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Abstract 

The hit-to-lead process makes the physicochemical properties of the hit molecules that show the desired type of 
activity obtained in the screening assay more drug-like. Deep learning-based molecular generative models are 
expected to contribute to the hit-to-lead process. The simplified molecular input line entry system (SMILES), which is 
a string of alphanumeric characters representing the chemical structure of a molecule, is one of the most commonly 
used representations of molecules, and molecular generative models based on SMILES have achieved significant suc-
cess. However, in contrast to molecular graphs, during the process of generation, SMILES are not considered as valid 
SMILES. Further, it is quite difficult to generate molecules starting from a certain molecule, thus making it difficult to 
apply SMILES to the hit-to-lead process. In this study, we have developed a SMILES-based generative model that can 
be generated starting from a certain molecule. This method generates partial SMILES and inserts it into the original 
SMILES using Monte Carlo Tree Search and a Recurrent Neural Network. We validated our method using a molecule 
dataset obtained from the ZINC database and successfully generated molecules that were both well optimized for 
the objectives of the quantitative estimate of drug-likeness (QED) and penalized octanol-water partition coefficient 
(PLogP) optimization. The source code is available at https://​github.​com/​sekij​ima-​lab/​merma​id.
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Introduction
Approximately 8000 drugs are currently being devel-
oped worldwide [1]. From drug discovery to launch, a 
new drug takes an average of 10 to 15 years to be devel-
oped and costs $2.6 billion [1, 2]. Among the drug candi-
dates that enter Phase I clinical trials, less than 12 % are 
approved by the Food and Drug Administration (FDA) 
[1]. After the target protein of a therapeutic drug for a 
disease has been determined, high-throughput screening 
(HTS) is used to exhaustively test the binding affinity of 
thousands to hundreds of thousands of compounds to the 

target protein in the search for hit compounds. Although 
the number of possible structures of a compound is 1060 
and depends on the quality of the compound library to 
be tested, the hit rate of HTS is approximately 0.1 % [3], 
which provides an opportunity to discover unexpected 
hit compounds but also highlights the problem of high 
experimental cost. To reduce the number of compounds 
to be tested, virtual screening, a computer-aided drug 
design (CADD) method for selecting new drug can-
didates, was proposed in the late 1990s [4]. In virtual 
screening, compounds that have a high potential to bind 
to a target protein are ranked in order from a database of 
thousands to millions of compounds using an evaluation 
function that expresses the binding affinity calculated by 
a computer. The compounds narrowed down by the vir-
tual screening are verified by biochemical experiments 
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[5–7], and those that are actually determined to be active 
proceed to the hit-to-lead. Hit-to-Lead is a stage in early 
drug discovery where small molecule compounds hit by 
high-throughput screening (HTS) are processed through 
certain optimizations to identify promising lead com-
pounds [8]. In addition to simulation, machine learning 
(ML) methods such as random forests and deep learn-
ing have been used in virtual screening [9–12]; however, 
molecular design methods using generative models are 
expected to be used in hit-to-lead [13].

The significant progress made in ML in recent years, 
especially in terms of deep learning, has led to a break-
through in image processing and natural language pro-
cessing [14]. Subsequently, various ML models have 
been applied in the field of molecular design and have 
shown impressive results [15]. Gomez-Bombarelli et  al. 
[16] used a variational autoencoder (VAE) for molecular 
design. Representing the molecule as a continuous vari-
able enables us to perform gradient-based optimization 
in latent space. Considering that simplified molecular 
input line entry system (SMILES) is a string, which is 
one representation of molecules, it is natural to adopt 
recurrent neural networks (RNNs), which are suitable 
for time-series data such as strings, for molecular design. 
Segler et al. [17] used long short-term memory (LSTM), 
which is an RNN, for molecule generation. Although this 
method showed high validity, it is not suitable for the 
purpose of generating molecules with desirable prop-
erties. This is because LSTM training is only optimized 
to satisfy SMILES grammar, and the generation process 
does not consider the properties of molecules. Therefore, 
we have to repeat the generation process incessantly until 
we generate the desired molecules. So far, a variety of 
SMILES-based methods for optimizing specific chemi-
cal properties have been proposed [18, 19]. Xiufeng Yang 
et al. [20] used Monte Carlo tree search (MCTS) to gen-
erate desirable molecules with better efficiency than ran-
dom sampling in RNN-based molecule generation. The 
aforementioned methods are SMILES-based molecular 
generative models, and they cannot take a specific mol-
ecule as a starting point during optimization tasks. This 
is because, unlike the case of molecular graphs, sub-
SMILES cannot be considered as valid molecules owing 
to the nature of SMILES grammar.

