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Abstract: In our previous study, intravenous (IV) injection of selenium alleviated breast cancer-related
lymphedema (BCRL). This secondary analysis aimed to explore the metabolic effects of selenium on
patients with BCRL. Serum samples of the selenium-treated (SE, n = 15) or the placebo-controlled
(CTRL, n = 14) groups were analyzed by ultra-high-performance liquid chromatography with Q-
Exactive Orbitrap tandem mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS). The SE group
showed a lower ratio of extracellular water to segmental water (ECW/SW) in the affected arm to
ECW/SW in the unaffected arm (arm ECW/SW ratio) than the CTRL group. Metabolomics analysis
showed a valid classification at 2-weeks and 107 differential metabolites were identified. Among
them, the levels of corticosterone, LTB4-DMA, and PGE3—which are known anti-inflammatory
compounds—were elevated in the SE group. Pathway analysis demonstrated that lipid metabolism
(glycerophospholipid metabolism, steroid hormone biosynthesis, or arachidonic acid metabolism),
nucleotide metabolism (pyrimidine or purine metabolism), and vitamin metabolism (pantothenate
and CoA biosynthesis, vitamin B6 metabolism, ascorbate and aldarate metabolism) were altered in
the SE group compared to the CTRL group. In addition, xanthurenic acid levels were negatively
associated with whole blood selenium level (WBSe) and positively associated with the arm ECW/SW.
In conclusion, selenium IV injection improved the arm ECW/SW ratio and altered the serum
metabolic profiles in patients with BCRL, and improved the anti-inflammatory process in lipid,
nucleotide and vitamin pathways, which might alleviate the symptoms of BCRL.

Keywords: breast cancer-related lymphedema (BCRL); upper limb lymphedema; Selenium; sodium
selenite; intravenous (IV) injection; untargeted metabolomics; global metabolomics; metabolites

1. Introduction

Breast cancer-related lymphedema (BCRL) is a type of secondary lymphedema that
stems from the disruption or obstruction of the lymphatic system after breast cancer surgery
and axillary radiation therapy [1,2]. The clinical manifestation of BCRL is characterized by
swelling of the upper body, especially the arms, shoulders, and necks of affected patients [3].
A meta-analysis study reported that upper limb lymphedema most frequently occurred
within 2 years after a breast cancer diagnosis or surgery [4]. Another study indicated that
the incidence was highest (9.8%) at 4 years, which was more than twice the incidence rate 2
years after surgery. A previous nationwide study in Denmark reported that the prevalence
rate of perceived lymphedema after breast cancer treatment was approximately 65% [5].
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Breast cancer survivors with BCRL reportedly experience more disabilities, lower quality
of life, and higher psychological distress than survivors without BCRL [6–9].

The exact pathology of lymphedema remains unknown [10]. The sequence of devel-
opment may be inflammation, progressive tissue fibrosis, worsening lymphatic functions,
and finally lymphatic system disruption [11]. It has been proposed that inflammation is
associated with the accumulation of adipose tissues due to damaged lymph vessels [12],
which is a clinical feature of secondary lymphedema [13]. It has also been proposed that
inflammation, along with adipose tissue hypertrophy and increased adipocyte numbers,
may impair lymph vessels in an obese mouse model [14]. Additionally, T-helper 2 cell
differentiation significantly suppressed lymphedema by decreasing tissue fibrosis and
improving lymphatic function in a T-cell deficient mouse model [10], providing further
evidence for the relationship between inflammation and lymphedema.

Several genes are associated with lymphedema development and progression [15].
Mutations in vascular endothelial growth factor C (VEGFC) and vascular endothelial growth
factor receptor 3 (VEGFR3) induce altered lymph formation, which may progress to lym-
phedema [16]. In particular, overexpression of VEGFC resulted in lymphedema exacer-
bation accompanied by higher immune cell infiltration and vascular leakage in a mouse
model [17]. In addition, NFKB2 and FOXC2 have been proposed to be primary factors in
lymphangiogenesis and lymphedema since they are involved in both inflammatory reac-
tions and lymph development [1]. Tyrosine kinase with immunoglobulin-like and EGF-like
domains 1 (TIE1)—a cell surface protein involved in angiogenesis and lymphangiogenesis—
is reportedly related to lymphatic dysfunction, as TIE1 gene variants were identified in
235 lymphedema patients [18]. The TIE1 receptor-deficient mouse model exhibited abnor-
mal development of lymphatic vessels [18], indicating that the TIE1 gene may be associated
with lymphedema progression.

