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Abstract: The genus Diaporthe includes pathogenic species distributed worldwide and affecting a
wide variety of hosts. Diaporthe amygdali and Diaporthe eres have been found to cause cankers, dieback,
or twig blights on economically important crops such as soybean, almond, grapevine, and blueberry.
Despite their importance as plant pathogens, the strategies of species of Diaporthe to infect host
plants are poorly explored. To provide a genomic basis of pathogenicity, the genomes of D. amygdali
CAA958 and D. eres CBS 160.32 were sequenced and analyzed. Cellular transporters involved in
the transport of toxins, ions, sugars, effectors, and genes implicated in pathogenicity were detected
in both genomes. Hydrolases and oxidoreductases were the most prevalent carbohydrate-active
enzymes (CAZymes). However, analyses of the secreted proteins revealed that the secretome of
D. eres CBS 160.32 is represented by 5.4% of CAZymes, whereas the secreted CAZymes repertoire of
D. amygdali CAA958 represents 29.1% of all secretomes. Biosynthetic gene clusters (BGCs) encoding
compounds related to phytotoxins and mycotoxins were detected in D. eres and D. amygdali genomes.
The core gene clusters of the phytotoxin Fusicoccin A in D. amygdali are reported here through a
genome-scale assembly. Comparative analyses of the genomes from 11 Diaporthe species revealed
an average of 874 CAZymes, 101 secondary metabolite BGCs, 1640 secreted proteins per species,
and genome sizes ranging from 51.5 to 63.6 Mbp. This study offers insights into the overall features
and characteristics of Diaporthe genomes. Our findings enrich the knowledge about D. eres and
D. amygdali, which will facilitate further research into the pathogenicity mechanisms of these species.

Keywords: CAZymes; Diaporthe; effectors; Fusicoccin A; virulence factors; whole genome sequencing

1. Introduction

The intercontinental movement of pathogens along with crop or forestry products can
promote the emergence of new pathogens in new ecological niches [1]. However, although
the diseases associated with these pathogens may be known, the mechanisms relating to
infection biology and pathogenicity/virulence are not entirely understood. In these cases,
the sequencing of fungal genomes has been widely implemented by mycologists and plant
pathologists [2]. Genome analysis can provide a first attempt to identify genes associated
with different pathogenic strategies, understand disease biology, and improve methods
and strategies for disease diagnosis [2,3].

The genus Diaporthe encompasses species behaving as endophytes, saprobes, and
pathogens that play an important role in plant pathology [4]. Currently, more than
300 species supported by DNA sequences are distributed worldwide and have been re-
ported on several hosts, causing diseases in agriculture and forestry [5–7]. For example,
Diaporthe eres (syn. D. castaneae-mollissimae) has been reported to cause leaf blight and
leaf spot of Castanea mollissima [8], D. eres (syn. D. vaccinii) has been reported to cause
twig blight of blueberries [9], and D. amygdali is known to cause cankers on almond and
peach [10]. Moreover, it is also recognized that the symptoms caused by D. amygdali might
be associated with the production of a phytotoxin, Fusicoccin A [11].
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Studies on Diaporthe have been mostly focused on the identification of plant pathogens
and endophytes, their pathogenicity [12,13], and their metabolites [14,15]. Although there
are 25 published genomes currently available in the NCBI database (https://www.ncbi.
nlm.nih.gov/, accessed on 4 May 2022), and 6 genomes deposited in the JGI Portal database
(https://genome.jgi.doe.gov/portal/, accessed on 3 May 2022), there is still a lack of
in-depth studies on the genomes of species of Diaporthe. Nevertheless, recent studies
using genomic and transcriptomic approaches have been carried out to understand how
species of Diaporthe infect their hosts. For instance, Mena et al. [16] revealed insights into
the molecular traits involved in the pathogenicity of D. caulivora on soybean plants. Gai
et al. [17] demonstrated that the genomic analyses of Diaporthe species that are responsible
for melanose on citrus (D. citri, D. citriasiana, and D. citrichinensis) helped unveil the
molecular mechanism of fungicide resistance, pathogen–host interaction, and population
genome-related research of this relevant plant pathogen.

Recently, Hilário et al. [18] showed that D. amygdali CAA958 was one of the most
aggressive species to blueberry plants. Moreover, the ex-type strain of D. vaccinii (syn D. eres)
CBS 160.32 was previously recognized as a threat to blueberry plantations and, thus, was
listed as a quarantine organism in Europe [19]. Here, to understand how Diaporthe species
invade the hosts, we aimed to identify pathogenicity-related genes, candidate effectors,
cellular transporters, biosynthetic metabolite gene clusters (BGCs), and carbohydrate-
active enzymes (CAZymes) by sequencing and analyzing the genomes of D. eres CBS
160.32 and D. amygdali CAA958. Additionally, a comparative analysis was performed to
gain knowledge on the strategies of Diaporthe species to successfully enter and colonize their
plant host. For this, we analyzed the genomes of nine important plant pathogens, namely
D. ampelina DA912, D. batatas CRI 302-4, D. capsici GY-Z16, D. caulivora D57, D. citri ZJUD2,
D. citriasiana ZJUD30, D. citrichinensis ZJUD34, D. helianthi DHEL01, and D. longicolla MSPL
10–6, whose annotations are available and/or published on public databases [16,17,20–24].

2. Materials and Methods
2.1. Fungal Material and Culture Conditions

Diaporthe amygdali strain CAA958 was collected from diseased twigs of Vaccinium
corymbosum in Portugal [25], stored in a glycerol solution (15%) at −80 ◦C, and maintained
in the culture collection of the Micoteca of University of Minho, hosted at the Center for
Biological Engineering, Braga, Portugal. Diaporthe eres strain CBS 160.32, previously known
as D. vaccinii [19], was isolated from V. macrocarpon in the USA. It was obtained from the
CBS collection of the Westerdijk Fungal Biodiversity Institute, Netherlands. Both strains
were cultured on Potato Dextrose Agar medium (Merck, Darmstadt, DE, Germany) at 25 ◦C
for 7 days prior to DNA extraction.

