaminated water (Harrison et al., 2002). Powder diffraction data for the Ba containing As -apatites $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ (Kreidler \& Hummel, 1970) and for $\left(\mathrm{Ba}_{2.25} \mathrm{Ca}_{1.65} \mathrm{~Pb}_{1.16} \mathrm{Fe}_{0.06} \mathrm{Mg}_{0.06}\right)\left[\left(\mathrm{AsO}_{4}\right)_{2.56}\left(\mathrm{PO}_{4}\right)_{0.3}\right] \mathrm{Cl}_{1.09}$ (mineral name morelandite; Dunn \& Rouse, 1978) were indexed in space group $P 63 / m$. Related crystal structures have also been reported for $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{~S}$ (Schiff-Francois et al., 1979) and $\left(\mathrm{Sr}_{1.66} \mathrm{Ba}_{0.34}\right)\left(\mathrm{Ba}_{2.61} \mathrm{Sr}_{0.39}\right)\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ (Dordevic et al., 2008). The crystal structure of $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ in space group $P 6_{3} / m$ is reported in the present communication.

Table 1 shows refined interatomic distances and angles for the $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ structure. The averaged $\mathrm{Ba}-\mathrm{O}$ and Ba2-O distances of respectively $2.87 \AA$ and $2.84 \AA$ are similar to those in other Ba and Cl containing apatites. In comparison, the average $\mathrm{Ba}-\mathrm{O}$ and $\mathrm{Ba} 2-\mathrm{O}$ distances are $2.84 \AA$ and $2.78 \AA$ for $\mathrm{Ba}_{5}\left(\mathrm{VO}_{4}\right){ }_{3} \mathrm{Cl}$ (Roh \& Hong, 2005), $2.83 \AA$ and $2.79 \AA$ for $\mathrm{Ba}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$ (Hata et al., 1979) and $2.83 \AA$ and $2.76 \AA$ for $\mathrm{Ba}_{5}\left(\mathrm{MnO}_{4}\right)_{3} \mathrm{Cl}$ (Reinen et al., 1986). The As-O distances are characteristic for tetrahedral $\mathrm{AsO}_{4}$ units. The $\mathrm{O}-\mathrm{As}-\mathrm{O}$ angles deviate significantly from the ideal tetrahedral angle of $109.5^{\circ}$, indicating a strong distortion.

The refined lattice parameters for $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ are similar to the previously published parameters of $\mathrm{a}=10.54 \AA$, c $=7.73 \AA$ given by Kreidler $\&$ Hummel (1970). A study of 108 existing and predicted apatites with different compositions made use of elemental radii to calculate their lattice parameters (Wu et al., 2003). Only 52 of these compositions had known lattice parameters. The predicted lattice parameters for $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ were $\mathrm{a}=10.3979 \AA, \mathrm{c}=7.6105 \AA$. These predicted parameters are respectively $1.51 \%$ and $1.66 \%$ smaller than the measured lattice parameters, and only 2 of the 52 apatite compositions had bigger differences between observed and calculated lattice parameters.

Fig. 1 shows the Rietveld difference plot for the present refinement. The crystal structure of $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$, showing the isolated tetrahedral $\mathrm{AsO}_{4}{ }^{3-}$ anions separated by $\mathrm{Ba}^{2+}$ cations and $\mathrm{Cl}^{-}$anions, is displayed in Fig. 2.

## Experimental

This work was part of an attempt to synthesize analogues of $\mathrm{Pb}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ (mimetite) with $\mathrm{Pb}^{2+}$ substituted by alkaline earth cations. All starting materials were well crystallized solids. $\mathrm{Pb}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ was precipitated by titration of $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HAsO}_{4}$ into a well stirred, saturated $\mathrm{PbCl}_{2}$ solution at room temperature (procedure modified from methods of Baker (1966) and

## supplementary materials

Essington (1988)). The molar ratio of Pb :As was slightly greater than 5:3, allowing for excess $\mathrm{PbCl}_{2}$ during the precipitation. A very fine-grained pure solid formed immediately, which was then separated, washed, and dried. Typically, five de-ionized water washes were needed to reduced the conductivity of the wash water to $<50 \mu \mathrm{Scm}^{-1}$. $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ was successfully synthesized by ion exchange of $\mathrm{Pb}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ with molten $\mathrm{BaCl}_{2}$ at 1258 K (modified from the method given by Kreidler \& Hummel (1970)). Two fusions were required to completely eliminate formation of Pb containing solid solutions and to yield the Pb free title compound. Excess metal in the form of $\mathrm{BaCl}_{2}$ was removed from the solids by repeated washing with de-ionized water followed by centrifugation and filtration to separate the solid from the solution.