Since no clear treatment has been established for lymphedema [19], disease man-
agement focuses on ameliorating symptoms, including reducing swelling in the affected
limb and decreasing the risk of recurrent infections [20]. Pharmacological interventions,
including benzopyrones, flavonoids, and corticosteroids, are used to reduce the proportion
of free radicals and decrease the limb circumference in lymphedema patients [21]. Ben-
zopyrones, the most commonly used drug in lymphedema treatment, significantly reduce
lymphedema [21]. Ketoprofen, a non-steroid anti-inflammatory drug, reduced tail volumes
in mice with acquired lymphedema by promoting VEGFC-induced lymphangiogenesis [22].
In addition, tacrolimus, an anti-T-cell agent, inhibited lymphangiogenesis and decreased
fibrosis in a mouse model [23].

Selenium (Se) has been suggested as a therapeutic agent for lymphedema because
of its anti-edema role in several studies [2,21,24,25]. Kasseroller et al. [2] demonstrated
that oral administration of sodium selenite elevated whole blood Se levels (WBSe) and
reduced lymphedema volume compared to the placebo. Micke et al. [24] reported that
the administration of selenium in patients with lymphedema after radiotherapy improved
one or more clinical lymphedema stages and reduced swelling. Zimmermann et al. [25]
showed that Se intervention reduced lymphedema volume in patients who underwent
oral tumor surgery in a double-blind, randomized prospective study. Accordingly, studies
consistently suggest that Se may clinically improve lymphedema, but little is known about
the mechanism [21]. Se activates endogenous antioxidative compounds such as glutathione
peroxidase (GPx) [24,25], an enzyme that reduces excessive free radicals produced in
lymphedema tissues [26]. Lymphedema severity was positively correlated with reactive
oxygen species levels and negatively correlated with WBSe and GPx [25]. Moreover, Se may
help alleviate lymphedema by reducing inflammation by disturbing nuclear transcription
factor κB (NF-κB), which binds to human T cell DNA [27]. Se-induced enhancement of the
immune system may have a positive effect on lymphedema by decreasing edema volume
and the incidence of lymphedema complication [24,28,29]. Se-intervention in head and
neck cancer patients significantly increased cellular immune responses, including cytotoxic
lymphocytes and other immunologic parameters [28]. Our previous study [30] examining



Nutrients 2021, 13, 3253 3 of 17

the antioxidative effects of selenium as anti-BCRL revealed that the improvement observed
in patients with BCRL was not due to the antioxidative activity of Se. Therefore, other
mechanistic aspects of the anti-edema effects of Se warrant further studies on its mechanism
of action.

Global metabolomics is an unbiased and effective method to reveal biological changes
underlying relevant events [31]. Global metabolomics research on the association be-
tween selenium and BCRL may reveal an unbiased metabolic mechanism of action of
anti-edemic effects of selenium in the BCRL since metabolite profiles depict detailed molec-
ular compositions of tissue or serum samples [32]. Previously, lipid profiling analysis in
the adipose tissues of patients with both primary and secondary lymphedema showed
that lymphedema may exhibit chronic low-grade inflammation with increased levels of
pro-inflammatory lipids such as arachidonic acid and ceramides [33]. In a recent omics
study, dietary Se deficiency significantly altered various metabolites including amines,
sugars, organic acids, purines, pyrimidines, lipids, free fatty acids, bile acids and lipid
mediators [34]. It also affected redox homeostasis via the metabolism of methionine in
mouse brain and liver [34]. Moreover, supplementation with Se and coenzyme Q10 in
healthy elderly participants caused a significant metabolic shift in the pathways related to
pentose phosphate, mevalonate, beta-oxidation, and xanthine oxidase, leading to reduced
oxidative stress and inflammation [35]. However, a global metabolome profile analysis
of patients with lymphedema after Se intervention has not been conducted to date. With
these aspects, we used global metabolomics for analyzing the serum metabolomic profiles
of Se-treated (SE) and placebo-controlled (CTRL) groups, expecting to find evidence of the
potential mechanism related to the effects of Se IV injection on BCRL.