Graph representation, which is called a molecu-
lar graph, is also a useful representation of molecules. 
Graph representation is easier to understand visually, and 
checking the valence allows all generated molecules to be 
valid. Various ML models such as generative adversarial 
network (GAN) [21] and VAE [22] have been applied 
to the generation of molecular graphs [23–25]. These 
methods often outperformed SMILES-based methods in 
terms of optimization for certain chemical properties, as 

well as for metrics, such as validity and novelty, for gen-
erated molecules. However, handling molecular graphs 
on a computer is more difficult than SMILES. Because 
VAE deals with likelihoods explicitly, graph matching is 
necessary to calculate the loss function, which has a high 
computational cost [26]. Although GANs do not deal 
with likelihoods explicitly, the GNN used in the discrimi-
nator and generator require a significant computational 
cost [27]. For these reasons, the molecular graph-based 
approach can only deal with small molecules [28]. In 
addition, for both SMILES-based and molecular graph-
based approaches, reinforcement learning is used to opti-
mize specific chemical properties; however, the reward 
model, which is represented by neural networks and is 
not always accurate(especially in the case of extrapola-
tion) [29], must be retrained for each evaluation function.

To address these issues, we have introduced MER-
MAID, a generative model based on SMILES using 
MCTS and RNN. Our model can take a specific molecule 
as a starting point (Fig. 1), and because we adopt SMILES 
representation, the restrictions on the size of molecules is 
not as stringent as the molecular graph-based approach, 
and our model does not require retraining of the model 
for each chemical properties.

Methods
Optimization of specific molecules
The purpose of this study is to generate the derivatives 
of specific molecules. The aforementioned MCTS-based 
generative model cannot start from specific molecules 
simply, because MCTS only adds nodes to the tail of a 
search tree. Our proposed method is as follows. 

1	 Extract partial SMILES strings from the initial point 
of SMILES.

Fig. 1  Comparison with existing MCTS-based methods (a) Existing 
MCTS-based molecular generative model such as ChemTS [20]. This 
model generates full SMILES strings through MCTS. b Our model 
starting from a specific molecule. It generates partial SMILES and 
replaces a part of the seed SMILES with the generated one
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2	 Use MCTS to generate a series of characters repre-
senting the partial SMILES strings

3	 Replace the extracted partial SMILES strings with the 
generated partial SMILES

This method is capable of generating molecules that 
are obtained by removing or adding a series of zeros 
or more SMILES characters from SMILES regarded 
as the starting point (Seed molecule). An overview 
of our entire methods is given in the Fig.  2. First, the 
method of (partial) SMILES generation by MCTS will 
be explained. After that, the RNN and its training pro-
cedure will be explained, and details of the substitution 
procedure used with MCTS will be given.

MCTS for molecular generation
MCTS [30, 31] is a model-based reinforcement learn-
ing approach used to solve large space planning prob-
lems by sampling episodes and constructing search 
trees. The generation of (partial) SMILES by MCTS is 
illustrated in Fig. 3(a). A node corresponds to a state si 
and has the value Q(s), which represents the evaluation 
of itself and the number of visits N(s). While sampling 
episodes, MCTS selects a node from a search tree using 
tree policies and evaluates a new node by rollout. Roll-
out is the default policy for simulations without add-
ing new nodes to search tree. The details of Rollout are 
described later.

In molecular generation, a node corresponds to a 
character of SMILES; therefore, hence, a path from the 
root node to leaf node corresponds to a SMILES. The 
MCTS algorithm includes the following four steps and 
iterates until some convergence condition is satisfied.

Selection
The purpose of this step is to select a node from a search 
tree for the expansion of nodes. Starting from the root 
node, the child node of current node is selected based 
on a tree policy. The tree policy is discussed later. Node 
selection is repeated recursively until the leaf node is 
selected.