2.2. DNA Extraction

Mycelia of D. amygdali CAA958 and D. eres CBS 160.32 were obtained from cultures
grown on 50 mL of fresh Potato Dextrose Broth medium (Merck, Darmstadt, DE, Germany)
at 25 ◦C for 7 days. The mycelium was filtered using sterile filter paper and was ground
to a fine powder in liquid nitrogen. DNA was extracted according to Pitcher et al. [26].
The integrity of DNA was assessed using electrophoresis on 0.8% agarose gel and quanti-
fied using a Nanodrop 2000 Spectrophotometer (Thermo Fisher Scientific Inc., Waltham,
MA, USA).

2.3. Genome Sequencing, Assembly, and Prediction

Diaporthe amygdali CAA958 and D. eres CBS 160.32 genomes were sequenced from
100 ng of genomic DNA by Genome Sequencer Illumina HiSeq (2 × 150 bp paired-end
reads) with NovaSeq 6000 S2 PE150 XP (Eurofins, Belgium). Adaptor contamination
and low-quality reads were removed from output reads using the Trimmomatic software
v.0.39 [27]. The quality of the reads was assessed using the FastQC program [28]. The
genome was assembled using SPAdes v.3.14 with kmer size values of 21, 33, 55, and 77 [29].

https://www.ncbi.nlm.nih.gov/
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QUAST web interface [30] was used to assess the quality of the assembly. Assembly
completeness was assessed using Benchmarking Universal Single-Copy Orthologs (BUSCO
v5.3.2) (https://busco.ezlab.org/, accessed on 5 May 2022). Gene prediction was performed
with Augustus v.3.3.3 [31] using Diaporthe helianthi gene models as the training set with
default parameters.

2.4. Dispersed Repeat Sequences and Noncoding tRNA Annotation

Dispersed repeat sequences were masked throughout the genome with the Repeat
Masking option (RepeatMasker v.4.0.9) [32] implemented in OmicsBox software v.1.4.12 [33].
Tandem repeat sequences (TRs) were located across the genome using the software Tandem
Repeats Finder (TRF) [34]. The tRNAs regions were predicted using the tRNAscan-SE tool
with default parameters [35].

2.5. Gene Annotation and Functional Analyses

The predicted genes were functionally annotated with OmicsBox software using
Blast2Go v.1.2.14 [33] against the NCBI’s nonredundant database, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [36–38], and the Gene Ontology (GO) Consortium. The protein
sequences were classified based on InterProScan [39] and the Evolutionary Genealogy of
Genes: Non-Supervised 105 Orthologous Groups (EggNOG) [40] databases. The analyses
were performed using an e-value threshold of 1 × 10−3.

The prediction of secreted proteins, including signal peptides, was carried out with
SignalP 5.0 [41] with default parameters. Predicted proteins with signal peptides were used
to identify putative membrane proteins with DeepTMHMM v.1.0.8 [42], and proteins with
no transmembrane structure were selected as secreted proteins. Additionally, EffectorP v.3.0
was used to predict fungal effectors [43]. To identify the proteins involved in pathogenicity,
the predicted secretome was used as a query for the BlastP search against the pathogen–host
interaction database, with a cut-off e-value set at 1 × 10−5 (PHI-database v.4.10), which
catalogs verified pathogenicity, virulence, and effector genes from fungal, oomycete, and
bacterial pathogens [44]. Biosynthetic gene clusters encoding for secondary metabolites
were predicted using the web-based application antiSMASH v.5.0, using the strictness “re-
laxed” option to detect well-defined clusters and partial clusters with functional parts [45].
Carbohydrate-active enzymes were predicted using the web-based application dbCAN
HMMs 5.0 with default settings [46]. Transporters were identified with BlastP analysis
against the Transporter Classification Database [47] using an e-value threshold of 1 × 10−5.
Geneious Prime v.2021.0.3 was used to BlastP against the PHI [44] and Transporter Classifi-
cation databases [47].

2.6. Comparative Analyses

Nine additional fungal genomes were included for comparative analyses (D. ampelina
DA912, D. batatas CRI 302-4, D. capsici GY-Z16, D. caulivora D57, D. citri ZJUD2, D. citriasiana
ZJUD30, D. citrichinensis ZJUD34, D. helianthi DHEL01, and D. longicolla MSPL 10–6). These
genomes, whose annotations are publicly available, were used to perform a comparison
of GC content, genome size, BUSCO completeness, predicted proteins, and abundance of
CAZymes and BGCs. These taxa include mainly pathogens of citrus [17], grapevine [22],
soybean [16,21], sunflower [20], sweet potato [23], and walnut [24].

3. Results
3.1. Genome Assembly and Genomic Characteristics

Sequencing of D. amygdali CAA958 generated more than 23 million reads with 71x-fold
genome coverage, while sequencing of D. eres CBS 160.32 generated over 24 million reads
with approximately 59x coverage. The overall assembly statistics for both genomes are
summed up in Table 1. Briefly, the D. amygdali CAA958 genome was estimated at 51.5 Mbp
with 15,818 predicted coding sequences, from which 55.7% encode for hypothetical proteins
(n = 8807). The D. eres CBS 160.32 genome size was estimated to be 60.8 Mbp (15.2% larger

https://busco.ezlab.org/
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than D. amygdali CAA958) and has 4.1% more predicted coding sequences (n = 16,499) and
13.6% more hypothetical proteins than D. amygdali (n = 10,195).

Table 1. Genome assembly overview and gene statistics for Diaporthe amygdali CAA958 and Diaporthe
eres CBS 160.32.

