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Abstract: Ultra-sensitive and responsive humidity sensors were fabricated by deposition of graphene
oxide (GO) on laser-induced graphene (LIG) electrodes fabricated by a low-cost visible laser scribing
tool. The effects of GO layer thickness and electrode geometry were investigated. Sensors comprising
0.33 mg/mL GO drop-deposited on spiral LIG electrodes exhibited high sensitivity up to 1800 pF/%
RH at 22 ◦C, which is higher than previously reported LIG/GO sensors. The high performance was
ascribed to the high density of the hydroxyl groups of GO, promoted by post-synthesis sonication
treatment, resulting in high water physisorption rates. As a result, the sensors also displayed good
stability and short response/recovery times across a wide tested range of 0–97% RH. The fabricated
sensors were benchmarked against commercial humidity sensors and displayed comparable per-
formance and stability. Finally, the sensors were integrated with a near-field communication tag
to function as a wireless, battery-less humidity sensor platform for easy read-out of environmental
humidity values using smartphones.

Keywords: LIG; graphene oxide; humidity; NFC integration; ultrasensitive

1. Introduction

Humidity sensors play an important role in many industrial and day-to-day life appli-
cations including environmental monitoring, smart agriculture/home, health, consumer
electronics, and the IoT [1–4]. Up to now, many different transduction methods have
been explored, including capacitance [5], resistance [6], optical fibers [7], field effect tran-
sistors [8], and quartz crystal microbalance [9]. Many materials have been explored as
humidity sensing layers to develop devices displaying high sensitivity, a good linear range,
a fast response, and fast recovery times, such as carbon nanotubes [10], metal oxides [11],
polymers [12], and graphene-like materials [13]. Among graphene-like materials, graphene
oxide (GO) has been one of the most investigated materials. GO exhibits excellent humidity
sensing capabilities [14–17]. The uniqueness of GO as a humidity sensing layer is related to
its morphology and surface chemistry. The surface is characterized by basal planes and
edges rich in oxygen functional groups (including hydroxyl, epoxy, and carboxylic acid
groups) [18], which enhance GO’s hydrophilic properties, responsible for its sensitivity to
water molecules. Exploiting these properties, Bi et al. fabricated ultrahigh sensitivity and
fast response time humidity sensors in the range of 15–95% RH. The sensors were obtained
by drop-casting GO on interdigitated electrodes and exhibited a capacitive response up to
37,800%, >10-times higher than that of conventional sensors [19]. Zhang et al. deposited a
graphene oxide/poly (diallyldimethylammonium chloride) (GO/PDDA) composite film
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on spiral electrodes by a layer-by-layer technique and obtained an unprecedented response
of up to 265,640% in the range of 11–97% RH. The associated ultrafast response and re-
covery times were exploited to demonstrate human breath monitoring capabilities [20].
Other ultrafast capacitive sensors were fabricated by spin coating thin layers of GO onto Al
interdigitated electrodes [21]. More recently, in an attempt to reduce the fabrication cost
of devices and to increase the versatility of use, novel ultrasensitive devices were realized
by the deposition of thin GO layers on Ag electrodes fabricated by screen printing [22] or
inkjet printing [23]. In general, during the design of humidity sensors, particular attention
is dedicated to the sensing layer and its performance in terms of sensitivity and response
time. However, as demonstrated by the latter examples, the incorporation of low-cost
printing methods for electrode fabrication enables the creation of lower-cost devices. Addi-
tionally, these methods can incorporate flexible polymer substrates. This in turn enables
the generation of flexible devices with more versatile applications and IoT integration.

