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BACKGROUND The vascular endothelium is a novel target for the detection, management, and prevention of doxo-

rubicin (DOX)-induced cardiotoxicity.

OBJECTIVES The study aimed to: 1) develop a methodology by computed tomography angiography (CTA) to evaluate

stress-induced changes in epicardial coronary diameter; and 2) apply this to a chronic canine model of DOX-induced

cardiotoxicity to assess vascular toxicity.

METHODS To develop and validate quantitative methods, sequential retrospectively gated coronary CTAs were per-

formed in 16 canines. Coronary diameters were measured at prespecified distances during rest, adenosine (ADE)

(280 mg/kg/min), rest 30 min post-ADE, and dobutamine (DOB) (5 mg/kg/min). A subgroup of 8 canines received weekly

intravenous DOX (1 mg/kg) for 12 to 15 weeks, followed by rest-stress CTA at cumulative doses of w4-mg/kg

(3 to 5 mg/kg), w8-mg/kg (7 to 9 mg/kg), and w12-mg/kg (12 to 15 mg/kg) of DOX. Echocardiograms were performed

at these timepoints to assess left ventricular ejection fraction and global longitudinal strain.

RESULTS Under normal conditions, epicardial coronary arteries reproducibly dilated in response to ADE (left anterior

descending coronary artery [LAD]: 12 � 2%, left circumflex coronary artery [LCx]: 13 � 2%, right coronary artery [RCA]:

14 � 2%) and DOB (LAD: 17 � 3%, LCx: 18 � 2%, RCA: 15 � 3%). With DOX, ADE vasodilator responses were impaired

afterw4-mg/kg (LAD: –3 � 1%, LCx: 0 � 2%, RCA: –5 � 2%) andw8-mg/kg (LAD: –3 � 1%, LCx: 0 � 1%, RCA: –2 � 2%).

The DOB dilation response was preserved at w4-mg/kg of DOX (LAD: 18 � 4%, LCx: 11 � 3%, RCA: 11 � 2%) but tended

to decrease at w8-mg/kg of DOX (LAD: 4 � 2%, LCx: 8 � 3%, RCA: 3 � 2%). A significant left ventricular ejection

fraction reduction was observed only at 12 to 15 mg/kg DOX (baseline: 63 � 2%, 12-mg/kg: 45 � 3%). Global longitudinal

strain was abnormal at w4-mg/kg of DOX (p ¼ 0.011).

CONCLUSIONS CTA can reliably assess epicardial coronary diameter in response to pharmacological stressors,

providing a noninvasive functional index of coronary vasoreactivity. Impaired epicardial vasodilation occurs early in

DOX-induced cardiotoxicity. (J Am Coll Cardiol CardioOnc 2020;2:207–19) © 2020 Published by Elsevier on behalf

of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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E arly screening strategies and thera-
peutic advances have dramatically
reduced cancer-related mortality (1).

However, increased life expectancy of cancer
patients comes at a cost of increased risk for
treatment-related cardiovascular morbidity
and mortality (2). Relevant to this issue,
doxorubicin (DOX) is a frequently used and
effective chemotherapeutic agent but is
associated with cardiotoxicity in treated in-
dividuals (3). DOX-induced cardiotoxicity
usually presents as systolic dysfunction,
which develops in a dose-dependent manner
and can progress to heart failure (4). The
development of cardiotoxicity can necessi-
tate the modification of the anticancer
regimen, which may lead to suboptimal
oncologic treatment. Importantly, DOX-
induced cardiotoxicity can be irreversible,
although recent studies suggest that early
cardiotoxicity detection coupled with
prompt initiation of guideline-directed heart
failure medical therapy can result in im-
provements in left ventricular (LV) systolic function
(5,6).

For screening purposes, current guidelines
recommend serial assessment of LV ejection fraction
(LVEF) by transthoracic echocardiography (TTE) or
cardiac magnetic resonance (7). Notably, a reduction
in LVEF is considered a late finding in DOX-induced
cardiotoxicity, as patients can have histological evi-
dence of myocardial injury on biopsy before reduc-
tion in LVEF (8).