Genome Features D. amygdali D. eres

Genome assembled 51.5 Mbp 60.8 Mbp

Number of contigs (>500 bp) 267 2524

Largest contig length 4,327,563 bp 1,105,552 bp

N50 contig length 1,008,325 bp 169,851 bp

N75 contig length 622,097 bp 74,774 bp

GC content 52.1% 47.6%

BUSCO * completeness 98.3% 98.4%

Predicted genes 15,818 16,499

Predicted proteins with signal peptides 1874 1806

Secreted proteins 1562 1616

Candidate effectors 109 98

Total length of coding genes 23,649,268 bp 24,024,391

Average length of predicted genes 1495 bp 1456 bp

Total length of predicted genes/Genome assembled 45.9% 39.5%

Average number of exons per gene 3 3

Average number of introns per gene 2 2
* BUSCO, Benchmarking Universal Single-Copy Orthologs.

Repetitive sequences are grouped into tandem repeats (TRs) and dispersed repeats
(DRs). The total length of DRs in D. eres CBS 160.32 and D. amygdali CAA958 was estimated
at 799,386 bp and 571,940 bp, respectively. Regarding the TRs, 8639 sequences (0.95% of the
whole genome) were predicted for D. amygdali CAA958, and 33,522 TRs (covering 3.68%)
were estimated in the genome of D. eres CBS 160.32 (Table 2). Among the predicted tRNAs
in the D. amygdali CAA958 genome, 8 tRNAs were predicted as possible pseudogenes and
154 as anticodon, while for D. eres CBS 160.32, 19 were predicted as possible pseudogenes
and 158 as anticodon tRNAs.

3.2. Gene Prediction and Functional Annotation

The genome of D. amygdali CAA958 was estimated at 15,818 genes and D. eres
CBS 160.32 at 16,499 genes annotated according to the NCBI’s nonredundant protein,
UniProt/Swiss-Prot, EggNOG, KEGG, and GO databases (Tables S1 and S2). From the total
14,012 predicted proteins in D. amygdali CAA958, signal peptides were identified in 1874
(13.4%) proteins (Table S3), and transmembrane structures were detected in 3122 (19.7%)
proteins (Table S4). From those proteins with a signal peptide and no transmembrane
structure, 1562 (31.7%) were predicted as secreted proteins (secretome) (Table S5). In the
genome of D. eres CBS 160.32, 14,625 (88.6%) proteins were predicted, from which 1806
(12.3%) had a signal peptide, 3220 (22.0%) had a transmembrane structure, and 1616 (11.1%)
were predicted as secreted proteins.
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Table 2. Statistical results for repetitive sequences, tandem repeats, and tRNAs in Diaporthe amygdali
CAA958 and Diaporthe eres CBS 160.32.

Type a
D. amygdali CAA958 D. eres CBS 160.32

Number Total Length (bp) Genome
Content (%) Number Total Length (bp) Genome

Content (%)

Interspersed
and terminal

repeats

LTRs 131 12,096 0.0235 140 12,642 0.0208

DNA transposons 174 9942 0.0193 143 11,693 0.0192

LINEs 18 1207 0.0023 21 1611 0.0027

SINEs 0 0 0 0 0 0

Rolling circles 4 243 0.0005 0 0 0

Small RNA 55 8582 0.0167 52 8523 0.0140

Satellites 25 1927 0.0037 18 1434 0.0024

Simple repeats 11,895 486,262 0.9445 15,264 686,233 1.1289

Low complexity 1067 51,681 0.1004 1571 77,250 0.1271

TOTAL 13,369 571,940 1.1109 17,209 799,386 1.3151

Tandem repeats 8639 478,007 0.9459 33,522 2,237,060 3.6802

tRNAs 162 15,038 0.0292 177 17,216 0.0283
a LTRs, long terminal repeats; LINEs, long interspersed nuclear elements; SINEs, short interspersed
nuclear elements.

Functional analysis (GO, Biological Process) of D. amygdali CAA958 (Table S1) and
D. eres CBS 160.32 (Table S2) revealed that most genes are involved in cellular and metabolic
processes, localization (establishment of cellular component location), and biological regu-
lation (Figure 1). In both genomes, the genes included in the cellular process category were
mostly classified as chaperones or participants in post-translational modification or protein
turnover, intracellular trafficking, secretion, and vesicular transport, signal transduction
mechanisms, cell wall and cell cycle control, cytoskeleton, and others, which include de-
fense mechanisms, nuclear and extracellular structure, and cell motility. Regarding the
metabolic process category, genes of both species are largely involved in the transport
and metabolism of carbohydrates, biosynthesis, transport and catabolism of secondary
metabolites, amino acids, energy production and conversion, and metabolism of lipids
and inorganic ions. In GO, Molecular Functions, genes are mostly involved in catalytic
activity, binding, and transporter activity. Within the catalytic activity, genes are classified
as participating in oxidoreductase, hydrolase, and transferase. Analyses of Cellular Compo-
nent (GO) show that most genes are involved in the cellular anatomical entity, membrane,
cytoplasm, and nucleus.