In recent years, direct laser writing methods have been extensively used for the fabri-
cation of graphene-like materials on flexible polymer substrates [24,25]. In this approach,
laser irradiation (most commonly, high-power CO2 lasers) of polyimide films leads to
the formation of an electrically conductive laser-induced graphene (LIG) material [26–28].
Patterning of the desired LIG structures is easily performed on a range of flexible substrates,
without the use of chemicals or masks and at ambient temperature/atmospheric conditions.
Direct laser writing methods are particularly suitable for the fabrication of low-cost sensing
platforms. The LIG formation is ascribed to the carbonization of polyimide in the presence
of atmospheric oxygen, leading to thermal conversion of sp3 carbon atoms into sp2 carbon
atoms and the formation of conductive and porous structures [24,25]. The LIG morphology
is characterized by a high surface area, high porosity, and a high density of edge planes.
These qualities make LIG particularly suitable to sensing and energy storage applications.
Since its discovery in 2014, LIG structures have been extensively used as electrodes for
energy storage applications [29,30] and for on-chip electrochemical sensors [31] and biosen-
sors [32] for environmental [33,34] and human health applications [35]. Recently, Zhu
et al. combined GO and interdigitated LIG electrodes for humidity sensing. The range of
11–97% RH was investigated. The effects of GO layer thickness and electrode spacing were
explored, and monitoring of breathing and non-contact fingertip proximity was demon-
strated [36]. In another recent example, Kulyk et al. used LIG produced by UV irradiation
of filter paper as a humidity sensor, showing sensitivities up to 1.3 × 10−3% RH [37].

In this work, we fabricated ultrasensitive humidity sensors by the combination of
spiral LIG electrodes and GO layers. A 450 nm laser was used. The sensors displayed a
wide operating range (0–97% RH), excellent stability, and short response/recovery times.
Sensor functionality was studied in the temperature range of 19 ◦C–27 ◦C. The effect of
GO thickness was investigated, as well and the difference between spiral and interdigi-
tated electrode geometries. In its optimized conditions, the sensor exhibited sensitivity of
1800 pF/% RH at 22 ◦C and response/recovery times shorter than 16 s. The sensor was
also integrated into a near-field communication tag to function as a wireless, battery-less
humidity sensor that could read environmental humidity values using a smartphone.

2. Experimental
2.1. Materials

Sodium hydroxide (NaOH), lithium chloride (LiCl), potassium acetate (CH3COOK),
magnesium chloride (MgCl2), potassium carbonate (K2CO3), magnesium nitrate (Mg(NO3)2),
copper chloride (CuCl2), sodium chloride (NaCl), potassium chloride (KCl), and potassium
sulphate (K2SO4) were purchased from SIGMA ALDRICH and used directly without any
further modification. Polyimide films with a thickness of 80 µm were purchased from Radionics
and used without further treatment. All solutions were prepared using deionized Milli-Q
water (DIW, resistivity 18.2 MΩ cm).
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2.2. Fabrication of Humidity Sensors

Laser-induced graphene electrodes were fabricated by direct laser writing of polyimide
films, as previously described [38]. Briefly, polyimide films were “written” with a KKmoon
Compact Automatic Desktop Laser Engraving Machine equipped with a laser with 3 W
power and an illumination wavelength of 450 nm. A glass slide was used as a rigid
substrate to support the polyimide tape, which was irradiated at 30% laser power to obtain
the designed spiral electrode structures by laser raster scanning. The obtained structures
were washed with acetone, followed by isopropanol and DIW water before use to remove
any residues from the laser engraving process. Two spiral-like structures were used as
interdigitated electrodes. The overall pattern had a dimension of 150 mm2 (see Scheme 1a
and Figure S1 for further details). Copper wires and Ag paints were used to externally
connect the sensors.
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Scheme 1. (a) Schematic illustration of the humidity sensor fabrication process; experimental setups of
(b) the saturated aqueous solutions method used for impedance and dynamic response measurements
and (c) the gas flow system used for stability and repetitive measurements.

The humidity sensing layers were created by drop-casting of 150 µL GO aqueous
dispersions of different concentrations (0.33 mg/mL, 0.67 mg/mL, 1.33 mg/mL, and
2 mg/mL) on the LIG electrodes. GO was synthesized based on a two-step oxidation
process, as previously reported [39], where single and multiples layers of GO were collected
in DIW by a combination of ultrasonication and centrifugation steps. After these steps,
an aqueous dispersion of GO was prepared at 2 mg/mL, which was further treated by
sonication for 6 h and then diluted with the appropriate amount of DIW to form the above
dispersions. Before deposition, the electrodes were immersed in DIW for 1 min to remove
the air bubbles from their structure. The LIG/GO sensors were dried in a N2 atmosphere
overnight before testing.