General heart failure guidelines recommend that
coronary artery disease (CAD) should be considered
as a potential etiology in patients with new diagnosis
of impaired LVEF. Coronary computed tomography
angiography (CTA) may be employed to detect and
localize large-vessel coronary obstructions (9).
Indeed, CTA has been shown to be a highly sensitive
and specific tool for detecting CAD in patients with
dilated cardiomyopathy (10,11). CTA may be utilized
in patients with a prior history of chemotherapy and
new onset LV dysfunction to exclude underlying
CAD. Along these lines, a study investigating 80
cancer patients showed that CTA findings altered the
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therapeutic strategy in 52% of patients by aiding in
the decision of withholding, altering, or continuing
oncologic therapy (12). In addition to anatomical in-
formation, CTA can also offer physiological data with
respect to cardiac function and myocardial perfusion.
Although not routinely assessed by CTA, stressor-
induced changes in epicardial coronary diameter
may provide additional information about vascular
reactivity.

Preclinical studies suggest that DOX administra-
tion is associated with microvascular damage by
inducing oxidative stress (13,14) or direct DNA dam-
age in endothelial cells (15). Other studies indicate
that DOX can also interfere with important vasoactive
pathways, such as nitric oxide bioavailability and
signaling (16). Indeed, disruption of endothelial
signaling pathways has been shown to cause func-
tional impairments in the myocardium (17). Along
these lines, targeting endothelial inflammation or
angiogenesis in rodent models of DOX induced-
cardiotoxicity successfully prevented DOX-induced
cardiotoxicity by ameliorating endothelial damage
(18,19). Based on these and other studies, the vascular
endothelium is emerging as a novel target for
improving the detection, management, and preven-
tion of DOX-induced cardiotoxicity (20).

The aims of the present study were 2-fold: 1) to test
whether CTA could provide a reliable, quantitative
assessment of epicardial coronary diameter during
pharmacological stress with adenosine (ADE) and
low-dose dobutamine (DOB); and 2) to apply quanti-
tative serial rest-stress CTA analysis of coronary
vessel reactivity in a chronic canine model of DOX-
induced cardiotoxicity.

METHODS

CANINE EXPERIMENTS. Sixteen retired-breeder pur-
pose-bred female Marshall beagles (weight w10 kg;
Marshall BioResources, North Rose, New York) dogs
were used for this project. All experiments were
performed in accordance with Yale University Insti-
tutional Animal Care and Use Committee standards
and approval, and according to the National Institutes
of Health Guidelines for Care and Use of Laboratory
Animals. All dogs were acclimated to their new
o relationships relevant to the contents of this paper
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FIGURE 1 Study Timeline

A group of canines (n ¼ 8) were administered doxorubicin (DOX) (1 mg/kg) weekly for 12–15 weeks. (A) Serial contrast coronary computed

tomography angiography (CTA) was performed at baseline, and after w4-mg/kg and w8-mg/kg cumulative dose of doxorubicin (DOX), as

indicated by the red arrows. Transthoracic echocardiography (TTE) was performed at baseline, and after w4-, w8- and w12-mg/kg

cumulative DOX doses, as indicated by the blue arrows. (B) The sequence of each rest and pharmacological stress CTA imaging session.

(C) Representative multiplanar reformatted CTA images acquired at REST-1 and after administration of adenosine (ADE).

J A C C : C A R D I O O N C O L O G Y , V O L . 2 , N O . 2 , 2 0 2 0 Feher et al.
J U N E 2 0 2 0 : 2 0 7 – 1 9 CTA Assessment of Coronary Vasoreactivity for the Detection of DOX Cardiotoxicity

209
environment and were fed a standard diet for at least
5 days prior to performing any procedures. Before
each CTA session, dogs were sedated with propofol
(5 to 7.5 mg/kg) via intravenous injection in the ce-
phalic vein, and then were rapidly intubated for me-
chanical ventilation (Venturi, Cardiopulmonary
Corp., Milford, Connecticut) and anesthesia mainte-
nance. Anesthesia was maintained with 1.0% to 2.0%
isoflurane, 55% to 60% nitrous oxide, and 40% to 45%
oxygen. The level of anesthesia was monitored and
adjusted based on heart rate (HR), blink reflex, and
jaw tone. Blood gases, electrolytes, and hematocrit
(VetStat Electrolyte and Blood Gas Analyzer, IDEXX
Laboratories, Westbrook, Maine), as well as expired
CO2, were measured throughout the study, and
ventilator settings were adjusted accordingly to
maintain gases within physiological limits. Cardiac
rhythm and rate, oxygen saturation, and body tem-
perature (rectal temperature probe) were continu-
ously monitored (Philips IntelliVue MP50 monitor,
Philips Healthcare, Andover, Massachusetts).
Following a small femoral cutdown (4 cm), a 5-F
introducer sheath was placed in the femoral artery
for arterial blood sampling and blood pressure mea-
surements. Femoral artery pressures were continu-
ously measured with a fluid-filled catheter (Transpac
IV, ICU Medical, San Clemente, California) connected
to a Bridge Amp (AD Instruments, Sydney, Australia)
that was interfaced with a PowerLab (AD instruments)
data acquisition system. Cardiac rhythm and rate and
pressures were continuously monitored throughout
the experiment with a dedicated workstation and
software package (LabChart 8.0, AD Instruments) that
was also used for subsequent offline data analysis.
Intravenous fluids were administered through ce-
phalic and femoral vein access. Intramuscular Nubain
(0.14 to 0.20 mg/kg, given every 12 h for 72 h) was
used for postoperative analgesia after every inva-
sive procedure.
CANINE MODEL OF DOX-INDUCED CARDIOTOXICITY.