3.3. Fusicoccin A Biosynthesis

Fusicoccin A is a phytotoxin produced by D. amygdali. Here, the genes involved in its
biosynthesis were identified at two different loci. The core gene clusters for Fusicoccin A
comprise 13 genes that were found only in the genome of D. amygdali CAA958. The clusters
include a PaFS fusicoccadiene synthase, five cytochrome P450s (PaP450-1, PaP450-2, PaP450-
3, PaP450-4, PaP450-5), two O-acetyltransferases (PaAT-1, PaAT-2), a methyltransferase
(PaMT), a prenyltransferase (PaPT), an alpha-ketoglutarate dependent dioxygenase, a
glycosyltransferase (PaGT), and a short-chain dehydrogenase/reductase (Figure 2). The
schematic organization of the loci was created using the free software SnapGene Viewer
4.0.1 (https://www.snapgene.com/, accessed on 12 November 2021).

https://www.snapgene.com/
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3.4. Virulence Factors, Effectors, and Strategies to Overcome Host Responses

From the predicted secretome of D. eres CBS 160.32, we identified 88 genes encoding
for CAZymes (5.4%), and 458 secreted proteins were identified in the pathogen–host inter-
action (PHI) database [44] (28.1%) (Table S6). Of these secreted proteins, 98 were identified
as effector candidates (20%), including carboxylesterases, lipases, peptidases, glycosyl
hydrolases, and several hypothetical proteins (Table S7). In the secretome of D. amygdali
CAA958, we identified 454 genes encoding for CAZymes (29.1%), 469 in the PHI-database
(29%) (Table S6), and 109 effectors (5.6%) such as pectate lyases, cellulases, endopolygalac-
turanases, cutinases, and laccases (Table S7). Some predicted effectors were also found on
both D. eres and D. amygdali genomes, including the CFEM domain (Common in Fungal
Extracellular Membrane), necrosis, and ethylene-inducing peptide 1 (Nep1)-like proteins
(NLP), metalloproteases, pectinesterases, and acetylxylan esterases. Moreover, genes encod-
ing for proteins with potential roles in pathogenesis, such as the velvet complex, virulence
protein sorting, and proteases, were also identified on both genomes (Table 3). Genes en-
coding proteins that are produced to overcome immune plant defenses were also detected
on both genomes analyzed, such as genes encoding arylsulfatases, salicylate hydroxylase,
tyrosinase, homogentisate dioxygenase (HGD), fumarylacetoacetate hydrolase (FMH),
cytochrome P450 monooxygenases superfamily, and flavin-containing monooxygenases.

Table 3. Putative proteins involved in fungal pathogenesis identified in the genomes of Diaporthe
amygdali CAA958 and Diaporthe eres CBS 160.32.

Putative
Protein

D. amygdali
CAA958

D. eres CBS
160.32 Function References

Acid aspartase
√

×
Role in the mechanisms of virulence during fungal

infection, participating in the degradation of the host’s
physical barriers

[48]

Aminobutyrate
aminotransferase

√ √ Metabolization of γ-aminobutyric acid, providing
pathogen nitrogen requirements during infection [49]

Aminopeptidase,
carboxypeptidase

√ √ Protease required by fungi for host peptide
degradation during pathogenesis [50]

Cerato-ulmi
√

×
Hydrophobic proteins secreted by filamentous fungi
(Ophiostoma species). It possesses properties of a wilt

toxin in susceptible elms, such as Ulmus americana
[51,52]

Chitin synthases
√ √

Enzymes that serve as a pathogen-associated molecular
pattern (PAMP), triggering immune responses in host
plants. Reported in Magnaporthe oryzae, Botrytis cinerea,

Fusarium graminearum, and F. verticillioides

[53]

Metalloprotease
√ √ Zinc-chelating protease that plays an essential role in

microbial pathogenesis. In M. oryzae, it is an effector
that triggers host defense response

[54]

Nudix proteins
√ √ Important virulence components manipulating host

defense mechanisms [55]

Siderophores
√ √

Chelators synthesized to be involved in iron uptake,
intracellular transport, and storage. Essential virulence

factors allow the fungus to overcome severe iron
limitation imposed by the host

[56]

Subtilisin-like
serine protease

√ √ Proteases that are released in infected plant host to
degrade pathogenesis-related proteins and disrupt

host cell membranes
[57]
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Table 3. Cont.

Putative
Protein

D. amygdali
CAA958

D. eres CBS
160.32 Function References

Tripeptidyl-peptidase
√

× Acidification of the microenvironment in the host
facilitates the proliferation of the pathogen [58]

Velvet proteins
√ √ Promotion of chromatin accessibility and expression of

biosynthetic gene clusters involved in pathogenicity as
mycotoxins, pigments, and hormones

[59]

Virulence protein SSD1
√ √ Important for M. grisea to colonize rice leaves, leading

to evasion and tolerance of the host immune response [60,61]

Vacuole protein sorting
√ √ Proteins involved in the delivery of soluble vacuolar

compounds, metabolite storage, and osmoregulation.
Essential for fungal growth and pathogenesis

[62]

3.5. Cellular Transporters

All transporter classes (TC) were detected in our analyses: TC 1–9 (Table 4). A total
of 2325 and 2238 genes encoding for transporters were identified (Table S8) in D. amygdali
CAA958 and D. eres CBS 160.32, respectively, accounting for 14.7% and 13.6% of the total
predicted genes. Overall, the electrochemical potential-driven transporters (TC 2) were
the most prominent group, and in both genomes represent an average of 42% of the an-
notated transporters, followed by the primary active transporters (TC 3, average = 17%)
and channels and pores (TC 1, average = 16%). The TC 2 was the largest category of
cellular transporters identified in D. eres CBS 160.32 and D. amygdali CAA958 (Table 4).
Both genomes encode transporters involved in the transport of zinc (e.g., zrt1, zrt2, zrt3),
sulfur (e.g., mup1, mup3), siderophores (e.g., mirB), and MFS transporters (major facilitator
superfamily) such as sugar/H+ symporter (e.g., stl1), glucose/xylose symporter, inositol,
and glycerol transporters. On both genomes, we also detected genes encoding for ABC
transporters (TC 3) that confer antifungal resistance to fluconazole (e.g., fcr1) and voricona-
zole (e.g., atrF). Some accessory factors involved in transport (TC 8) were found on D. eres
and D. amygdali genomes, such as genes encoding tetraspanin (e.g., pls1 and tsp3) and
peroxiredoxins (e.g., prx1) transporters.