2.3. Materials’ Characterization

The morphological characterization of the obtained sensors was performed by a cold-
cathode field-emission scanning electron microscope (SEM, JSM-7500F, JEOL U.K., Ltd.,
Hertfordshire, UK.) operating at a 5 kV acceleration voltage. AFM images of the sensor
surface were collected by contact mode (Bruker, Dimension-Icon, MA, USA.). Images were
obtained using ScanAsyst-Air probes (silicon tips on silicon nitride cantilever, Bruker) with
a 0.4 N m−1 nominal spring constant of the cantilever. Raman Spectra were taken with
at 514.5 nm (2.41 eV) laser using a MicroRaman (InVia Reflex, Renishaw, Gloucestershire,
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UK.) setup. The laser power was kept below 1.5 mW on the sample to avoid laser-induced
local heating, while an Olympus MPLN100x objective (NA = 0.90) was used to focus the
beam on the samples. The XPS measurements were carried out in an ultra-high vacuum
system (UHV), which consists of a fast entry specimen assembly, a sample preparation, and
an analysis chamber equipped with a dual anode (Al/Mg) X-ray gun and an LH10 electron
analyzer. The base pressure in both chambers was 1 × 10−9 mbar. The unmonochromatized
MgKα line at 1253.6 eV and an analyzer pass energy of 36 eV, giving a full width at half
maximum (FWHM) of 0.9 eV for the Au 4f7/2 peak, were used in all XPS measurements.
The XPS core level spectra were analyzed using a fitting routine, which can decompose each
spectrum into individual mixed Gaussian-Lorentzian peaks after a Shirley background
subtraction. The sample was mounted onto a Si substrate with dimensions 1.5 × 1.5 cm2.
Finally, the capacitance and impedance of the sensors were recorded by a computer-
controlled LCR (E4980A, Agilent, CA, USA).

2.4. Humidity Sensors’ Characterization

Scheme 1 outlines the method for the sensor fabrication and the preparation of the
humidified environments. For the impedance and dynamic response measurements of
the LIG/GO sensors, 0–97% RH test environments were created using different saturated
salt solutions and N2 flow, which provided a stable and controlled RH level at their
equilibrium states in a closed container (see Scheme 1 for more details). The experiments
were performed at room temperature. Saturated solutions of NaOH, LiCl, CH3COOK,
MgCl2, K2CO3, Mg(NO3)2, CuCl2, NaCl, KCl, and K2SO4 in a closed vessel were used to
obtain approximately 7.5%, 11%, 23%, 33%, 43%, 53%, 67%, 75%, 85%, and 97% RH levels,
respectively (see Scheme 1b). A 0% RH was obtained in a N2 flow chamber. The capacitance
response and the impedance spectra of the sensors were measured using an Agilent E4980A
LCR meter, which was controlled by a PC through an RS-232 interface. The response of
the sensor as a function of RH was performed by exposing the sensor to the inside of
the closed vessels with the different RH levels for the intake/outtake of water molecules.
The figures of merit used for the evaluation of sensor performance were the normalized
response (R) and sensitivity (S), determined by R = C/C0 = (Cx − C0)/C0 × 100% and
S = (Cx − C0)/(RHx − RH0), where Cx and C0 are the capacitance of the sensor at the
x% and 0% RH levels, respectively. For stability and repetitive measurements, a custom-
made relative humidity chamber was designed for rapid switching between high and low
relative humidity, at a constant temperature of 22 ◦C. This gas flow system is displayed in
Scheme 1c. Two separate controlled N2 flows were used for the system. The humidified
air was created using two bubble systems at 50 ◦C and 22 ◦C, respectively, while for the
dry air, the N2 flow was used. Finally, the different RH levels were achieved by different
mixing ratios of the two flows. In addition, a commercial humidity and temperature sensor,
AM2302, was used to monitor and record the humidity and temperature in the chamber,
which was controlled by an Arduino UNO.