Following baseline imaging, a subgroup of canines
(n ¼ 8) had a vascular access port (Access Technolo-
gies, Albuquerque, New Mexico) placed in the sub-
cutaneous space between the scapulae on the dorsal
midline with the tip of the catheter positioned within
the cavoatrial junction. Following recovery, these
canines were treated with 1-mg/kg DOX (Sagent
Pharmaceuticals, Schaumberg, Illinois) weekly for 12
to 15 weeks via sterile technique (total cumulative
dose of DOX: 260 to 325 mg/m2) as previously
described (21). Complete blood count was assessed
prior to each DOX administration, and DOX dosing
was delayed for absolute neutrophil count
values <1,500. To manage the potential side effects of



FIGURE 2 Plots of Correlation and Agreement Between REST-1 and REST-2 Diameters

(A) Correlation between REST-1 and REST-2 coronary diameters, including all baseline analyzed coronary segments (n ¼ 48 pairs). Please note

that in case of identical diameter values, the data points may overlap. (B) Bland-Altman plot analysis including all baseline REST-1 and

REST-2 coronary diameters (n ¼ 48 pairs). The solid line represents zero, the central dashed line indicates bias, and the 2 outer dashed lines

indicate the 95% limits of agreement. CI ¼ confidence interval; ICC ¼ intraclass correlation coefficient.

Feher et al. J A C C : C A R D I O O N C O L O G Y , V O L . 2 , N O . 2 , 2 0 2 0

CTA Assessment of Coronary Vasoreactivity for the Detection of DOX Cardiotoxicity J U N E 2 0 2 0 : 2 0 7 – 1 9

210
DOX administration, animals were administered daily
prophylactic enrofloxacin (5 mg/kg orally; Bayer An-
imal Health, Leverkusen, Germany) and as needed
ondansetron (0.8 mg/kg orally; Hospira, Lake Forest,
Illinois) for nausea. LV function was measured
serially at w4-mg/kg (3 to 5 mg/kg), w8-mg/kg
(7 to 9 mg/kg), and w12-mg/kg (12 to 15 mg/kg)
cumulative DOX dose by TTE (Philips iE33) in awake
animals. LVEF and intracardiac volumes were calcu-
lated by using the modified biplane Simpson method
using dedicated system software. Wall thickness and
LV diameter was obtained from parasternal long axis
view. In addition, 2-dimensional strain analysis was
performed with previously validated commercial
software (EchoInsight, Research Version 2.2.5,
Epsilon, Weaverville, North Carolina) (22) to derive
global longitudinal strain (GLS). To validate our
model of anthracycline-induced cardiotoxicity and
assess timing of myocardial injury, we performed
histopathological analyses in serial endomyocardial
biopsies and terminal autopsy specimens. Accord-
ingly, in a subset of DOX-treated dogs (n ¼ 4), LV
endomyocardial biopsies were collected under fluo-
roscopic guidance at w4- and w8-mg/kg cumulative
DOX doses using a bioptome (Argon Medical, Frisco,
Texas) guided through a long guide inserted via the
right femoral artery access. At the end of the last
imaging session, animals were euthanized under
deep anesthesia (5% isoflurane) via intravenous in-
jection of saturated potassium chloride following a
heparin bolus (20,000 U). After the confirmation of
death, tissue specimens were collected from the LV
myocardium. The study timeline is depicted
in Figure 1A.