## Refinement

The powdered sample was loaded into a 0.7 mm diameter borosilicate capillary, prior to high-resolution synchrotron X-ray powder diffraction data collection using station 9.1 of the Daresbury Synchrotron Radiation Source. The beam on the sample was 13 mm wide and 1.2 mm high. 9 powder datasets were collected, all were with a step with of $0.01^{\circ} / 2 \theta$ and a counting time of 2 s per point. Three of these datasets were collected between $5-70^{\circ} / 2 \theta$, two between $30-70^{\circ} / 2 \theta$, two between $40-70^{\circ} / 2 \theta$, one between $31.73-70^{\circ} / 2 \theta$ and one between $2-13.2^{\circ} / 2 \theta$. All of these data were summed and normalized to account for decay of the synchrotron beam with time. The main Bragg reflections of the powder diffraction pattern could be indexed in space group $P 6_{3} / m$ with similar lattice parameters to those of the published powder diffraction data (Kreidler \& Hummel, 1970). Some broad and weak Bragg reflections were matched by the pattern of $\mathrm{BaCO}_{3}$ in space group Pmcn. The synchrotron X-ray wavelength was calibrated as $0.998043 \AA$ with an external NIST $640 c$ silicon standard reference material.

Initial lattice parameters for the two phases were refined using CELREF (Laugier \& Bochu, 2003). The P63/m crystal structure of $\mathrm{Ba}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})($ Chengjun et al., 2005) was used as a starting model for the Rietveld (Rietveld, 1969) refinement of the structure of $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$. The crystal structure of witherite (de Villiers et al., 1971) was used as a starting model for refinement of the structure of $\mathrm{BaCO}_{3}$. Isotropic atomic displacement parameters were used for both phases. For the $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ phase the $\mathrm{As}-\mathrm{O}$ distances in the $\mathrm{AsO}_{4}$ tetrahedral units were constrained to those for mimetite (Dai et al., 1991). For the $\mathrm{BaCO}_{3}$ phase the $\mathrm{C}-\mathrm{O}$ distances of the trigonal carbonate anion were constrained to those in witherite, and the $\mathrm{U}_{\text {iso }}$ factors for all atoms in the carbonate anion were constrained to be the same. As the $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ phase was prepared by ion-exchange of $\mathrm{Pb}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$, Rietveld refinements were done with the metal sites partially occupied by both Pb and Ba . However, this resulted in the refined Pb occupancies falling to zero. Therefore the occupancies of the metal sites were fixed as fully occupied by Ba and no Pb was included for the final refinement of the $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ phase. Proportions of the two phases were refined as 64.7 (9) wt. $\% \mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ and 35.3 (9) wt. $\% \mathrm{BaCO}_{3}$.

## Figures



Fig. 1. Rietveld difference plot for the multi-phase refinement of $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ and $\mathrm{BaCO}_{3}$. The black dots, and grey and black lines show respectively the observed, calculated and difference plots. Calculated Bragg reflection positions are indicated by triangles for the $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ phase and by crosses for the $\mathrm{BaCO}_{3}$ phase.

Fig. 2. The crystal structure of $\mathrm{Ba}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$. Pink tetrahedra show $\mathrm{AsO}_{4}$ units with $\mathrm{As}^{5+}$ cations as yellow spheres and $\mathrm{O}^{2-}$ anions as red spheres. Large blue spheres represent $\mathrm{Ba}^{2+}$ cations and small green spheres $\mathrm{Cl}^{-}$anions.

## pentabarium tris(arsenate(V)) chloride

## Crystal data

$\mathrm{As}_{3} \mathrm{Ba}_{5} \mathrm{Cl}_{1} \mathrm{O}_{12}$
$M_{r}=1138.85$

Hexagonal, $P 63 / m$
$a=10.5570$ (1) $\AA$
$b=10.5570(1) \AA$
$c=7.73912(8) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=120^{\circ}$
$V=746.98(1) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{\mathrm{x}}=5.063(1) \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Synchrotron radiation
$\lambda=0.998043 \AA$
$\mu=56.07$ (1) $\mathrm{mm}^{-1}$
$T=298 \mathrm{~K}$
Specimen shape: cylinder
$40 \times 0.7 \times 0.7 \mathrm{~mm}$
Specimen prepared at 100 kPa
Specimen prepared at 1258 K
Particle morphology: powder, white