Table 4. Number of genes predicted to code for transporters in the genomes of Diaporthe amygdali
CAA958 and Diaporthe eres CBS 160.32.

Transporter Class D. amygdali CAA958 D. eres CBS 160.32

Channels and pores (TC 1) 348 348

Electrochemical potential-driven transporters (TC 2) 973 911

Primary active transporters (TC 3) 366 371

Group translocators (TC 4) 48 39

Transmembrane electron carriers (TC 5) 14 13

Accessory factors involved in transport (TC 8) 270 266

Incompletely characterized transport systems (TC 9) 306 290

TOTAL 2325 2238

3.6. Comparative Analyses
3.6.1. Predicted Genes and Genome Statistics

Most published genomes of Diaporthe do not have available functional annotations;
thus, we chose D. ampelina DA912, D. batatas CRI 302-4, D. capsici GY-Z16, D. caulivora D57,
D. citri ZJUD2, D. citriasiana ZJUD30, D. citrichinensis ZJUD34, D. helianthi DHEL01, and
D. longicolla MSPL 10–6 to perform a comparative analysis. These species were chosen
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mainly due to their importance as plant pathogens and their annotation’s availability on
public databases and published works. Overall, the genomic features vary among the
analyzed species regarding their GC content, genome size, and BUSCO completeness. The
GC content ranges from 43.9% to 52.9%, in which D. helianthi DHEL01 displayed 17% less
GC content (43.9%) than D. caulivora D57 (52.9%). The number of predicted genes ranged
from 10,704 (D. ampelina DA 912) to 18,385 (D. caulivora DS7), in which D. ampelina has
41.8% fewer genes than D. caulivora. The size of the genomes had an average of 57.1 Mbp
per species, ranging from 51.5 Mbp in D. amygdali CAA958 to 63.6 Mbp in D. helianthi
DHEL01, being the genome of D. amygdali 19% smaller than D. helianthi (Table 5). A near
completeness of the assemblies was also verified by BUSCO analyses, which reported
an average of 98.4% completeness among all species analyzed. The number of secreted
proteins showed an average of 1640 per species, ranging from 2043 in D. citrichinensis
ZJUD34 to 1224 in D. batatas CRI 302-4.

3.6.2. CAZymes

A total of 857 and 859 genes encoding for putative CAZymes were identified in the
D. amygdali and D. eres genomes, respectively (Table 6, Tables S9 and S10). The glycoside
hydrolases (GH) are by far the largest family of CAZYmes in these genomes. About 404 and
398 protein-coding genes belonging to more than 65 different glycoside hydrolases made
up approximately 47% of D. amygdali and 46% of D. eres cell-wall degrading repertoire,
respectively. The main GH subfamilies detected on both D. amygdali and D. eres genomes
were β-glucosidases (GH3), endo-β-1,4-glucanases/cellulases (GH5), α-amylases (GH13),
xyloglucan transglucosylases (GH16), chitinases (GH18), polygalacturonases (GH28), and
β-xylosidase/α-L-arabinofuranosidases (GH43). Regarding glycosyltransferases (GT),
GT1 (uridine diphosphate UDP-glycosyltransferase) and GT2 (cellulose/chitin synthase)
were the most abundant. Carbohydrate-binding modules (CBM) families involved in
starch-binding (CBM20) and L-rhamnose-binding (CBM67) were also the most abundant
in both genomes analyzed. Among the auxiliary activity (AAs) family, cellobiose dehy-
drogenases (AA3), xylo- and cello-oligosaccharide oxidases (AA7), and copper-dependent
lytic polysaccharide monooxygenases (AA9) were the most predominant. Regarding the
carbohydrate-esterases (CE) subfamilies, acetylxylan esterases (CE1) and cutinases (CE5)
were the most abundant, while the pectase lyases PL1 and PL3 (polysaccharide lyases)
were also the most prominent families on D. amygdali and D. eres genomes.

Overall, the total number of CAZymes per species was 874, ranging from 696 in
D. ampelina to 1221 in D. longicolla. Although all classes of CAZymes were detected,
glycoside hydrolases and auxiliary activities were the two groups with the most predicted
proteins. Families AA3, AA7, AA9, CBM20, CBM67, CE1, CE16, CE5, PL1, PL3, PL4, GH1,
GH13, GH16, GH18, GH43, GT1, and GT2 were the most abundant among all species
analyzed (Figure 3). Overall, D. longicolla displayed the highest CAZyme content, including
the families AA7, CBM20, CBM67, CE1, PL1, and GH43, followed by D. citrichinensis with
an abundance of AA7, CBM67, PL1, GH18, and GH28 families. Contrarily, the GT1 family
was most predominant in D. capsici and D. longicolla genomes.
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Table 5. Genomic features of the Diaporthe species analyzed: ND, no data.

Species Strain Host BUSCO *
Completeness %

Genome Size
(Mb)

GC Content
%

Predicted
Genes

Secreted
Proteins CAZymes BGCs GenBank

Accession Number

Diaporthe ampelina DA912 Grapevine 98.7 53.4 52.8 10,704 ND 696 105 LWAD01000000

Diaporthe amygdali CAA958 Blueberry 98.3 51.5 52.1 15,818 1562 856 86 This study

Diaporthe batatas CRI 302-4 Sweet potato 97.9 54.4 50.6 13,037 1224 941 91 JAHWGW000000000

Diaporthe capsici GY-Z16 Walnut 98.4 57.6 51.3 14,425 1488 843 103 WNXA00000000

Diaporthe caulivora D57 Soybean 97.8 57.8 52.9 18,385 1501 ND ND ND

Diaporthe citri ZJUD2 Citrus 98.5 59.6 47.9 15,218 1860 847 98 JADAZQ000000000

Diaporthe citriasiana ZJUD30 Citrus 99.2 52.4 52.0 13,839 1643 796 89 JADWDH000000000

Diaporthe citrichinensis ZJUD34 Citrus 98.3 54.5 54.1 15,928 2043 925 110 JADAZR000000000

Diaporthe eres (syn.
D. vaccinii) CBS 160.32 Blueberry 98.4 60.8 47.6 16,499 1616 859 88 This study

Diaporthe helianthi DHEL01 Sunflower 98.3 63.6 43.9 13,139 1433 764 67 MAVT02000001

Diaporthe longicolla MSPL 10–6 Soybean 98.2 62.0 48.6 16,597 1535 1221 174 AYRD00000000

* BUSCO, Benchmarking Universal Single-Copy Orthologs
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Table 6. Predicted genes encoding for CAZymes in the genomes of Diaporthe amygdali CAA958 and
Diaporthe eres CBS 160.32.