Expansion
The purpose of this step is to expand the current node(the 
node is selected in Selection step). Some SMILES charac-
ters following the current node’s SMILES character are 
selected from predefined vocabulary.

Simulation
The purpose of this step is to evaluate added nodes. The 
evaluation of non-terminal nodes is a difficult task in 
reinforcement learning. Therefore, MCTS evaluates non-
terminal nodes using the Rollout procedure. The Rollout 
procedure expands recursively from evaluating the nodes 
until the terminal node appears. When the terminal node 
appears, the path from the root node to the terminal 
node corresponds to a complete SMILES. Therefore, We 
can evaluate the path easily using some metrics such as 
QED, LogP. We used the score as the non-terminal node.

Backpropagation
The purpose of this step is to update the value Q(s) and 
the number of visit N(s) of traversed nodes in this epi-
sode. Starting from the evaluated node in the Simulation 
step, the parent node of the current node is updated using 
the calculated score r recursively until the root node 
appears. The update formulas are defined as follows. 

Tree policies are important for the performance of 
MCTS. The upper confidence bound (UCB) score, which 
is proposed for the multi-armed bandit problem, is often 
used as the tree policy. Node selection based on the UCB 
score is as follows.

 where, Q(s) is the mean estimated value of state s for its 
child nodes, and N(s) is the number of visits to the state 
s. si and sp are the states of each node i and the parent 
node, respectively. Cp is the hyperparameter of the bias 

(1)Q(s) ←
Q(s)N (s)+ r

N (s)+ 1

(2)N (s) ←N (s)+ 1

(3)π(s) = arg max
i

{

Q(si)+ 2Cp

√

lnN (sp)

N (si)

}

Fig. 2  Overview of MERMAID In MERMAID, an RNN model is trained 
using the SMILES dataset, and MCTS and the RNN model generate 
SMILES corresponding to the substructure, which are inserted into 
the SMILES of the seed molecule to generate a new molecule
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term. The first term corresponds to exploitation, and the 
second term corresponds to exploration.

The advantage of using UCB score as the tree policy is 
that the probability of selecting sub-optimal actions con-
verges to zero as the number of iteration tends to infinity 
under specific conditions (appropriate Cp and the value of 
reward ranges between 0 and 1). However, it is not possi-
ble for the number of iterations to tend toward infinity. 
Furthermore, the performance of rollout-based algo-
rithms degrades similar to that of other algorithms [32]. 
Since a character following the SMILES string needs to 
satisfy SMILES grammar, the number of suitable charac-
ters that follow the SMILES string is smaller than the 
number of vocabularies, which is action space. Therefore, 
a few characters selected by RNN are considered as 
actions in our approach. Cp is chosen to be an upper 
bound of the accumulated reward in practice. However, 
in this case, Cp is large to an extent that the state space is 

restricted, i.e., exploration is considered more valuable 
than exploitation. Therefore, we set Cp = 1√

2
 like other 

studies [20] that using MCTS.

Inference of SMILES using RNN
RNN is a type of neural network that propagates infor-
mation not only in the direction of layers but also that of 
time series. In this study, LSTM [33], is a type of RNN 
superior to normal RNN in terms of longer dependency, 
is used to capture the features of SMILES grammar.

The role of RNN in MCTS is to select SMILES charac-
ters following an incomplete SMILES string in the expan-
sion step and the default policy in the simulation step, as 
shown in Fig. 4(b). In the expansion step, the incomplete 
SMILES string s1s2...st (encoded to x0x1...xt , e.g., one-hot 
vector) corresponding to path from root to the selected 
node is the input for RNN. RNN receives the encoded 

Fig. 3  Details of SMILES generation by MCTS (a) With the path to the non-terminal node as input, the RNN model generates a complete partial 
SMILES. Then, by inserting the generated partial SMILES into the seed SMILES, a new SMILES is generated. b Selecting seed SMILES that is replaced 
with the generated one.Nodes under the root node have the information of the part deleted from seed SMILES.The generation of partial SMILES 
begins from the grandchild nodes of the root node. c The optimization cycle is repeated multiple times, replacing one of the generated SMILES 
with a seed SMILES
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sequence as input and outputs the probability of selecting 
characters following the input sequence, which is incom-
plete SMILES. The probability of selecting a character si 
based on output of RNN yt is as follows.