## Data collection

In-house design
diffractometer
Monochromator: $\mathrm{Si}(111)$ channel-cut crystal
Specimen mounting: capillary
Specimen mounted in transmission mode
$T=298 \mathrm{~K}$

Scan method: step

## Refinement

| $R_{\mathrm{p}}=0.059$ | Profile function: Fundamental Parameters |
| :--- | :--- |
| $R_{\mathrm{wp}}=0.082$ | 21 parameters |
| $R_{\exp }=0.067$ | 3 constraints |
| $R_{\mathrm{B}}=0.090$ | $?$ |
| $S=1.23$ | $(\Delta / \sigma)_{\max }=0.001$ |
| Wavelength of incident radiation: $0.998043 \AA$ | Preferred orientation correction: None |

C-

Excluded region(s): 2-6 degrees $2 \theta$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Ba1 | 0.3333 | 0.6667 | $0.0061(9)$ | $0.059(1)$ |
| Ba2 | $0.2445(4)$ | $0.9874(6)$ | 0.2500 | $0.065(1)$ |

## supplementary materials

| As1 | $0.4047(7)$ | $0.3716(7)$ | 0.2500 | $0.059(2)$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 | $0.347(7)$ | $0.495(6)$ | 0.2500 | $0.13(2)$ |
| O2 | $0.591(4)$ | $0.473(4)$ | 0.2500 | $0.08(1)$ |
| O3 | $0.354(2)$ | $0.280(3)$ | $0.068(3)$ | $0.065(8)$ |
| C11 | 0.0000 | 0.0000 | 0.0000 | $0.070(6)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Ba}-\mathrm{O} 1^{\mathrm{i}}$ | 2.67 (5) | $\mathrm{Ba} 2-\mathrm{O3}^{\text {vi }}$ | 2.62 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$ | 2.67 (5) | $\mathrm{Ba} 2-\mathrm{O} 3^{\text {vii }}$ | 3.05 (4) |
| Ba1-O1 | 2.67 (5) | $\mathrm{Ba} 2-\mathrm{O} 3^{\text {viii }}$ | 3.05 (4) |
| $\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$ | 2.81 (4) | $\mathrm{Ba} 2-\mathrm{O} 1^{\text {ii }}$ | 3.14 (4) |
| $\mathrm{Ba}-\mathrm{O} 2{ }^{\text {iv }}$ | 2.81 (4) | $\mathrm{Ba} 2-\mathrm{Cl1}{ }^{\text {viii }}$ | 3.281 (5) |
| $\mathrm{Ba} 1-\mathrm{O} 2^{\text {v }}$ | 2.81 (4) | $\mathrm{Ba} 2-\mathrm{Cl1}{ }^{\text {ix }}$ | 3.281 (5) |
| $\mathrm{Ba}-\mathrm{O}^{\text {iv }}$ | 3.12 (3) | As1-O3 | 1.64 (2) |
| $\mathrm{Ba} 1-\mathrm{O} 3^{\text {iii }}$ | 3.12 (3) | As $1-\mathrm{O} 3^{\text {x }}$ | 1.64 (2) |
| $\mathrm{Ba} 1-\mathrm{O} 3^{\text {v }}$ | 3.12 (3) | As1-O1 | 1.70 (8) |
| $\mathrm{Ba} 2-\mathrm{O} 2{ }^{\text {i }}$ | 2.59 (4) | As1-O2 | 1.70 (4) |
| $\mathrm{Ba} 2-\mathrm{O} 3^{\text {iv }}$ | 2.62 (4) |  |  |
| $\mathrm{O} 3-\mathrm{As} 1-\mathrm{O} 3^{\mathrm{x}}$ | 118 (2) | O3-As1-O2 | 108 (2) |
| O3-As1-O1 | 108 (1) | $\mathrm{O} 3{ }^{\mathrm{x}}$-As1-O2 | 108 (2) |
| O3 ${ }^{\text {x }-A s 1-O 1 ~}$ | 108 (1) | $\mathrm{O} 1-\mathrm{As} 1-\mathrm{O} 2$ | 106 (2) |

Symmetry codes: (i) $-y+1, x-y+1, z$; (ii) $-x+y,-x+1, z$; (iii) $x-y, x,-z$; (iv) $y,-x+y+1,-z$; (v) $-x+1,-y+1,-z$; (vi) $y,-x+y+1, z+1 / 2$; (vii) $x, y+1,-z+1 / 2$; (viii) $x, y+1, z$; (ix) $-x,-y+1, z+1 / 2$; (x) $x, y,-z+1 / 2$.

Fig. 1

supplementary materials

Fig. 2



[^0]:    Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2188).