Classes
Total Number of Genes Secreted CAZymes

D. amygdali D. eres D. amygdali D. eres

GT 107 108 3 10

GH 404 398 235 40

CBM 20 25 11 4

AA 230 225 131 26

CE 63 66 44 5

PL 33 37 30 3

TOTAL 857 859 454 88
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3.6.3. BGCs

There are 86 and 88 BGCs involved in the secondary metabolism of D. amygdali and
D. eres, respectively (Table S11). The BGCs identified on the D. amygdali genome encode
10 terpenes, 3 indoles, 36 t1PKs (type 1 polyketide synthases), 10 NRPS (nonribosomal pep-
tide synthase), 6 t1PKs-NRPS, 11 NRPS-like, 2 t1PKs-indole, and one of each: siderophore,
Fungal-RiPP, t1PKS-NRPS-indole, NRPS-NRPS-like, t1PKs-t3PKs, t3PKs, “other,” and
other-t1PKs. Of these 86 BGCs, clusters 1, 21, and 24 have 100% similarity with known
BGCs, such as fusarin (mycotoxin), clavaric acid (anticancer), and alternariol (phytotoxic
and antifungal), respectively. Clusters 2, 12, 24, and 41 showed homologies with fusarielin
H (antifungal) (25%), betaenone (37%), alternapyrone (40%) (phytotoxins), and squalestatin
(antifungal) (40%).

In D. eres, the 88 BGCs identified encode for 8 terpenes, 5 indoles, 35 t1PKs (type 1 polyke-
tide synthases), 10 NRPS (nonribosomal peptide synthase), 6 t1PKs-NRPS, 12 NRPS-like,
2 terpene-NRPS-like, 2 t1PKs-NRPS-like, 2 t1PKs-NRPS-indole, and one of each: siderophore,
Fungal-RiPP, NRPS-like-indole, t1PKS-terpene, t1PKs-indole, and “other.” From the
88 secondary metabolite gene clusters identified, clusters 179, 197, and 297 have 100%
similarity with known BGCs, such as the phytotoxins alternariol, mullein, and ACT toxin
II, respectively. Clusters 271, 268, and 134 were also found to have homologies with the
phytotoxins alternapyrone (40%) and cercosporin (31%) and with PR toxin (mycotoxin)
(50%), respectively.

Moreover, other BGCs encoding for betaenone, cercosporin, and PR toxin were de-
tected among the genomes analyzed, but with a similarity ranging from 22% to 60%,
indicating that some genes may be truncated. The Diaporthe eres cluster 268 showed a gene
similarity of 31% with the cercosporin cluster, and it contains only three genes responsible
for the biosynthesis of this compound: ctb3 (cercosporin toxin biosynthesis protein), ctb1
(PKS), and ctb2 (O-methyltransferase). Cluster 12 from D. amygdali and cluster 360 from
D. eres showed 37% similarity with the betaenone BGCs and contains an HR-PKS, an enoyl
reductase, a short-chain dehydrogenase reductase, and a cytochrome P450 but lacks a de-
hydrogenase and a FAD-dependent oxidase. Cluster 271 of D. eres contains genes involved
in PR toxin biosynthesis: a terpene cyclase, an aristolochene synthase, an oxidoreductase,
an oxidase, two P450 monooxygenases, a transferase, and two dehydrogenase enzymes.

The genomes analyzed were rich in gene clusters that are involved in the synthesis of
secondary metabolites. Diaporthe longicolla contains the highest number of BGCs (n = 174),
and D. helianthi has the lowest (n = 67). Diaporthe amygdali and D. eres contain 38.5% and
49.4% fewer BGCs than D. longicolla, respectively. Overall, all species were estimated with
an average of 101 BGCs per species. Type 1 polyketide synthases were the most abundant
type of gene clusters, followed by NRPS, NRPS-like, terpenes, and t1PKs-NRPS (Figure 4).
Several BGCs encoding phytotoxins with 100% similarity with known BGCs were detected
in the genomes analyzed. For example, fusarin BGC was found on D. batatas, D. helianthi,
D. longicolla, and D. amygdali; alternariol BGC was detected in D. amygdali, D. destruens,
D. eres, and D. capsici; and mellein BGC was also found in D. eres, D. capsici, D. destruens,
and D. longicolla. It is worth noting that the ACT toxin BGC was detected only in D. batatas,
D. capsici, D. citrisiana, and D. eres.
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4. Discussion

The genomes of D. amygdali CAA958 and D. eres CBS 160.32 were sequenced, analyzed,
and compared with the genomes of D. ampelina DA912, D. batatas CRI 302-4, D. capsici
GY-Z16, D. caulivora D57, D. citri ZJUD2, D. citriasiana ZJUD30, D. citrichinensis ZJUD34,
D. helianthi DHEL01, and D. longicolla MSPL 10–6 in order to understand the main strategies
that Diaporthe species use to infect and colonize their hosts.