3. Results and Discussion

Humidity sensors were fabricated by drop-casting GO aqueous solutions of different
concentrations on LIG spiral electrodes fabricated by direct laser writing of polyimide,
as illustrated in Scheme 1a. The full characterization of the LIG material produced by
450 nm laser irradiation, comprising Raman and XPS spectra, was reported in [38] and
confirmed the graphene-like structure of the material formed. The LIG sheet resistance
was approximately 16 Ω/sq. The size details of the fabricated LIG spiral and interdigitated
geometries are reported in Figure S1. The full characterization of the GO sensor component
is presented in Figure S2. SEM and AFM measurements show the small lateral size (<7 µm)
of the GO flakes, while Raman and XPS show the presence of a large number of defects
in the lattice [40–42], with an O/C ratio of 0.6. In addition, compared to the previous
work [39], a remarkable increase of the hydroxyl XPS peak (287 eV) was observed, as
a result of GO post-synthesis sonication treatment. The humidity sensing performance
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(impedance and dynamic response measurements) was characterized by exposure of the
sensors to saturated environments of different RH (see Scheme 1b); stability and repetitive
measurements were performed with the use of a custom-made relative humidity chamber,
as illustrated in Scheme 1c.

Figure 1a shows an SEM image of a bare LIG electrode, displaying the characteristic
high surface area and porous morphology of the material. The high magnification SEM
image (see Figure 1a, inset) displays the high density of defects and edge planes, as already
reported for LIG materials obtained by visible laser irradiation of polyimide sheets [38].
Upon deposition of the GO sensing layer (0.33 mg/mL of GO dispersion), a uniform and
continuous coverage of the electrode was achieved, as shown in Figure 1b. The thickness
of the GO film was estimated to be at 50 nm from the AFM measurements. The high
magnification image of Figure 1c displays a large density of folds and wrinkles over the
entire sensing area (LIG and also polyimide surface between the electrodes), suggesting that
the observed morphology was mainly due to the crumpling of thin GO sheets rather than
produced by the defective nature of the LIG underlayer. The cross-section SEM image of
Figure 1d clearly shows the differentiation between the polyimide (PI), LIG, and GO layers.
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Figure 1. SEM images of (a) the as-fabricated LIG electrode. Inset: high magnification image of LIG;
(b) low magnification image of the GO film deposited on the LIG electrode; (c) high magnification
image of GO on LIG; (d) cross-section image showing the GO layer deposited on the LIG electrode,
as well as the residual unconverted polyimide (PI) film.

Figure 2 shows the characterization of the GO/LIG humidity sensor’s performance.
Figure 2a shows the capacitance response across the range of applied frequencies of 20–100 kHz
measured with an AC voltage of 500 mV. An increase of capacitance with RH was observed for
all investigated frequencies. The rise in capacitance was sharp at low frequencies and decreased
in magnitude with increasing frequency. This behavior is in agreement with reported literature
data for similar systems [19,20] and was strongly related to the enhancement of dielectric
constant and polarization effects upon water adsorption on the GO sensing layer. In the
initial state (0% RH), the capacitance did not show a strong frequency dependence. However,
as the RH increased, more water molecules became physiosorbed by the oxygen functional
groups between the GO layers, leading to the enhancement of leak conductivity γ [43]. In
addition, the relative dielectric constant increased, due to the presence of free water atoms at
high RH levels. The fabricated sensor displayed a capacitance that followed the equation [44]:
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C = (εr − iγ/ωε0)C0, where εr is the relative dielectric constant, ε0 is the permittivity of a
vacuum, and ω is the frequency. According to this equation, maximum capacitance values are
reached at low frequencies and high RH levels. At high frequencies, the capacitance decreased
due to the inability of water molecules to tune their polarization to the alternating electric field.
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Figure 2. Performance characteristics of the LIG/GO0.33mg/mL interdigitated electrode humidity
sensor. (a) Capacitance vs. relative humidity for various frequencies; (b) complex impedance plots at
varied RH levels; (c) dynamic response vs. relative humidity at 500 Hz; (d) response and recovery of
the sensor vs. 80% RH @ 500 Hz; (e) repetitive absorption and desorption curves for 0–20%, 0–40%,
0–60%, and 0–80% RH. All the measurements were performed at 500 mV.