Several characters are selected through a fixed number 
of samplings from the probability and are added as child 
nodes to the selected node in the selection step. In the 
simulation step, a SMILES character that follows the cur-
rent node is selected recursively until the terminal char-
acter is selected in the same way as the expansion step. 

RNN training
The role of MCTS is to generate partial SMILES string 
as described in above section. Therefore, RNN combined 
with MCTS should be trained with partial SMILES string 
rather than full SMILES. In this study, a dataset of par-
tial SMILES strings was generated from a dataset of full 
SMILES, as shown in Fig.  4(a). Preprocessing was done 
as follows. 

1	 Partial SMILES strings were extracted exhaustively 
from full SMILES of the original dataset.

2	 “Invalid” partial SMILES strings were filtered. Partial 
SMILES strings are regarded as valid if the SMILES 
generated by inserting partial SMILES strings into 
C*C or C(*)C is valid.

Approximately 250,000 molecules were obtained from 
the ZINC database to train the RNN model and evaluate 

(4)P(sit+1|s1s2...st) =
exp(yit)

∑

j exp(y
j
t)

the proposed generative model. 90 % of the molecules 
were used for training, and the remaining were used to 
evaluate molecule generation.

The RNN model consists of two layers of LSTM and 
receives encoded SMILES strings as input and outputs 
sequences of probability that represents the suitability of 
a SMILES character following the current input sequence 
for each position and each SMILES character in vocabu-
lary. This model was trained on the preprocessed training 
set for 20 epochs using the Adam optimizer [34] to mini-
mize cross entropy loss.

Replacement of partial SMILES string
In the proposed method, the selection of partial SMILES 
strings removed from the initial point of SMILES is done 
in MCTS using the “Replacement” node. Fig. 3(b) shows 
how to select removed partial SMILES strings. Specifi-
cally, the “Replacement” node, which is a child node of 
the root node, has the values of the starting position of a 
removed SMILES string and its length of that. A partial 
SMILES string is generated from the grandchild nodes of 
the root node, and the generated string is replaced with 
the part of the initial point of SMILES corresponding to 
the “Replacement” node.

Initial point of molecule
This approach is capable of generating new molecules 
from the original molecule. However, this approach 
has problem with generated molecules. Because this 
approach replaces the substructure generated by MCTS 
with a portion of the original molecule, the generated 
molecule is a molecule in which only one part of the 
original molecule has been changed on SMILES. In other 
words, the generated molecule is not modified in more 
than one place. Therefore, we propose a method that 
applies this approach multiple times (Fig.  3(c)). Specifi-
cally, for every fixed number of steps, the initial point of 
SMILES is replaced with the SMILES generated up to 
that point, and MCTS is performed from the beginning.

For efficient performance, it is important to know how 
the next initial point of SMILES is selected. In this study, 
we preferred to optimize SMILES with the maximum 
reward score, for example QED, LogP, etc. is selected as 
next initial point. The effect of the difference between 
fixed or changed initial points is investigated in the 
Experiment section.

This policy is simple and easy to understand and imple-
ment; however, it is possible that the generated molecules 
flow into a local solution. In addition, it is not neces-
sary that future molecules that have desirable and better 
properties need to be generated from the best molecule 
among the generated molecules. Using this policy, good 
results are obtained in this study; however, the selection 

Fig. 4  Details of RNN Model Training (a) Partial SMILES are extracted 
from complete SMILES. These partial SMILES datasets are used to train 
the RNN Model. b The RNN model predicts the next character from 
the previous string at each position
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policy for next initial SMILES must be further considered 
to generate better molecules.

Experiment
We conducted two experiments to demonstrate the per-
formance of our method. The first experiment involves 
normal optimization, which modifies a molecule to 
maximize a single evaluation function. The optimization 
targets in this experiment were the QED [35] score and 
penalized LogP. QED is a measure of drug-likeness, and 
the more drug-like it is, the closer this value is to 1 rang-
ing between 0 and 1. Penalized LogP is defined as follows.

The Penalized LogP consists of three terms: the normal 
LogP (octanol-water partition coefficient), the SA score 
that penalizes complex structures, and the penalties for 
large rings. Note that any other target property metrics 
that can be calculated from SMILES can also be used in 
this model. The 200 lowest PLogP/QED molecules in 
the validation data set ware selected as the seed in this 
experiment.