While plants develop defense mechanisms against fungal pathogens, fungi develop
strategies to attack their hosts and manipulate plant immune responses [63]. Effectors
such as the CFEM domain, NEP1-like protein, and metalloproteases, which are known
to manipulate the host’s hypersensitive response, acting as toxins to induce plant cell
death, thereby favoring early pathogen colonization, were detected on both D. amygdali
CAA958 and D. eres CBS 160.32 genomes [64]. Pathogenicity genes were also detected
in both genomes, including vacuole protein sorting (which enhances stress resistance
to survive within the host [62]), virulence protein SSD1 (involved in tolerance to host
immune response [61]), and subtilisin-like serine protease (participates in the degradation
of pathogenesis-related proteins produced by the host [57]).

Fungi can quickly adapt to changing environments and develop strategies to overcome
immune plant defenses due to their genetic flexibility [65]. To overcome severe nutrient
limitations imposed by the host (e.g., sulfur, which is an essential element required for
the growth and function of all fungal cells [66,67]), fungi exhibit responses to alleviate
the nutrient deficiency [66]. This includes transport systems (e.g., sulfate and methionine
permease) allowing the uptake of the sulfate produced and sulfate starvation-induced
(SSI) proteins (e.g., arylsulfatase) involved in sulfur scavenging from the environment [68].
Given that genes encoding for sulfur transporters and arylsulfatases were identified in the
genomes of D. amygdali and D. eres, it is suggested that both species may take advantage
of sulfur from their hosts for a successful infection, thus ensuring fungal survival in the
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host’s microenvironment. Moreover, genes encoding for salicylate hydroxylase, tyrosinase,
homogentisate dioxygenase (HGD), and fumarylacetoacetate hydrolase (FMH) [69,70]
were also identified. The presence of these genes supports the hypothesis that D. eres
and D. amygdali may be able to degrade salicylic acid and plant phenylpropanoid pre-
cursors, which are produced by the host as defense mechanisms [71]. Genes encoding
for the biosynthesis of carbohydrates inositol (e.g., inositol 5-phosphatase) and mannitol
(e.g., mannitol-1-phosphate 5-dehydrogenase) were also detected, involved in the inositol
phosphate metabolism and fructose and mannose metabolism pathways, respectively. In
fungi, inositol plays a major role in metabolic adaptation, fungal virulence, and sexual
development [72]. Reynolds [73] reported the importance of inositol acquisition in the
biology and pathogenesis of some fungal pathogens (e.g., Candida albicans). Moreover, it
is reported that some fungal plant pathogens use mannitol to detoxify reactive oxygen
species (ROS) produced by plants [74]. This suggests that both D. amygdali and D. eres may
take advantage of inositol to proliferate and cause infection in their hosts and mannitol to
counteract ROS-mediated defenses produced by the host.

A high number of cellular transporters were annotated on both Diaporthe species, sug-
gesting the ability to transport molecules to enhance pathogenicity, secondary metabolites,
and sugars into the cell [75]. The access to sugars that are released from complex plant
polysaccharides relies on the ability of fungi to secrete a large number of sugar transporters
from the MFS transporters (TC.2) [76]. In fact, TC 2 was the largest category identified in
D. eres and D. amygdali. Sugar/H+ symporter, glucose/xylose symporter, inositol, and glyc-
erol transporters can recognize and transport more than one type of sugar, such as xylose,
glucose, and cellobiose, into the cell [77]. The high number of annotated transporters de-
tected is corroborated by studies on other fungi colonizing plants, such as Botryosphaeriaceae,
which ranges from 3143 in Dothiorella sarmentorum to 2185 in D. iberica [78]. In addition
to the transport of sugars, peroxiredoxin and tetraspanin transporters were also detected.
Rocha et al. [79] suggested that peroxiredoxin plays an important role in the development
and pathogenicity of Aspergillus fumigatus and M. oryzae. Jimenez-Jimenez et al. [80] also
stated that tetraspanins are crucial for appressorium-mediated penetration into the host
and act as coordinators of the infection process of M. oryzae and Botrytis cinerea. Therefore,
we suggest that D. eres CBS 160.32 and D. amygdali CAA958 display traits in the genomes
to support virulence and persistence into the hosts.

Fusicoccin A is a diterpene glucoside, discovered in 1964 as a fungal phytotoxin,
produced by Fusicoccum amygdali (syn. D. amygdali) [81], whose structure was characterized
in 1968 [82]. From a draft genome of the Phomopsis amygdali (syn. D. amygdali) strain Niigata-
2, Noike et al. [83] suggested that Fusicoccin biosynthetic genes are located at two different
loci: one containing four genes and the other nine genes. In fact, our results showed that
these two gene clusters involved in the biosynthesis of Fusicoccin are composed of 13 genes
and were detected in D. amygdali CAA958. Fusicoccin A is known to induce irreversible
opening of stomata, causing uncontrolled transpiration, leading to the development of
cankers on branches, as well as the chlorosis and necrosis of distal leaves in almonds and
peach trees [11,82]. When tested on stems/twigs or detached leaves, Fusicoccin can also
cause the stomatal opening in a wide range of plants such as: tobacco (Nicotiana tabacum),
sorghum (Sorghum bicolor), cucumber (Cucumis sativa), and lucerne (Medicago sativa) [81,84].
It is interesting to note that some studies have outlined that Fusicoccin may also contribute
to improving plant physiological performance [11]. For instance, some biological activities
are attributed to this diterpene glucoside such as the induction of abscission [85], potassium
uptake [86], cell enlargement, or stimulation of seed germination [87]. Thus, this suggests
that besides its reported phytotoxicity, Fusicoccin can also be used as a plant growth
regulator in agriculture, as well as a biochemical agent for plant physiology [88].