The occurrence of these processes was also monitored by impedance spectroscopy.
Figure 2b shows the impedance spectra measured in the frequency range of 20–100 kHz
for all RH levels. In order to allow better comparison on the same scale, the spectra above
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11% RH were multiplied by different factors to compensate for the decrease of both the
imaginary and real part of impedance with the increase of RH, due to their inverse relation
with capacitance and conductivity [45]. At low RH values (7–53%), the spectra displayed
a large semicircle and only a small line at low frequencies. With the increase of RH, the
semicircle decreased in size until it became suppressed for RH higher than 84%. The linear
behavior, which was barely observable at low RH, became the dominant feature at high
RH. The semicircle resulted mainly from the intrinsic impedance of the sensing film [43,46].
It reflected the high resistance of the bare GO layer and its low conductivity at low levels of
physiosorbed water (low RH). The progressive decrease of the semicircle in the impendence
spectra was associated with the increase in electrical conductivity. This is related to the
formation of higher levels of physiosorbed water layers and the associated polarization and
diffusion processes occurring in the sensing layer. It has been speculated that the straight
line might result from the ionic and/or electrolytic conductivity, due to the formation of
H3O+ at high RH values [19,46,47].

The operating frequency of 500 Hz was chosen to perform further sensor characteri-
zation. At lower frequencies, the capacitance showed instability at low RH levels, while
at higher frequencies, the water molecules could not be tuned. At frequencies close to
500 Hz, all sensors, with different concentrations of GO, showed more stable capacitance
characteristics for all the range of RH values. Figure 2c shows the dynamic capacitance
response of the GO sensor at 500 Hz. The switching RH test was performed by exposing the
sensor to various humidity environments between 0 and 97% RH. Each exposure was 90 s
long. Between exposures to different environments, the sensor was exposed to 0% RH for
90 s. The graph showed a clear increase in the dynamic response with the increase of RH,
associated with the adsorption of water molecules on GO. This behavior was in line with
what has been reported for GO-based humidity sensors. According to the literature, differ-
ent water physisorption processes dominate for different water concentrations [19]. At low
water concentrations (low RH values), water molecules were physiosorbed on the GO layer
through strong double-hydrogen bonding. This greatly reduced mobility, therefore keeping
conductance and capacitance low. As RH increased, the water molecules physiosorbed into
multiple layers and were ionized to produce H3O+. The molecules became more mobile
and ultimately exhibited liquid-like bulk behavior, which led to increased conductance
and capacitance. Furthermore, at high RH values, water likely penetrated into the GO
film, causing hydrolysis of its functional groups and contributing to the observed spike
in capacitance.

The sensor displayed a good capacitance response even at low RH values. From 0
to 11% RH, the capacitance rose from 9.5 pF to 14.8 pF. The high initial resistance of the
GO film was responsible for the sensitivity observed at low RH. Water molecules strongly
physiosorbed to GO through hydrogen bonding. A physiosorbed layer of water formed on
the surface. This caused a dramatic change in the capacitance of the sensing layer.

Figure 2d shows the response and recovery times of the sensor at 80% RH. These
measurements were performed by using the gas flow system, which provided rapid RH
changes without equilibrium requirements. The response time was considered to be
the time interval from the last value at 0% RH until the capacitance reached 90% of the
maximum value at 80% RH (Cmax × 0.9). The recovery time was the time interval from
the last value at 80% RH until the capacitance reached 90% of the minimum value at
0% RH (Cmin × 1.1). The recorded response time was 16 s. The recovery time was also
fast, with the sensor reaching its initial capacitance value in 9 s. Furthermore, the sensor
exhibited a maximum hysteresis of 3.03% at 75% RH, which was calculated based on
the absorption and desorption characteristics of Figure S3. Finally, Figure 2e shows the
repetitive adsorption/desorption response of the sensor at 20, 40, 60, and 80% RH values.
The sensor was exposed to an initial 0% RH environment, moved to 20% RH, and then,
back again to 0%. This was repeated five times, with the same protocol being repeated for
progressively increased RH environments. The response and recovery times for each RH
segment were fast, and the capacitance response increased with RH, following the trend
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shown in Figure 2c. Importantly, the sensor showed high reproducibility, stable cycling,
and a wide dynamic range for the entire range of measured RH. Sensor stability over time
was further investigated at three constant RH levels of 25, 50, and 75%, as shown in Figure
S4,a. In all three cases, the capacitance increased in the liquefied environment and remained
constant throughout the measurement time (30 min).