2. Materials and Methods
2.1. Serum Samples for the Study

Serum samples and written consent were obtained in our previous clinical study of
29 participants who exhibited severe lymphedema (stage II–III) after breast cancer therapy.
That study was approved by the Institutional Review Board (IRB) of Seoul National
University Bundang Hospital (approval number: 02-2012-062) [25]. In our current study,
we included previously excluded outliers to increase the strength of the metabolomics
analysis. Finally, 15 participants were included in the SE group and 14 in the CTRL groups.

2.2. Study Design

The intervention protocol used in this study was previously described in detail [25].
Briefly, participants in the SE group received 500 µg of sodium selenite (Selenase®, 10 mL,
Boryung Pharmaceutical Co., Ltd., Seoul, Korea) diluted with 50 mL of 0.9% normal saline
via IV injection five times within 2-weeks from the day of enrollment. Participants in
the CTRL group received normal saline instead of sodium selenite. Serum samples were
obtained before the first injection of sodium selenite (baseline), immediately after the
intervention (2-weeks), and approximately 4 weeks after the last injection (follow-up). The
specific time point for the 2-weeks sample collection was determined to be 1.8 ± 3.8 days
after the last session and for follow-up it was determined to be 31.1 ± 8.8 days after the
2-weeks session.

2.3. Anthropometry, BIA, and WBSe

The ratio of extracellular water to segmental water (ECW/SW) was used instead
of extracellular water to total body water (ECW/TBW). All the data regarding body
weight, BMI, arm ECW/SW ratio, single-frequency bioimpedance analysis (SFBIA) ratios,
and WBSe of the patients were obtained from our previous report [30]. However, the
arm ECW/SW ratio was defined in our study according to the equation developed by
Kim et al. [36].

Arm ECW/SW ratio =
(ECW/SW)a f f ected arm

(ECW/SW)una f f ected arm
.
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2.4. Serum Preparation for LC-MS/MS Analysis

Serum samples that were stored at −80 ◦C were used for liquid chromatography-
tandem mass spectrometry (LC-MS/MS) analysis. For sample preparation, 100 µL of the
sera, 800 µL of 70% methanol, and 10 µL of the internal standard were briefly vortexed
and then left on ice for 10 min. The sample mixture was then obtained by centrifugation at
10,000 rpm for 5 min at 4 ◦C, and the supernatant was lyophilized overnight at −84 ◦C.
Then, 100 µL of 10% methanol was added to the freeze-dried supernatant, vortexed, and
centrifuged at 10,000 rpm for 5 min at 4 ◦C. The supernatant (90 µL) was stored at 4 ◦C
until further analysis. For the internal standard, 10 µg/mL of reserpine, acetaminophen,
sulfadimethoxine, and terfenadine (Sigma-Aldrich, Oakville, ON, Canada) solutions were
prepared in 70% acetonitrile in autoclaved water. Then, the same volumes of each solution
were mixed well and stored at 4 ◦C until sample preparation.

2.5. LC-MS/MS Analysis

Metabolic profiling was conducted on the sera of patients with BCRL who received
Se or normal saline IV injections. Liquid chromatographic analysis was performed using
the Ultimate 3000 UHPLC (Thermo Fisher Scientific, Waltham, MA, USA) coupled with
a column (2.1 × 150 mm, C18) under the following conditions: the mobile phases were
composed of 0.1% formic acid in water (A) and 0.1% formic acid in methanol (B). The
gradient (%) was changed from 100/0 to 0/100 for 15 min, maintained at 0/100 for 4 min,
and then changed back to 100/0 for 2 min. The flow rate was 0.4 mL/min.

MS/MS analysis was performed using a Q-Exactive Orbitrap Plus mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The electrospray ionization (ESI) source
was operated in positive mode. MS data were collected in full scan mode (resolution:
70,000; scan range: 80–1000 m/z) and data-dependent MS2 (dd-MS2) (resolution: 17,500;
Top 10). The capillary temperature and auxiliary gas heater temperature were set to 320 ◦C
and 300 ◦C, respectively.