CORONARY CTA. Sequential CTAs were performed
under general anesthesia using a hybrid 64-slice
single-photon emission CT/CT (Discovery NM570c,
GE Healthcare, Milwaukee, Wisconsin) with detector
collimation of 64 � 0.6 mm. In the DOX treatment
group, CTA was performed 4 to 6 days after DOX
dosing. Retrospectively gated CTAs (120 kV, 350 mA)
were acquired after iodinated contrast administration
(iohexol, 350 mg/ml, average: 13 ml, 2 ml/s) without
intravenous nitroglycerin. Sequential CTAs were
performed at rest (REST-1), during ADE infusion
(280 mg/kg/min), repeated at rest 30 min after
discontinuation of ADE (REST-2), and during low-
dose DOB infusion (5 mg/kg/min) (Figure 1B). Before
DOB studies, a ramping protocol was used to achieve
target DOB dosing (DOB infusion was started at 1.25
mg/kg/min, up-titrated initially to 2.5 mg/kg/min after
5 min, and then up-titrated to the final 5 mg/kg/min
after additional 5 min). Images were reconstructed at
70% to 80% of the cardiac cycle using filtered back
projection and a standard kernel (GE Healthcare)
(Figure 1C). Cross-sectional proximal luminal di-
ameters were measured at preset distances (3 to 6 mm
depending on coronary anatomy) from vessel origins
using reformatted 0.6-mm-thick cross-sectional



FIGURE 3 Hemodynamic Analysis

Change in (A) mean arterial pressure (MAP) and (B) heart rate (HR) compared with resting values in response to adenosine (ADE) and

dobutamine (DOB). The boxes represent the 25th to 75th percentiles, the midlines represent the median values, and the whiskers indicate

minimal and maximal values, n ¼ 8 for each group.
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multiplanar images perpendicular to the vessel
centerline using system software (GE AW Volume-
Share 5 software, GE Healthcare).

HISTOPATHOLOGICAL ANALYSES OF MYOCARDIUM.

LV cardiac biopsies and sections of heart following
euthanasia were divided and immersion-fixed for
histology in 10% neutral buffered formalin. Paraffin-
embedded sections (3 to 5 mm) were stained with
hematoxylin and eosin by routine methods
(Comparative Pathology Research, Comparative
Medicine, School of Medicine, Yale University).
Hematoxylin and eosin–stained sections were evalu-
ated for the presence and severity of myocardial
toxicity by a veterinarian (C.J.B.) trained in veterinary
pathology with extensive expertise in canine pathol-
ogy, blinded to the experimental time point. LV sec-
tions were scored by previously established 5-point
semiquantitative analysis system (23) modified based
on prior DOX-induced cardiotoxicity rodent studies
(24). LV sections were scored by individual parame-
ters: myocardial inflammation and cardiac myocyte:
vacuolation, edema, sarcoplasmic fragmentation
or loss of striation, degeneration, hypereosinophilic,
and nuclear hypertrophy and nuclear pyknosis. A
summed myocardial toxicity severity score was
calculated by summing the individual scores.

STATISTICAL ANALYSIS. Statistical analyses were
performed with GraphPad Prism Software 7 (Graph-
Pad Software, San Diego, California) and IBM SPSS
Statistics (version 1.0.0.1327, Armonk, New York).
Normality of the data was assessed by using the
D’Agostino-Pearson omnibus normality test. Group
means were compared using 1- or 2-way analysis of
variance using repeated measures when appropriate.
Post hoc analyses were performed with a Sidak mul-
tiple comparisons test. The intraclass correlation co-
efficient with 95% confidence interval was calculated,
and Bland-Altman plot analysis was performed to
evaluate the relationship and agreement between
REST-1 and REST-2 diameters (16 animals � 3 vascular
segments ¼ 48 data point pairs). The coronary mea-
surements were analyzed by comparison with their
respective baselines; for example, ADE diameters
were compared with REST-1 diameters and DOB di-
ameters were compared with REST-2 diameters. All
data are expressed as mean � SEM. The significance
level was set a priori at p < 0.05.

RESULTS

BASELINE STUDIES UNDER NORMAL CONDITIONS.

In 16 canines, under normal conditions, ADE
decreased mean arterial pressure (MAP) (–27 �
3 mm Hg) with no significant change in HR (1 � 5
beats/min), while DOB increased MAP (53 � 6 mm Hg)
and decreased HR (–13 � 7 beats/min). All major
epicardial coronary arteries dilated significantly in
response to ADE (left anterior descending coronary
artery [LAD]: 12 � 2%, left circumflex coronary artery
[LCx]: 13 � 2%, right coronary artery [RCA]: 14 � 2%)
(Supplemental Table 1). Similarly, DOB induced sig-
nificant coronary dilation in all vascular segments
(LAD: 17 � 3%, LCx: 18 � 2%, RCA: 15 � 3%). Impor-
tantly, rest diameter measurements were highly
reproducible between rest studies (LAD: 1 � 2%, LCx:
1 � 2%, RCA: 1 � 2%), as demonstrated by a good
correlation between REST-1 and REST-2 diameters