Molecule generation was done in 10,000 steps for 
each of the test molecules. We analyzed two cases for 
the proposed approach, depending on whether the seed 
molecule is fixed. The model in which the seed mol-
ecule is fixed is called “Single”, and the other model 
is called “Multi”. The seed molecule of the “Multi” 
model is replaced every 2000 steps with the highest 
scoring(PLogP/QED) molecule generated up to that 
point.

The second experiment is constrained optimization for 
comparison with conventional methods, which modi-
fies a molecule to maximize a single evaluation function 
while satisfying some conditions. In this case, PLogP was 
optimized with the condition of using the Tanimoto coef-
ficient based on ECFP4 fingerprint. Models perform 4 
cycles × 50 steps =200 steps of optimization for each of 
the 800 molecules with the lowest PLogP in the ZINC 
dataset. Mol-CycleGAN [36] and GCPN [29] were used 
for comparison.

(5)
PLogP(mol) = LogP(mol)+ SAscore(mol)

+ RingPenalty(mol)

Results
Normal optimization
We evaluate the performance of the optimization task 
using the best molecular property score and the distri-
bution of generated molecules using validity, unique-
ness and novelty. Validity rate is defined as the ratio of 
SMILES that can be parsed by RDKit to all generated 
molecules. Uniqueness is the ratio of duplicate molecules 
to valid molecules, and Novelty is the ratio of molecules 
that are not included in the training dataset to those 
included.

Optimization results are shown in Table 1. Our model 
shows sufficient results in both the QED and PLogP opti-
mization tasks. In particular, the “Multi” model produces 
molecules with better scores than the “Single” model. 
This result is also shown in Fig. 5. The distribution of the 
QED/PLogP score of seed molecules shifted towards a 
higher score. This can be confirmed from Fig.  6, which 
shows that the “Multi” model generates molecules with 
higher scores as the number of steps increases. The distri-
bution of similarity between the generated molecules and 
the seed molecules in Fig. 6 shows that the “Multi” model 
also generates molecules in regions where the “Single” 
model does not generate. Both the “Single” and “Multi” 
models generate molecules with relatively high similar-
ity Additionally, the “Multi” model seeks higher-scoring 
molecules and expands the chemical space of generated 
molecules to a lower similarity region. The reason for this 
is that the “Multi” model can generate a molecule with 
changes occurring at multiple positions in SMILES as 
shown in Fig. 7 because the seed is updated, however, the 
“Single” model cannot generate such a molecule because 
it inserts partial SMILES at only one position. 

The results for the group of all generated molecules are 
shown in Table 2. Although validity is low, both unique-
ness and novelty are high. The specific structures of the 
generated molecules are shown in Fig.  8. For each stat-
ing point molecule, molecules with high scores and dif-
ferent structures are generated. The values of the validity 
ratios differed considerably depending on the evaluation 
function. This is because the molecules generated by 
the PLogP optimization are larger; therefore, the search 
space is wider, and many invalid molecules are generated. 

Table 1  The results of the optimization tasks

The mean of the top 3 highest scored Penalized LogP and QED scores of the validation set and the validity rate are described

Method Penalized LogP QED

1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC −9.41 − − − 0.285 − − −
Single −2.20 −2.39 −2.53 29.8% 0.681 0.671 0.666 62.6%

Multi 11.33 11.20 11.10 31.8% 0.920 0.915 0.912 77.0 %
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Fig. 5  Distributions of generated molecules The distribution of the seed and generated molecules for each model and metrics. Blue: seed 
molecules, red: generated molecules

Fig. 6  Example of optimization results for a molecule The optimization result from one randomly chosen compound. a The distribution of similarity 
to the seed molecule of generated molecules by our models. Blue: Multi model, red: Single model. b Moving average of QED with 20 steps. Blue: 
Multi model, red: Single model
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In this manner, the evaluation function itself also affects 
the performance. 

It is observed that the properties of molecules gener-
ated by the “Multi” model improve with each step. The 
number of steps for each iteration is 10,000, and the 
number of iterations is 5. We obtained good results 
from this experiment; however, these parameters are not 
optimum. Therefore, we need to investigate the relation 

between molecules and the hyperparameters of the 
“Multi” model, such as the number of steps and selection 
policy of the next seed molecule, in order to generate bet-
ter molecules.