2.6. Data Processing and Identification of Metabolites

The raw LC-MS data were imported into the XCMS online platform (xcmsonline.
scripps.edu), which is used for data processing, including peak detection, peak alignment
and extraction of peak intensities, m/z, and retention time [33]. The bandwidth and toler-
ance were set to 10 s and 15 ppm, respectively. Other XCMS parameters were set to the
default values. The differential peaks were identified by matching the exact masses and in-
tensities in the most widely used online databases, including the MyCompoundID MS/MS
Search (MCID) (www.mycompoundid.org (accessed date: 27 August 2020)) and the human
metabolome database (HMDB) (www.hmdb.ca (accessed date: 27 August 2020)), using a fit
score ≥ 0.7. MetaboAnalyst 4.0 (www.metaboanalyst.ca (accessed date: 27 August 2020))
was used for further statistical and functional analyses, including partial least squares-
discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis
(OPLS-DA), heatmap, and pathway analysis. MetaboAnalyst 4.0 was designed to permit
comprehensive metabolomics data and statistical analyses, as well as the visualization and
interpretation of the metabolomics data [34].

2.7. Pathway Analysis

For further pathway analysis using MetaboAnalyst 4.0, a variable importance in the
projection (VIP) values of >1.0, and p < 0.05, were used as cut-offs to identify significant
metabolites. VIPs were obtained from SIMCA 16.0 (Umetrics, Göttingen, Germany). The
false discovery rate (FDR) was automatically adjusted using MetaboAnalyst 4.0 to validate
the significance of the metabolic pathway. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (www.kegg.jp/kegg/pathway.html (accessed date: 13th, November,
2020)) and the Small Molecule Pathway Database (SMPDB) (www.smpdb.ca (accessed
date: 13 November 2020)) were used to search for the superpathways and pathways of
differential metabolites.

www.mycompoundid.org
www.hmdb.ca
www.metaboanalyst.ca
www.kegg.jp/kegg/pathway.html
www.smpdb.ca
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2.8. Statistical Analysis

Statistical analyses, including paired t-tests, chi-squared tests, two-way ANOVA,
Mann-Whitney U-tests and Wilcoxon signed-rank tests, were performed using the IBM
SPSS Statistics v.25 software. Differences between baseline and 2-weeks or follow-up time
points were analyzed using the Wilcoxon signed-rank test. Univariate nonparametric
Mann-Whitney U-tests were performed to compare WBSe between the CTRL and SE
groups for all metabolites. MetaboAnalyst 4.0 was used to conduct multivariate PLS-DA
and OPLS-DA for all groups. Metabolic peak intensities were log-transformed and Pareto-
scaled prior to the multivariate analysis. Log transformation was used to normalize the
skewed distribution of the metabolite intensity values [36]. Pareto scaling adjusts the
relative importance of large values [37]. The robustness and validity of the results were
assessed with the cumulative parameters for goodness of fit (R2), goodness of prediction
(Q2), and the permutation test. Metabolites with VIP values > 1.0 and univariate statistical
p-values < 0.05 were filtered for further analysis. We performed regression analysis using
a linear mixed-effect model (LMM) (R v.4.0.5, http://cran.r-project.org (accessed date:
20 March 2021)) with participants as random effects, and other variables, including group,
time and arm ECW/SW ratio or the WBSe, as fixed effects in the statistical models.

3. Results
3.1. Reduced Arm ECW/SW Ratio after Se IV Injection and the Negative Correlation with WBSe
in Patients with BCRL

First, we re-analyzed the general and surgical characteristics of the participants before
performing the metabolomics analysis (Supplementary Table S1). No statistical significance
in the factors, such as the proportions of normal weight, overweight, and obese participants,
the ages, and the post-surgery time (years), were identified in comparing the CTRL and
SE groups. In addition, two-way ANOVA demonstrated that overweight/obesity had
no interaction with the clinical improvements of lymphedema in this study (F = 0.011,
p = 0.917). Consequently, the possible relevant factors for lymphedema, such as ages, BMIs
and post-surgery dates, were not included in our metabolomics analysis.

The efficacy of Se IV injection was re-estimated owing to the inclusion of additional
participant samples. Se resulted in an increased WBSe, but showed no effects on body
weight, BMI, and SFBIA ratios, consistent with our previous study [30]. In accordance with
Han et al. [30], the SE group exhibited significant clinical improvement of BCRL, as the SE
patients in stage 3 decreased to stage 2 by 60.0% between baseline and at 2-weeks, and by
13.4% between 2-weeks and follow-up (Supplementary Figure S1).