https://doi.org/10.1016/j.jaccao.2020.05.007


FIGURE 4 Serial Echocardiographic Analysis

(A) End-diastolic volume (EDV) and end-systolic volume (ESV), (B) intraventricular septum diameter (IVSd) and left ventricular posterior wall

diameter (LVPWd), (C) end-diastolic left ventricular internal diameter (LVIDd), (D) left ventricular ejection fraction (EF), and (E) global

longitudinal strain (GLS) were assessed by transthoracic echocardiography in canines undergoing doxorubicin (DOX) therapy (n ¼ 8). Asterisks

indicate significant change compared with baseline measurements.
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(intraclass correlation coefficient: 0.86; 95% confi-
dence interval: 0.75 to 0.92; p < 0.001) (Figure 2A).
Bland-Altman statistics showed no significant bias
and good agreement between REST-1 and REST-2
diameter measurements (bias: 0.02 mm; 95% limits
of agreement: –0.17 to þ0.22 mm) (Figure 2B).

DOX-INDUCED CARDIOTOXICITY. Hemodynamics . In 8
canines, ADE and DOB elicited similar hemodynamic
responses as were identified in control experiments,
and these responses were not significantly influenced
by DOX over time (Figure 3, Supplemental Table 2).

Echocard iography . End-systolic volume was
significantly increased at w12-mg/kg DOX (Figure 4A).
LVEF was preserved until cumulative dosing of
w8 mg/kg of DOX therapy; thereafter, LVEF declined
precipitously after higher doses were administered
(Figure 4D). However, GLS was significantly reduced
after w4-mg/kg cumulative DOX therapy (p ¼ 0.011)
(Figure 4E).
Histopathology . Average severity of myocardial
injury scores and histopathology for LV biopsies
taken at w4-mg/kg DOX and w8-mg/kg DOX and at
terminal necropsy showed the expected progressive
increase in myocardial damage over time reflected by
representative hematoxylin and eosin photomicro-
graphs for each time point (Figure 5).
Vascular react iv i ty on CTA. Similar to GLS, ADE
vasodilator responses were impaired as compared
with REST-1, after only w4-mg/kg cumulative dose of

https://doi.org/10.1016/j.jaccao.2020.05.007
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DOX (LAD: –3 � 1%, LCx: 0 � 2%, RCA: –5 � 2%)
(Figure 6, Supplemental Table 3). In contrast, DOB-
induced responses remained preserved, as
compared with REST-2 (LAD: 18 � 4%, LCx: 11 � 3%,
RCA: 11 � 2%) at this time point (Figure 6,
Supplemental Table 3). At a cumulative DOX dose of
w8 mg/kg, ADE vasodilator responses remained
impaired (LAD: –3 � 1%, LCx: 0 � 1%, RCA: –2 � 2%),
and DOB dilation began to decrease (LAD: 4 � 2%,
LCx: 8 � 3%, RCA: 3 � 2%). At the terminal time point
(12 to 15 weeks), we were able to assess coronary
vasoreactivity in only 4 dogs due to hemodynamic
instability related to DOX-induced cardiotoxicity. In
these 4 canines, both ADE-induced (LAD: –3 � 2%,
LCx: –1 � 1%, RCA: –2 � 1%) and DOB-induced (LAD: 1
� 2%, LCx: 1 � 1%, RCA: 1 � 1%) responses were
impaired.

DISCUSSION

This study used a novel CT methodology to demon-
strate impaired ADE- and DOB-induced coronary
vasoreactivity in a chronic large animal model of
DOX-induced cardiotoxicity. We demonstrate that
noninvasive coronary CTA can provide a reliable
assessment of epicardial coronary diameters during
ADE- and low-dose DOB-induced coronary dilation,
thus providing additional functional information
regarding coronary vasoreactivity to be derived from
noninvasive contrast CT angiography. In addition,
the application of this method in the setting of pro-
gressive DOX chemotherapy administration indicates
that an impairment in ADE-induced vasodilator re-
sponses occur early in the progression of
anthracycline-induced cardiotoxicity (Central
Illustration).