Comparison with conventional methods of constrained 
optimization
The results of constrained optimization are shown in 
Table  3. The left column shows the difference in PLogP 
between the original molecule and the generated mol-
ecule with the highest PLogP as Improvement. Our 
method outperforms others in terms of the properties 
of molecules. However, success rate, which is the per-
centage of molecules with similarity above a threshold 
and improved PLogP, is worse than GCPN. Note that 
in GCPN, the policy is updated sequentially, while our 
method has a fixed policy. Thus, our method shows con-
sistent results even when the number of evaluation steps 
is less (i.e., when optimizing properties that require con-
siderable time to evaluate, such as DFT-based physico-
chemical values requiring several hours to calculate [37]).

Discussion
In this experiment, we demonstrated that our method 
performs well in common tasks (QED and PLogP optimi-
zation with ZINC dataset and constrained similarity opti-
mization); however, it can be used for various other tasks 
as well. To use this method, two areas require modifica-
tion by the user: the evaluation function and the training 
data. For the evaluation function, all possible evaluation 
values that can be calculated from SMILES are available, 
and the user must design an appropriate evaluation func-
tion by combining these based on knowledge of the target 
task. The training data does not necessarily require modi-
fication by the user, as the purpose of training is to capture 
the features of partial SMILES and because the evaluation 
values are not directly related to training. Nevertheless, 
some types of tasks may bias the structure of relevant 
molecules; in such cases, optimization will improve effi-
ciency if the user prepares the training data in advance.

Fig. 7  Differences in SMILES generated by each model Molecules 
generated by two models, showing the difference in terms of 
structure and SMILES. a Seed molecule. b Molecules generated by 
the “Multi” model and c molecules generated by the “Single” model. 
The red outlines in the molecular structures and the red character 
string in SMILES are changes from molecule (a). Note that deleted 
parts from the seed molecule during molecule generation are not 
highlighted in this figure

Fig. 8  Structures of seed molecules and generated molecules 
In each row, molecule in the first column is the seed molecule, 
and generated molecules are shown in row. These molecules are 
generated by the “Multi” model that replaces seed molecules with 
generated molecules, with changing replace point at a certain 
number of steps. The QED score for each molecule is shown under 
the molecule

Table 2  Mean property of all generated molecules for 200 
validation compounds

Validity, uniqueness and novelty of all generated molecules are shown for four 
models. Validity is the ratio of valid SMILES to all generated SMILES. Uniqueness 
is the ratio of non-duplicate molecules to all valid molecules. Novelty is the ratio 
of molecules that are not included in the training dataset to all valid molecules

Validity Uniqueness Novelty

PLogP-Single 0.298 0.981 1.0

PLogP-Multi 0.318 0.991 1.0

QED-Single 0.626 0.945 0.999

QED-Multi 0.770 0.958 0.999
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As shown in the experimental results, our method 
produces molecules that improve the evaluation func-
tion value. Therefore, it is important to design the evalu-
ation function carefully to avoid generating molecules 
that deviate from the seed molecule or have chemically 
unnatural structures.

Future work will focus on several approaches for fun-
damentally addressing these challenges, such as adding 
restrictions based on SMILES grammar to the substi-
tution method. Molecular generation, starting from a 
specific molecule, has an important role in real-world 
applications; however, it has not been sufficiently studied 
compared with other types of molecular generation (gen-
eration from nothing). Hence, this study aimed to con-
tribute toward filling this gap.

Conclusions
In this paper, we developed a generative model based on 
MCTS and RNN to generate derivative molecules starting 
from a specific molecule. This model generates molecules 
by generating partial SMILES using MCTS and RNN and 
replacing it with part of SMILES of the seed molecule. In 
addition, we propose “Single” and “Multi” models. Unlike 
the “Single” model, the “Multi” model replaces the seed 
molecule with one of the generated molecules at a certain 
number of steps. As a result, it was demonstrated that the 
“Multi” model is superior to the “Single” model in terms 
of optimizing the QED score. Additionally, molecules 
generated by our model have high uniqueness and nov-
elty, and the chemical space consisting of generated mol-
ecules is large in terms of similarity and molecular weight.
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