The arm ECW/SW ratio was significantly reduced at the 2-weeks and follow-up time
points compared with baseline in the SE group, whereas no difference was detected in the
CTRL group (Figure 1a). In the correlation analysis, the arm ECW/SW ratio was negatively
correlated with WBSe (Figure 1b) and positively correlated with the 1 kHz (r = 0.764),
5 kHz (r = 0.722), and 50 kHz (r = 0.866) SFBIA ratios (Figure 1c). In contrast, there were no
significant correlations between the WBSe and SFBIA ratios or BMI (Figure 1c). Overall, Se
IV injection reduced the arm ECW/SW ratio, which correlated negatively with WBSe and
positively with SFBIA ratios.

3.2. Metabolomic Model Validation

A total of 14,764 ionized compounds were first obtained and processed from the
UHPLC-MS/MS data to establish valid metabolic models (Figure 2a). Partial least squares-
discriminant analysis (PLS-DA) was used to visualize the overall variation of the entire
group, which showed that the top three components accounted for 45.8% of the total
variance (Figure 2b). The Q2 and R2 of the model were greater than 0.5, and 0.9, respectively,
clearly demonstrating that the groups were separated by the peaks in the PLS-DA model.

http://cran.r-project.org
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Table 1. Quality assessment parameters and permutation test for model validation of OPLS-DA to distinguish the CTRL
and SE groups.

Group
Comparisons 2

OPLS-DA 1

Q2 (cum) R2 (cum) Q2 (cum)/R2 (cum)
Permutation Test

(p-Value)

Between groups (CTRL–SE)
0–0 0.543 0.988 0.550 0.21
2–2 0.515 0.911 0.565 0.01
6–6 0.509 0.987 0.516 0.14

Within groups (CTRL–CTRL)
0–2 0.335 0.813 0.412 0.99
0–6 0.203 0.993 0.204 0.80
2–6 0.113 0.910 0.124 0.29

Within groups (SE–SE)
0–2 −0.309 0.996 −0.310 0.23
0–6 −0.104 0.911 −0.114 0.01
2–6 −0.325 0.691 −0.470 0.59

1 OPLS-DA, orthogonal partial least squares discriminant analysis. 2 Time points were compared between and within groups and defined
as: 0, baseline; 2, 2-weeks; 6, Follow-up. E.g., ‘0–0’ under CTRL–SE represents CTRL at baseline vs. SE at baseline; ‘0–2’ under CTRL–CTRL
represents CTRL at baseline vs. CTRL at 2-weeks. The valid model is represented in bold.

To evaluate the validity of the model between the two groups, orthogonal PLS-DA
(OPLS-DA) was performed. The valid model was established between the CTRL and SE
groups at 2-weeks (Table 1). Within-group comparisons showed that no valid model was
constructed between baseline, 2-weeks, and follow-up time points in the CTRL as well as
in the SE group, and baseline profiles of the CTRL and SE groups were not significantly
different (Table 1). A clear separation between the groups was further verified by the
OPLS-DA score plot, S-plot, and permutation test (Figure 2c–e). The valid models were
confirmed at 2-weeks between the CTRL and SE groups.

3.3. Differential Metabolites and Pathways Affected by Se IV Injection Compared to the
Placebo Control

A total of 107 differential metabolites were detected after excluding metabolites that
differed at baseline, duplicates, drugs, and xenobiotics (Figure 2a). A heatmap of the
metabolites shows the overall differences observed between the CTRL and SE groups at
2-weeks (Figure 3a). The metabolites were categorized into four main classes: (i) lipids and
lipid-like molecules; (ii) organic acids and derivatives; (iii) organic heterocyclic compounds;
and (iv) nucleosides and nucleotides (Figures 3b and 4, Table S1). Extensive changes
in 19 pathways (p < 0.05), including lipid, nucleotide, and vitamin metabolism, were
investigated (Figure 5a and Table S2) in the pathway analysis.