An in-depth characterization of the effect of GO concentration was performed. Figure 3
shows AFM images displaying the effect of the deposition of 150 µL GO dispersions of
increasing concentrations on glass substrates, with an area similar to that of LIG electrodes. The
resulting films displayed different morphologies, with the density of wrinkles decreasing and
film thickness increasing with increasing GO concentration. The thickness of the film formed
from the 0.33 mg/mL GO dispersion was 50 nm, which increased to ~120 nm, ~500 nm, and
1 µm for films prepared by using a 0.67 mg/mL, 1.33 mg/mL, and 2 mg/mL GO dispersion,
respectively (see Figure S5 for more details). The thickness of the wrinkles gradually increased
from 10–15 nm for the 0.33 mg/mL GO dispersion to 450 nm for the GO dispersions of
1.33 mg/mL and higher.
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Figure 3. AFM measurements on the surface of the GO sensing films, which were developed by
using amounts of 150 µL from GO dispersions with different concentrations: (a) 0.33 mg/mL;
(b) 0.67 mg/mL; (c) 1.33 mg/mL; (d) 2 mg/mL.

Figure 4 shows the effect of sensing layer thickness in the performance of humidity sen-
sors. As already observed for the 0.33 mg/mL GO layer, all sensors showed an increase of
capacitance with RH. The sharpest increase was observed at low frequencies and decreased
for higher applied frequencies (see also the capacitance vs. RH at different frequencies
data reported in Figure S6). Figure 4a–c show the dynamic capacitance response of the GO
sensors at 500 Hz. Each graph shows a clear increase of the dynamic response with the
increase of RH, associated with the adsorption of water molecules. Furthermore, individual
RH intervals across the different sensors showed increased capacitance response with the
increase of GO concentration. However, the thickest GO sensing layer also displayed the
slowest response and recovery times. The recovery time increased substantially, from 9 s for
the thinnest GO layer to 109 s for the thickest layer (Figure 4d–f) (see also Table S1). This be-
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havior was clearly related to the thickness and the morphology of the GO sensing films [48].
As the GO thickness increased, more water molecules became trapped between the layers
at high humidity levels, leading to their slower release in the recovery phase. Especially in
the case of the sensor developed using a 2 mg/mL GO dispersion, the recovery appeared
to be incomplete, showing a continuously increasing value of the capacitance at 0% RH,
over the repeated cycles (Figure 4i). The repetitive absorption/desorption curves showed
good cycling performance and a wide dynamic range for all other GO layer thicknesses
(Figure 4g,h).
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Figure 4. Performance of humidity sensors prepared by using 150 µL of 0.67 mg/mL, 1.33 mg/mL,
and 2 mg/mL GO dispersions on LIG interdigitated electrodes and measured at 500 Hz. (a–c) Ca-
pacitance dynamic response vs. relative humidity; (d–f) response and recovery of the three sensor
platforms vs. 80% RH; (g–i) repetitive absorption/desorption curves for 0–20%, 0–40%, 0–60%, and
0–80% RH intervals.

The sensitivity of all sensors (see Table S1) was calculated from the formula S = (Cx −C0)/(RHx
− RH0). Based on the capacitance values (at 500 Hz) observed in Figures 2c and 4a–c, sensitivities
equal to 1800, 3560, 5370, and 13,460 pF/% RH at 0–97% RH were calculated for the sensors
developed using 0.33, 0.67, 1.33, and 2 mg/mL GO dispersions, respectively. The normalized
sensor response, R, was calculated using the formula R = (Cx − C0)/C0 × 100%. As shown in
Table S1, R values of 1824 × 103, 3430 × 103, 3604 × 103, and 11,710 × 103% were calculated for
the same RH range, for the sensors developed using 0.33, 0.67, 1.33, and 2 mg/mL GO dispersions,
respectively. Both R and S can be considered as figures of merit for the sensors—they express the
variation of capacitance in the measured range and its fluctuations in each RH level, respectively.