The results hinted at a possible correlation between the number of genes and the
genome size of the Diaporthe species considered in this study. Most fungal species with
available genomes exhibit a genome size that ranges from 30 Mbp to 40 Mbp (aver-
age = 37.2 Mbp), while genome sizes of sequenced plant pathogenic ascomycetes are
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slightly larger (average = 39.4 Mbp) [2,78]. However, our results show a relatively large
genome size among all Diaporthe species analyzed, falling within the 51.5–63.6 Mbp range,
with an average of 57.1 Mbp. Although still poorly understood, some studies have re-
vealed that large genome sizes and high numbers of genes are common in fungal plant
pathogens [89]. This outcome might be explained by the presence of genes related to host
colonization traits (e.g., production of CAZymes, peroxidases) that are under high selective
pressure, thus resulting in gene duplication events that play important roles in fungal
evolution and adaptation [78,90].

For a successful infection, pathogens may need to break the plant cell wall, which is com-
posed of polysaccharides such as cellulose, beta-glucans, hemicellulose, and pectin [22,91].
Plant pathogens display a wide variety of CAZymes that are involved in the degradation
of these plant polysaccharides [92]. All genomes analyzed in this study had abundant num-
bers of CAZymes (an average of 874 per species), GHs being the most predominant. GHs
functions of β-glucosidases, β-xylosidases, amylases, glucanases, L-arabinofuranosidase,
and endo-β-1,4-cellulases were present in all Diaporthe species used in this study, thus
playing an important role in fungal pathogenicity. For instance, endo-β-1,4-cellulases is one
of the families commonly found in Neofusicoccum parvum [22], while pectinases, hemicellu-
lases, and cellulases secreted by Valsa mali are crucial in apple infection [56]. In the same
way as the GH, AA functions such as cellobiose dehydrogenase and gluco-oligosaccharide
oxidase, which assist lignocellulolytic enzymes in the degradation of plant biomass, were
also abundant among all Diaporthe species analyzed. Moreover, CBMs that bind to gly-
coside hydrolases to enhance plant cell wall degradation (e.g., L-rhamnose-binding and
starch-binding) and PLs degrading glycosaminoglycans and pectin were also detected
among all species analyzed. Our results corroborate previous studies in which the capacity
of plant cell wall degradation is linked to fungal lifestyle (necrotrophic, hemibiotrophic,
and biotrophic) [93,94]. For instance, some authors have documented that higher numbers
of hydrolytic enzymes are most prominent in hemibiotrophs (e.g., M. oryzae, D. longicolla,
N. parvum), necrotrophs (e.g., B. cinerea), saprobes (e.g., Paraphaeosphaeria sporulosa), and
endophytes/latent pathogens (e.g., Periconia macrospinosa) than in biotrophs [21,78,93].
Therefore, given that species of Diaporthe are hemibiotrophs [95], it is expected that all
species analyzed exhibit a high number of CAZymes.

The proportion of CAZymes in the D. amygdali secretome (29.1%) is consistent with
previous reports in other Diaporthe species, such as D. capsici and D. citri (30.7%), D. caulivora
(30.6%), and D. longicolla (31.4%), emphasizing the importance of CAZymes in Diaporthe
pathogenicity [16]. Nevertheless, the proportion of CAZymes in the secretome of D. eres
CBS 160.32 was estimated at 5.4%, which is low when compared with the abovementioned
species (average = 30.5%). The relatively low number of secreted hydrolytic enzymes may
explain the lack of pathogenicity of D. eres CBS 160.32, which is consistent with studies that
categorize this species as a weak pathogen on blueberry plants [18,96].

Moreover, hemibiotrophic plant pathogens usually possess higher numbers of genes
involved in the biosynthesis of secondary metabolites than biotrophic pathogens [97]. In
fact, an abundance of BGCs was found in all species analyzed. These secondary metabolites
can be toxic polyketides, nonribosomal peptides, terpenes, and indoles that induce plant cell
death and lead to disease development [64]. The genomes of Diaporthe analyzed contained
many BGCs, especially t1PKS, NRPS, NRPS-like, and terpenes. Although the products of
some clusters are unknown, some of them could be determined. These compounds included
phytotoxins (alternariol, mellein, ACT toxin II) and mycotoxins (fusarin). Although ACT
toxin is recognized as a host-specific toxin from citrus infecting A. alternata [98], it is worth
noting that the ACT toxin-producing gene cluster was detected in D. eres and D. capsici.
However, the ACT toxin II BGC has also been detected in species of Botryosphaeriaceae [64].
Therefore, it is suggested that the genes from the cluster responsible for the biosynthesis
of the ACT toxin may have been acquired from horizontal gene transfer, as previously
suggested by Wang et al. [99].



J. Fungi 2022, 8, 804 16 of 20

5. Conclusions

This study represents the first report of the Diaporthe amygdali and D. eres genome
sequence. Pathogenicity factors, effectors, cellular transporters of sugars and ions, phytotox-
ins, and CAZymes were identified on both genomes. The number of CAZymes identified
in the secretome of D. eres CBS 160.32 suggests that hydrolytic enzymes may not be the
most relevant mechanism adopted by this species as a strategy to infect plant hosts. The
comparative genome analyses revealed that species of Diaporthe exhibit great diversity in
the number of hydrolases, transferases, lyases, and oxidoreductases. These are responsi-
ble for the breakdown or modification of plant cell wall polysaccharides, suggesting the
ability to surpass the plant cell wall. The high number of predicted CAZymes may reflect
an ecological selection and adaptation of these fungi to efficiently degrade the available
biomass as a carbon source. The genomic data of D. amygdali CAA958 and D. eres CBS
160.32 will add valuable information for further research into the mechanisms of Diaporthe
that are involved in pathogenicity. Plant pathogen genomes alone are not sufficient to
unravel pathogen–host interactions. Therefore, future studies using Dual RNA sequencing
(RNA-Seq) technology, which allows for the analyses of both host and pathogen transcrip-
tomes, may provide better insight into the biology of pathogen infection, as well as host
defense mechanisms.
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