Among the 44 lipid and lipid-like metabolites that were most abundant, 22 were
classified as glycerophospholipids (GPLs) or their major intermediates—glycerolipids
(Figure 3b). Of the GPLs, phosphatidylcholine (PC) (20:0/22:2) and lysoPC (20:0 and
20:1) were increased in the SE group (Figures 4 and 5c, Table S1). In addition, some
phosphatidylethanolamine (PE) levels were different in the SE group (Figures 4 and 5,
Table S1). Two fatty acyls involved in arachidonic acid metabolism—leukotriene B4
dimethylamide (LTB4-DMA) and prostaglandin E3 (PGE3)—were relatively high in the SE
group (FDR = 0.043 and p = 0.0286). In the steroid and steroid derivatives class, steroid
hormone biosynthesis metabolites corticosterone and dihydrocortisol were elevated in the
SE group (FDR = 0.024 and p = 0.0061).
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Vitamin B3 (nicotinic acid), vitamin B5 (pantothenic acid), vitamin B6, vitamin B12, and
vitamin C (ascorbate and aldarate) were significantly different in the SE group (Figure 5b).
Quinolinic acid (QA) and nicotinamide mononucleotide (NMN), which are involved in
nicotinate and nicotinamide metabolism, were increased in the SE group (FDR = 0.006
and p = 0.0004). PPC (pantothenate and CoA biosynthesis; FDR = 0.040 and p = 0.0184),
pyridoxamine (vitamin B6 metabolism; FDR = 0.043 and p = 0.0267), and alpha-ribazole
(related to vitamin B12) and L-gulonolactone (also known as reduced ascorbic acid), which
are involved in vitamin C metabolism (FDR = 0.021 and p = 0.0030), were all elevated in
the SE group.
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Figure 3. Differential metabolites between the CTRL and SE group at 2-weeks. A total of 107 metabolites were detected by a
variable importance in the projection (VIP) > 1.0 in OPLS-DA and p < 0.05 in the Mann-Whitney U-test between the groups.
The raw intensity data of metabolites were normalized using the internal standard, Pareto scaling, and log transformation.
(a) Heatmap visualization of the intensities of the differential metabolites. The stratified color from red to blue represents
the respective increase or decrease in relative intensity (b) Classification of metabolites into Superclass and Class according
to their biological role based on the human metabolome database (HMDB). The number of metabolites in each Class are
represented in parentheses.

3.4. Metabolites Associated with WBSe or the Arm ECW/SW Ratio

To further investigate which metabolites among those altered in the SE group were
associated with WBSe levels or the arm ECW/SW ratio, regression analysis was per-
formed. The only metabolite associated with WBSe levels at 2-weeks was xanthurenic acid
(XA), which showed a negative relationship (Figure 6b, Table S3). Five metabolites were
significantly associated with the arm ECW/SW ratio; positive associations were found
with XA and 24,25-dihydroxyvitamin D3 and negative associations with hydroxypheny-
lacetylglycine, alpha-ribazole, and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate
(Figure 6c–g). Among the differential metabolites found in the SE group as compared to
the CTRL, XA was also found to be related to WBSe levels and the arm ECW/SW ratio.
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Figure 5. Altered metabolites and metabolic pathways. (a) Pathway analysis based on the identified metabolites. (b) Box
plots of the five differential metabolites which are possibly involved in anti-inflammatory mechanisms. Significance of
group comparisons at specific time points is denoted with an asterisk (* p < 0.05 and ** p < 0.01), while raw p-values represent
significant changes compared to baseline in the CTRL group. (c) Altered serum metabolic profiles concerning Se IV injection
in the patients with BCRL. Significantly changed metabolites are represented in bold. Stratified red to blue color shows
baseline-adjusted relative intensity of the SE group compared to the CTRL, from high to low.
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4. Discussion

BCRL is one of the most common complications following breast cancer surgery. The
beneficial effects of Se as a treatment for BCRL have been demonstrated in several clinical
studies, including our previous research [2,24,25,30]. However, the mechanism by which
Se affects BCRL remains poorly understood. Here, we report for the first time altered
metabolites and relevant pathways underlying the effects of Se on patients with BCRL
through serum metabolic profiling analysis.