In order to study the effect of the LIG electrode architecture on sensor performance, we
developed another LIG/GO sensor with interdigitated electrodes, as presented in Figure S1.
The active area of the new sensor was slightly smaller (225 mm2) than the active area of the
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spiral electrodes (265 mm2). The sensing film consisted of a 50 nm GO film in both cases.
Figure 5a presents the dynamic capacitance response of the interdigitated LIG/GO sensor
at 500 Hz in various humidity environments between 0 and 97% RH (see also Figure S7
for more details). From the analysis of the characteristics of the sensor, it is obvious that it
presented a similar capacitance response to the optimized spiral LIG/GO sensor (Figure 2c),
with sensitivity at 1430 pF/% RH and normalized response at 2847 × 103%. However, the
response and recovery time (Figure 5b) of this sensor were lower (50 s and 18 s), indicating
that the electrode geometry significantly affected the overall sensor response.
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Figure 5. Performance characteristics of the LIG/GO interdigitated electrode humidity sensor.
(a) Dynamic response vs. relative humidity from 0–97% and (b) response and recovery of the sensor
vs. 80% RH.

Table 1 presents the comparison of the optimized spiral GO sensor with other GO-
based capacitance humidity sensors. The sensing properties of the developed LIG/GO
sensors were comparable and, in many cases, superior to those of the sensors reported in the
literature. A sensitivity of 1800 pF/%RH was measured at 500 Hz for the thinnest layer of
GO of 0.33 mg/mL. However, as discussed, higher sensitivities were recorded at higher GO
concentrations, although a reduction in GO thickness was preferred as it led to a significant
reduction in the sensor response and recovery times (Table S2). However, as presented in
Figure 2a, the resonant frequency of the measurements can change the capacitance response,
and therefore, both normalized response and sensitivity can be changed (see also Table
S3). Lan et al. [49] report that the highest sensitivity of their interdigitated LIG/GO sensors
was 3215.25 pF/% RH at 50 Hz; however, at the same frequency, our sensors’ sensitivity
was higher at 7709 pF/% RH, while the thickness of the GO layer was 40-times lower.
Direct comparison with the interdigitated GO/LIG sensors reported by Zhu et al. [36]
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would suggest that a lower performance was recorded for our sensors. However, it should
be noted that our sensors had a 4-times less GO active layer, a 2-times smaller sensing
area, and a 32-times smaller length/gap electrode ratio. In spite of all these factors, the
calculated sensitivity for our sensors was only 4.5-times smaller than those fabricated by
Zhu et al., while our sensors’ response time was 3-times faster, with smaller hysteresis. In
addition to the sensor characteristics, it should be pointed out that our LIG/GO sensors
were characterized at 22 ◦C, whereas Zhu et al. performed their characterization at 27 ◦C,
an environment containing 1.5-times more grams of water per m3 of air at 97% RH [50–53].
Figure S9a presents the fitting of the capacitance values versus absolute humidity at 22 ◦C.
Figure S9b shows the capacitance response on all the tested RH levels for 22 ◦C and 27 ◦C.
The capacitance response of the sensor reached the value of 1,280,000 pF at 97% RH at
27 ◦C, which corresponds to a sensitivity of 13,190 pf/% RH in the range of 0–97% RH, or
14,870 pf/% RH in the range of 11–97% RH. In other words, at the same temperature, our
sensor shows 1.6-times higher sensitivity.

Table 1. Performance characteristics of the LIG/GO sensor with 50 nm of GO compared with
previous work.

Electrode
Material

Sensing
Material

RH Range N. Response Sensitivity Hysteresis tres/trec Ref
(%) (%) × 103 (pF/%RH) (% RH) (s)

Au GO 15–95 38 46.25 5 23/41 [19]
Cu/Ni GO/PDDA 11–97 266 1552 - - [20]

Al GO 2–97 1 2.04 - 0.066/0.154 [21]
LIG GO 11–97 - 9150 3.3 49/2 [36]
LIG GO 10–90 532.2 3215.25 - 15.8/- [49]
Al GO 15–95 65 31.26 - - [54]

Ti/Au GO/C60 11.3–97.3 28 - - 8/7 [55]
Ti/Au GO/Ag 11–97 211 25,809 5 8/12 [56]
Cu/Ni ZnO/GO 0–97 2875 17,785 - - [57]
Cu/Ni SnO2/RGO 11–97 56 1605 1.8 102/6 [58]