ADE promotes vasodilation in coronary microvas-
cular beds by the activation of vascular smooth
muscle A2 receptors. This arteriolar and pre-arteriolar
vasodilation causes a reduction in vascular resis-
tance, which in turn increases blood flow in larger
vessels and elicits endothelial-dependent flow-
mediated vasodilation in the epicardial vessels (25).
On the other hand, DOB-induced vasodilation is
thought to be a net effect of multiple vasodilator
forces that include the stimulation of vascular b2-
adrenoreceptors leading to direct epicardial vasodi-
lation and the release of vasodilatory metabolites
because of greater inotropy or chronotropy of car-
diomyocytes secondary to b1-adrenoreceptor stimu-
lation (26,27). In addition, DOB has been described to
have a1-adrenoreceptor agonist effects (27). Some
DOB metabolites can also exert significant a1-adre-
noreceptor antagonist effects, which may contribute
to coronary vasodilation (27). These presumed
mechanisms are summarized in Figure 7 and dis-
cussed in more detail subsequently.

In our studies for methodological development
and assessment of reproducibility, we were able to
detect significant epicardial coronary dilation after
both ADE and DOB administration. In line with these
findings, a previous study employing quantitative
coronary angiography detected similar magnitudes
of epicardial coronary vasodilation in response to
DOB (19 � 3% in normal and 8 � 2% in mildly
atherosclerotic epicardial segments) (28). Notably,
canines usually have left-dominant coronary circu-
lation, which may explain the relatively smaller
diameter changes of the RCA in response to phar-
macological stress compared with left-sided epicar-
dial coronary diameters.

Quantitative CTA has been applied in clinical
studies to improve the prediction of functionally
significant coronary lesions in patients with sus-
pected CAD (29). Prior studies have shown that the
diagnostic performance of CTA can be greatly
improved with incorporation of functional assess-
ment, such as using computational modeling for the
calculation of CT fractional flow reserve (30). In the
current project, we applied a unique strategy for
functional testing of coronary vasomotor function by
utilizing coronary CTA for the quantitative measure-
ment of epicardial coronary vasodilation in response
to commonly used pharmacological stress agents.

There has been growing emphasis on identifying
functional, molecular, and imaging biomarkers of
cardiotoxicity that either precede or predict an
impairment in LVEF. Measurement of GLS by
2-dimensional TTE has been proposed for this pur-
pose (31,32). Along these lines, we detected reduced
GLS at an early time point in our chronic canine
model of DOX-induced cardiotoxicity. A good corre-
lation between myocardial strain and coronary flow
reserve has been demonstrated in patients presenting
with acute myocardial infarction (33), and changes in
coronary flow reserve have been shown to have a
significant relationship with improvement in strain
following percutaneous coronary intervention (34).
Whether there is a temporal or causal relationship
between myocardial strain and coronary vasomotor
responses has yet to be elucidated. Also, the potential
additive (or synergistic) value of CT imaging of vas-
oreactivity with GLS imaging is unable to be fully
realized in this study, given the small sample size, but
is indeed worth further study. Beyond GLS, other
echocardiographic indices, such as indices of diastolic
dysfunction, have been shown to precede declines in
systolic function in some studies, although

https://doi.org/10.1016/j.jaccao.2020.05.007
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FIGURE 5 Histology Assessment of Myocardial Biopsy and Autopsy Specimens

(Top) Representative hematoxylin and eosin photomicrographs in a canine model of chronic DOX cardiotoxicity show the average severity of

myocardial injury increases with dose over time within the left ventricle. Biopsies collected at w4 mg/kg and w8 mg/kg and the terminal

time point show scattered shrunken (gray arrowhead) and hypertrophied (black arrows) tissue at each time point; however, cardiomyocyte

vacuolation (gray arrows) and hypereosinophilic cytoplasm (black arrows) are common at the terminal necropsy time point. (Bottom)

Myocardial toxicity severity score in biopsy specimens and terminal autopsy samples with different cumulative doses of doxorubicin.
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FIGURE 6 Rest-Stress Computed Tomography Angiography Analysis

Coronary diameters (n ¼ 8 in each group) in the left anterior descending coronary artery (LAD), left circumflex coronary artery (LCx), and right coronary artery (RCA) at

baseline and after w4 mg/kg and w8 mg/kg of cumulative intravenous doxorubicin (DOX) treatment. Coronary diameters were assessed at rest (REST-1), in response

to adenosine (ADE), at rest 30 min after discontinuation of ADE (REST-2), and during dobutamine (DOB) infusion.
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reproducibility can limit the routine use of these
indices for clinical decision making (35). Cardiac
magnetic resonance imaging has also been tested in
animal models (36,37), and T2-weighted imaging to
detect edema and T1-weighted imaging to identify
early fibrosis have been applied to patients receiving
anthracyclines (38), but results have been mixed. In
addition, several nuclear imaging approaches have
shown promise in preclinical and small clinical
studies, such as tracers targeting apoptosis (39),
reactive oxygen species production (24), altered fatty
acid oxidation (40), and altered sympathetic inner-
vation (41), but these findings have yet to be
confirmed in larger clinical studies.