ECW/TBW has been suggested to be an edema index, representing the fluid volume
status [37]. However, others reported that ECW/TBW showed no differences between
BCRL and non-BCRL patients in either sentinel lymph node biopsy (SLNB) or axillary
lymph node dissection (ALND) groups [38]. It is still unclear whether the ECW/TBW value
represents the severity of lymphedema. In our study, no differences in ECW/TBW, affected
arm ECW/SW, or unaffected arm ECW/SW were previously observed between the SE
and CTRL groups at 2-weeks, despite the conspicuous progression of clinical lymphedema
stage [30]. Here, we found that the arm ECW/SW ratio (affected to unaffected arm) was
significantly reduced in the SE group and was inversely correlated to Se levels in the blood.
In support of our finding, a significant positive correlation between the arm ECW/SW
ratio and the volume ratio of each arm was reported in patients with BCRL [36]. The arm
ECW/SW ratio might be a better indicator than ECW/TBW of the status of patients with
BCRL. Furthermore, we found that the arm ECW/SW ratio was positively correlated with
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the SFBIA ratios. The SFBIA ratios have been used to assess lymphedema symptoms in
several studies [38–40]. A higher SFBIA ratio was associated with greater differences in
arm circumference [39]. Although no impact on SFBIA was detected after Se IV injection in
BCRL patients, the Se injection appeared to improve arm ECW/SW ratio, suggesting that it
may be an effective symptom reliever for BCRL. The close correlation of the arm ECW/SW
ratio with SFBIA ratios may also suggest the potential use of the arm ECW/SW ratio as a
sensitive indicator of lymphedema.

Se-induced changes in metabolite levels may contribute to the alleviation of lym-
phedema. Our metabolome analysis identified a total of 107 metabolites associated with
Se IV injection in patients with BCRL. Among the differential metabolites detected, cor-
ticosterone, LTB4-DMA and PGE3 were elevated in the SE group and may be related to
SE-mediated anti-BCRL effects, partly through anti-inflammatory roles. Se-rich polysac-
charides were reported to increase serum corticosterone levels in a chronic fatigue rat
model [41], consistent with our Se-mediated elevation of corticosterone. In another ro-
dent model, elevation of corticosterone inhibited paw edema and chronic inflammatory
responses [42]. In addition, elevation of LTB4-DMA due to SE might also play a role
in SE-mediated anti-BCRL effects. LTB4-DMA is an antagonist of LTB4 [43], which is
a derivative of LTB synthesized from arachidonic acid. LTB4 is reportedly involved in
the molecular pathogenesis of lymphedema [44]. Antagonizing LTB4 repaired the lymph
system and inflammation in the mouse tail [45]. PGE3, another SE-altered metabolite, has
been proposed to have anti-inflammatory functions [46]. PGE3 is derived from EPA (n-3
fatty acid), while PGE2 is derived from arachidonic acid (n-6 fatty acid), which has been
detected as a causal factor in lymphedema [44].

Moreover, as Se supplementation significantly changed vitamin metabolism, based on
the feces of a mouse model [47], SE injection might improve BCRL by affecting metabolites
involved in vitamin pathways. In particular, vitamin B6 has been suggested to participate
in the delivery of Se from serum to tissues and to influence the biopotency of Se [48].
Among the detected metabolites involved in vitamin pathways, NMN—a precursor to
NAD+ in vitamin B3 metabolism—and types of pyridoxamine in vitamin B6 metabolism
may help treat BCRL due to their anti-inflammatory effects. NMN administration lowered
levels of Il1b, an inflammatory cytokine, in pancreatic islets from a fructose-rich diet-fed
mouse model [49]. In addition, various metabolites involved in vitamin B6 metabolism
suppress inflammatory cytokines including IL-6, TNFα, and IL-1β [50–52]. Thus, NMN
and pyridoxamine, which were elevated in the SE group, may have anti-inflammatory
effects that result in anti-edema responses in BCRL patients.