LIG GO 0–97 1825 1800 3.03 16/9 This work

Figure 6 shows the comparison in performance between the fabricated LIG/GO sensor
(50 nm GO layer) and a commercial sensor (AM2302) reading humidity and temperature,
in the temperature range of 19–27 ◦C. There was very good agreement in the reading
of absolute humidity values between the two sensors. Because relative humidity is a
temperature-dependent parameter, it is very important to study the behavior of the LIG/GO
sensor when the temperature changes. To convert the capacitance values of the sensor into
absolute humidity values, the sensor was first calibrated by using the values obtained from
Figure 2c, at 22 ◦C. Both the LIG/GO and the commercial sensor were placed in a vessel of
saturated aqueous Mg(NO3)2 solution. After an equilibrium period, the vessel was placed
in the cooling chamber for 2 h, and then, it was placed under the room conditions. It was
observed that both sensors instantaneously detected a drop in absolute humidity at the
beginning of the cooling process, due to the lower solubility of water in the atmosphere at
decreasing temperatures. The absolute humidity response of both sensors began to increase
after two hours, signaling the beginning of the heating cycle, where the solubility of water
molecules in the atmosphere increases as a function of temperature.

Finally, the integration of the GO/LIG relative humidity sensor with a battery-less
near-field communication (NFC) device was performed to demonstrate fast interrogation
of the sensor using a smartphone. The developed sensor was connected to a capacitance-to-
digital converter (CDC), which was interfaced with a microcontroller unit (MCU) using the
Inter-Integrated Circuit (I2C) protocol, as shown in Figure 7a,b. An NFC Type-5-enabled
smartphone was used to wirelessly power the humidity sensor, as shown in Figure 7c.
The NFC sensor system comprised an NFC loop antenna, with the smartphone providing
wireless power to the sensor via inductive coupling. The NFC sensor transponder also
included a Radio Frequency to Direct Current (RF-DC) converter within the NFC radio
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transceiver, which provided a harvested unregulated DC voltage. The harvested DC
voltage was then regulated using a low dropout voltage regulator (STLQ015M21R) that
provided a regulated 2.1 V DC voltage. The regulated voltage was used to power the
CDC, MCU, and NFC radio transceiver. On power-up, the ambient relative humidity was
sensed using the developed LIG-electrode-based humidity sensor. The sensor’s change of
capacitance was digitized using the CDC. In addition, the MCU first read the digital values
from the CDC, then calculated the Relative Humidity (RH). The measured relative humidity
data were read using an NFC-enabled smartphone with the help of a read command, as
illustrated in Figure 7c.
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In the presented design, both voltage and frequency scaling (VFS) techniques were
used to minimize the DC power consumption of the developed sensor with the aim to
maximize the wireless communication range. To achieve sub-mW DC power consumption,
the NFC-enabled humidity sensor was designed with optimal settings: MCU peripheral
clock (f CLK) = 0.524 MHz; I2C core input clock (f I2C_IN) = 1.028 MHz; MCU core voltage
(VCORE) = 1.2 V; supply voltage (VDD) of 2.1 V. As a result, the NFC-enabled humidity
sensor required a peak DC power of just 900 µW, which is one of the lowest reported in
the literature [59]. A Samsung Galaxy S21 smartphone was used to measure the wireless
communication range, achieving a maximum of 4.5 cm in free-space.

4. Conclusions

In this work, GO/LIG humidity sensors were fabricated by simple drop-casting of
thin GO films on laser-written LIG electrodes on polyimide. The sensors’ performance was
investigated by exposure to a 0–97% RH range at 22 ◦C. The sensors displayed high stability
and sensitivity, as well as ultrahigh response and recovery times, in line or superior to other
GO-based sensors reported in the literature. This was ascribed to the sonication procedure
applied to the GO post-synthesis, which reduced the GO flakes’ size and increased the
density of defects and the percentage of hydroxyl groups, therefore increasing its water
physisorption capability. The influence of GO active layer thickness was investigated,
and it was found that while higher thickness increased sensitivity, it also had a negative
effect on the response and recovery times, suggesting that a slightly higher GO thickness
might offer a good compromise in performance. The influence of electrode shape (spiral vs.
interdigitated) was taken into consideration, and it was found that the higher surface area
of the spiral design had a positive effect on the sensitivity. Compared to similar GO-based
humidity sensors, the GO/LIG platform displayed comparable or superior sensitivities, a
wide RH range, stability, and short response and recovery times. Finally, towards practical
applications, the sensor was integrated with an NFC tag that enabled humidity readings
through a commercial smartphone.
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