To our knowledge, our study is the first to use a
CTA approach for the early detection of DOX-induced
cardiotoxicity. A prior small study that retrospec-
tively investigated the clinical value of CTAs in cancer
patients found that the imaging results influenced
therapeutic management decision making in more
than one-half of the patients studied (12). This study
did not report on prior anthracycline use and did not
comment on the utility of CTA for the early detection
of DOX-induced cardiotoxicity. Our results extend
these findings and indicate that in addition to
excluding CAD, contrast-enhanced CT offers simul-
taneous information on coronary vasoreactivity,
which may be used for the assessment of DOX-
associated micro- and macrovascular injury and car-
diotoxicity. Notably, the use of newer-generation CT
cameras coupled with novel software can be used to
measure other anatomical and physiological metrics,
such as atrial and LV dimensions or volumes, LVEF,
LV strain, and myocardial perfusion. These may also
aide in clinical decision making in the context of
DOX-related cardiotoxicity and in other cardiac
pathologies.

Our results indicate an early chemotherapy-
induced impairment in epicardial vasodilation that
precedes the development of a significant decline in
LVEF and substantial histopathological changes.
Limited evidence suggests that DOX treatment can
lead to a reduction in coronary blood flow; however,
it is unclear whether this is a direct toxic effect on
vascular endothelium or secondary to myocardial
injury (42). In line with our observation, a recently
published study found a modest but significant
reduction in ADE coronary flow reserve as assessed by
Rubidium-82 positron emission tomography in lym-
phoma patients shortly after DOX exposure (43).

In our experiments, the DOX-induced reduction in
epicardial vasodilator responses was more apparent
with ADE administration. The differential timing of
impairment in vasodilator responses for ADE and DOB
might provide some insight into the mechanism of
DOX-induced impairment in epicardial vasodilation.
Specifically, it is established that ADE-induced
epicardial coronary responses rely on flow-mediated
vasodilation, which is dependent on endothelial ni-
tric oxide secretion that result from increases in flow-
mediated shear stress (25). In contrast, DOB-induced
vasodilation is, at least in part, achieved by direct



CENTRAL ILLUSTRATION Impaired Vasoreactivity in DOX-Induced Cardiotoxicity

Feher, A. et al. J Am Coll Cardiol CardioOnc. 2020;2(2):207–19.

This study used a novel computed tomography (CT) methodology to demonstrate impaired adenosine (ADE)- and dobutamine (DOB)-induced coronary vasoreactivity

in a large animal model of chronic doxorubicin (DOX)-induced cardiotoxicity. Left ventricular ejection fraction (LVEF) was not reduced until a cumulative DOX dose of

12 to 15 mg/kg was administered. Impairment in ADE-induced vasodilator responses occurred early in the progression of DOX-induced cardiotoxicity similar to

impairment in global longitudinal strain (GLS). 2D ¼ 2-dimensional; TTE ¼ transthoracic echocardiography.
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stimulation of myocardial and vascular b-adrenergic
receptors (Figure 7) (26). DOX has been associated
with a reduction in nitric oxide production in both
animal models and human studies, resulting from
endothelial nitric oxide synthase uncoupling (44–47).
In addition, functional measures of endothelial
dysfunction have been detected in childhood cancer
survivors when compared with control subjects,
including reduced flow-mediated brachial artery
vasodilation, and increased carotid or femoral artery
intima-media thickness (48,49). DOX has also been
reported to diminish the binding affinity of agonists
to the myocardial beta-receptors, which can poten-
tially contribute to reduced vasodilator response to
DOB (50). Therefore, our results may indicate the
susceptibility of the endothelium to DOX that results
in an early impairment in endothelium-dependent
coronary vasodilation. However, this hypothesis
needs to be tested in an experimental setting. As of
now, it is unclear whether the impaired coronary
vasodilation is only an indicator of cardiotoxicity or
actively participates in the pathogenesis of DOX-
induced cardiotoxicity.