Our pathway analysis further identified alterations in metabolites with relatively
high relevance to glycerophospholipid metabolism, pyrimidine metabolism, and purine
metabolism. Considering that PC decreased the prevalence and symptoms of lymphedema
in a rat model [53], the elevations in various types of PCs in the SE group might also
contribute to the beneficial effects of Se in patients with BCRL. In a previous study, choline
administration increased the PC/PE ratio, reduced inflammation, and increased the survival
rate in high-fat diet-fed mice [54]. The elevation of PCs seen in the SE group could lead to an
increased ratio of PC/PE and might lower the inflammatory response. UMP, a metabolite
of pyrimidine metabolism, increased in the SE group and has been reported to increase
brain concentrations of CDP-choline (cytidine diphosphate-choline), which is a precursor of
PC [55]. As CDP decreased paw edema in an acute inflammatory pain rat model [56], UMP
seen in the SE group might have elevated CDP-choline, which in turn might participate in
the alleviation of lymphedema. UDP, also altered in the SE group, exhibited a significant
reduction in neurologic abnormalities when applied to rabbits with cold injury-induced
brain edema [57]. Therefore, elevated metabolites involved in pyrimidine metabolism, such
as UMP and dUDP, might have anti-edema effects in patients with BCRL. The decrease of
AMP in the SE group might help treat lymphedema due to its involvement in angiogenesis,
which has been suggested as a cause of lymphedema [58]. Certain concentrations of AMP
have been found to be key activators of AMP-activated protein kinase (AMPK) [59]. One
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study found that promotion of AMPK was significantly associated with increased generation
of VEGF, leading to angiogenesis in vivo [60]. Overall, our findings may provide evidence
that changes in glycerophospholipid metabolism, pyrimidine metabolism, and purine
metabolism partly help to improve lymphedema in patients with BCRL, even though the
effects of Se on these alterations warrant further validation.

Other metabolites in several pathways, including vitamin B12, ascorbate and aldarate,
cysteine and methionine and tryptophan, might also affect BCRL by reducing inflammation.
Vitamin B12 showed a negative relationship with TNF-α, a pro-inflammatory indicator, in
the sera of healthy participants [61]. Alpha-ribazole, which showed a positive relationship
with the arm ECW/SW ratio in our statistical data, is involved in the biosynthetic pathway
of adenosylcobalamin, a coenzyme of vitamin B12 [62]. Thus, elevations in alpha-ribazole
might help to reduce inflammation in BCRL patients. Vitamin C suppresses TNFα-induced
NF-κB activation in vitro [63,64]. In addition, L-gulonolactone has been suggested to
reverse edema in both animals and humans [65,66]. Our analysis also showed a positive
relationship between L-gulonolactone and the arm ECW/SW ratio, indicating that Se’s
anti-edema effect might be related to L-gulonolactone. In addition, SAM, which is involved
in cysteine and methionine metabolism, was also increased in the SE group and has been
shown to decrease the expression levels of inflammatory cytokines, including TNF-α, while
increasing anti-inflammatory cytokines such as IL-10 [67].

Of note, XA might directly relate the changes in WBSe to the clinical status of patients
with BCRL, as it was commonly identified in association with both WBSe and the arm
ECW/SW ratio. Previously, sodium selenite supplemented mice showed the suppressed
generation of immunomodulators such as XA compared with Se-deficient mice [47], im-
plicating the potent impact of Se on the decreased levels of XA detected in our study.
XA is produced upon the degradation of tryptophan, which is activated by indoleamine-
2,3-dioxygenase (IDO) in the kynurenine pathway of tryptophan metabolism [68]. The
activity of IDO and IDO-related metabolism has been suggested to be more active with
inflammation [69]. In addition, higher XA levels were found in the plasma of patients
with type 2 diabetes than in those without diabetes [70]. Thus, WBSe-diminished XA may
have decreased inflammation in our patients, which in turn led to a decrease in the arm
ECW/SW ratio. The serum levels of XA may act as a candidate marker for BCRL, especially
in response to Se injection.

In addition, based on our regression analysis of the arm ECW/SW ratio, BCRL might
be relieved by higher levels of hydroxyphenylacetylglycine and 2-Methyl-3-hydroxy-5-
formylpyridine-4-carboxylate, and lower levels of 24, 25-dihydroxyvitamin D3. 24, 25-
dihydroxyvitamin D3 was shown to inhibit 1, 25-dihydroxyvitamin D3 [71], which de-
creases inflammation by decreasing NF-κB [72].

In conclusion, we explored the possible mechanisms by which Se treats BCRL using a
global metabolomics analysis. Some potential anti-inflammatory benefits of Se IV injection
in BCRL patients are suggested in Figure 7. However, the main limitation of this study
is that we did not seek clinical evidence on the anti-inflammatory effects of Se. Because
this was a secondary analysis, additional research to confirm our findings on the potential
anti-inflammation by Se was not allowed. Therefore, there is a critical need for efforts
toward unveiling the exact mechanism of the anti-inflammatory effects of Se.
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