By providing information about impaired coronary
vasoreactivity, our novel method might complement
other methods for the early identification of DOX-
induced cardiotoxicity. Future preclinical studies
with more frequent sampling during the early phases
of DOX may reveal the specific timing of impairment
in coronary vasoreactivity. The clinical safety of CT



FIGURE 7 Schematic Representation of ADE and DOB-Induced Epicardial Vasodilation

Blue coloring indicates primarily endothelial-mediated processes, green coloring primarily smooth muscle–mediated processes, and brown

coloring primarily cardiomyocyte-mediated processes. A2 ¼ adenosine receptor 2; ADE¼ adenosine; DOB ¼ dobutamine; DOX ¼ doxorubicin;

eNOS ¼ endothelial nitric oxide synthase; Gq ¼ G protein q; Gs ¼ G protein s; NO ¼ nitric oxide; SMC ¼ smooth muscle cell.
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myocardial perfusion imaging has been well docu-
mented in the literature (51); however, prospective
clinical studies are warranted to: 1) demonstrate the
reproducibility of stress-induced coronary diameter
measurements in clinical practice; 2) test whether
coronary vasoreactivity is indeed an early indepen-
dent predictor of DOX-induced cardiotoxicity; and 3)
to assess whether it provides incremental value in
addition to other traditionally used markers of DOX
cardiotoxicity.
STUDY LIMITATIONS. The results of this study
should be considered in the context of its limitations.
First, routine clinical protocols often include nitro-
glycerin administration, which promotes vasodila-
tion. Sublingual nitroglycerin administration has
been shown to be associated with better image qual-
ity, improved diagnostic accuracy, and improved
evaluation of coronary segments (52). However, our
approach prohibits the administration of nitroglyc-
erin, as it would eliminate the vasodilator reserve
required to assess ADE or DOB vasoreactivity. Per-
forming contrast CTA pre- and post-nitroglycerin
administration may potentially provide further
insight regarding the direct toxic effects of DOX on
epicardial vessel reactivity. Second, the animals in
our experiments were under general anesthesia,
which may affect coronary vascular diameters and
vasoreactivity. Third, the lack of control animals un-
dergoing study procedures without DOX administra-
tion is a limitation of our study. However, during our
analysis, we compared vasoreactivity results in DOX-
treated animals with vasoreactivity measurements
before and after DOX administration and used these
baseline measurements as their own controls. Fourth,
our approach requires both baseline and stress im-
aging, as well as serial assessments, thus leading to
increased contrast administration and radiation
exposure. Radiation exposure can be significantly
decreased with reduced tube potential, prospectively
gated electrocardiogram-triggered axial scan pro-
tocols, and iterative image reconstruction strategies,
but radiation exposure with CT still remains a sig-
nificant concern. Of note, this limitation is less rele-
vant in preclinical experimental settings. Last, the
use of stressor agents might lead to increased HR,
which might compromise image quality. However, we
analyzed the proximal coronary segments for
detecting vasoreactivity in our experiments, and



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: The

vascular endothelium is emerging as a novel target for

improving the detection, management, and preven-

tion of DOX-induced cardiotoxicity. Noninvasive cor-

onary CTA can provide a reliable assessment of

epicardial coronary dilation during ADE and low-dose

DOB. In our chronic canine model of DOX cardiotox-

icity, we observed an early impairment in ADE-

induced vasodilation that occurred prior to an

impairment in LVEF. Our findings suggest that ab-

normalities in coronary vasoreactivity occur with DOX

cardiotoxicity.

TRANSLATIONAL OUTLOOK: CTA imaging of

vasoreactivity may be another sensitive tool for the

early detection of DOX-induced cardiotoxicity. Ex-

periments in our large animal model suggest that CTA

can provide reliable assessment of epicardial coronary

vasoactive responses, and this can potentially be

useful in the early diagnosis of DOX cardiotoxicity.

The clinical safety of CT myocardial perfusion imaging

has been well documented in the literature; however,

prospective clinical studies are needed to: 1) demon-

strate the reproducibility of stress-induced coronary

diameter measurements in clinical practice; 2) test

whether coronary vasoreactivity is indeed an early

independent predictor of DOX cardiotoxicity; and 3)

assess whether it provides incremental value to other

traditionally used markers of DOX cardiotoxicity.
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these segments remained interpretable even at
higher HRs.

CONCLUSIONS

Our results indicate that CTA can provide reliable
assessment of epicardial coronary vasoactive re-
sponses to commonly used pharmacological stress
agents. Our data also suggest that DOX is associated
with an early impairment in ADE-induced vasodila-
tion that occurs well before an impairment in LVEF.
Larger clinical studies are needed to confirm our
findings. In conclusion, studying coronary vascular
reactivity might provide additional mechanistic
insight and predictive information regarding
anthracycline-induced cardiotoxicity.
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