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Abstract
Background: High-throughput microarray experiments now permit researchers to screen thousands of genes 
simultaneously and determine the different expression levels of genes in normal or cancerous tissues. In this paper, we 
address the challenge of selecting a relevant and manageable subset of genes from a large microarray dataset. 
Currently, most gene selection methods focus on identifying a set of genes that can further improve classification 
accuracy. Few or none of these small sets of genes, however, are biologically relevant (i.e. supported by medical 
evidence). To deal with this critical issue, we propose two novel methods that can identify biologically relevant genes 
concerning cancers.

Results: In this paper, we propose two novel techniques, entitled random forest gene selection (RFGS) and support 
vector sampling technique (SVST). Compared with results from six other methods developed in this paper, we 
demonstrate experimentally that RFGS and SVST can identify more biologically relevant genes in patients with 
leukemia or prostate cancer. Among the top 25 genes selected using SVST method, 15 genes were biologically relevant 
genes in patients with leukemia and 13 genes were biologically relevant genes in patients with prostate cancer. 
Meanwhile, the RFGS method, while less effective than SVST, still identified an average of 9 biologically relevant genes 
in both leukemia and prostate cancers. In contrast to traditional statistical methods, which only identify less than 8 
genes in patients with leukemia and less than 8 genes in patients with prostate cancer, our methods yield significantly 
better results.

Conclusions: Our proposed SVST and RFGS methods are novel approaches that can identify a greater number of 
biologically relevant genes. These methods have been successfully applied to both leukemia and prostate cancers. 
Research in the fields of biology and medicine should benefit from the identification of biologically relevant genes by 
confirming recent discoveries in cancer research or suggesting new avenues for exploration.

Background
The completion of the Human Genome Project (HGP)
has been recognized as a great achievement in the study
of biomedicine; the project not only provided compre-
hensive information on the human genome but also
inspired new ways to study human diseases such as can-
cers. Concurrent with the advancement of the HGP, sev-
eral high-throughput and rapid gene function analysis
techniques were developed. Among them, microarray
may be the most mature technique, and it has become a

major data resource in gene function research [1-3]. Over
the past few years, microarray-based gene expression
profiling has proven to be a promising approach in pre-
dicting cancer classification and prognosis outcomes [4-
6]. In most cases, cancer diagnosis depends on using a
complex combination of clinical and histopathological
data. However, it is often difficult or impossible to recog-
nize tumor types in atypical instances [7]. To translate
microarray data into functional physiological informa-
tion, a set of genes with the maximum amount of infor-
mation and a minimum amount of noise is needed. For
example, diagnostic tests that measure the abundance of
a given protein in serum may be derived from a small
subset of biologically relevant genes.
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In cancer classification, one of the reasons one may
wish to select a minimum set of genes is to avoid an over-
fitting problem caused by attempting to apply a large
number of genes to a small number of samples. There are
several statistical and machine learning techniques such
as t-Test, k-nearest neighbors, clustering methods [8], self
organizing maps (SOM) [9], genetic algorithm [10], back-
propagation neural network [11-13], probabilistic neural
network, decision tree [14], random forest [15], and sup-
port vector machines (SVM) [16,17] that have been
applied in selecting informative genes. Although these
methods can select smaller set of informative genes, only
a small percentage of these so called "informative" genes
are biologically relevant as proved by medical experi-
ments. Our goal in this paper, therefore, is to best identify
biologically relevant genes from a small set of genes using
our proposed methods. We present a novel approach that
addresses different considerations, including: (1) the
identification of quality samples, (2) the selection of a
small set of informative genes from these samples, (3) the
comparison of these genes with medical literature, and
(4) the interpretation of their biological relevance.

Prostate cancer and leukemia are very common cancers
in the United States. In 2007 alone, approximately 24 800
new cases and 12 320 deaths among males were attrib-
uted to leukemia. Among males age 40 and below, leuke-
mia is the most common fatal cancer. Meanwhile, 19 440
new cases and 9 470 deaths among females were attrib-
uted to leukemia, and it is the leading cause of cancer
death among females below age 20. Acute lymphocytic
leukemia (ALL) is the most common cancer in children
age 14 and below. Prostate cancer, on the other hand, in
2007 accounted for almost 29% (218 890) of incidents in
males. For men age 80 and older, prostate cancer is the
second most common cause of cancer death. Based on
cases diagnosed between 1996 and 2002, an estimated
91% of these new cases are expected to be diagnosed at
the local or regional level, for which the 5-year relative
survival rate approaches 100% [18,19]. Therefore, the
identification of biologically relevant genes is of funda-
mental and practical interest. The examination of these
genes may be useful in confirming recent discoveries in
cancer research or suggesting new methods for explora-
tion.

In this paper, we examine eight methods for identifying
biologically relevant genes. Among them are six statistics
methods [20,21] and two machine learning methods. The
statistics methods include three parametric methods:
Signal-to-noise ratio (SNR) [22-24], t-Test [23,25], and
Least Significant Difference (LSD) [13,26]. They also
include three nonparametric methods: Threshold Num-
ber of Misclassification (TNoM) [25], Minimum Distance
to Modal Ranking (MDMR) [27,28], and Weighted Pun-
ishment on Overlap (WEPO) [29,30]. In addition to these

six statistics methods, we propose two new methods
using machine learning approaches: Random forest gene
selection (RFGS) and Support Vector Sampling technique
(SVST). For each one of these, we first introduce some
underlying theory and the process of computation. Then,
we apply these methods to both leukemia and prostate
cancer datasets. We compare the top 25 genes identified
by each method with those identified within current
medical literature, thus pinpointing the biological genes
most related to leukemia and prostate cancer. The results
show that our proposed SVST method is significantly
better than statistical methods for identifying relevant
biological genes in leukemia and prostate cancer.

The remainder of this paper is organized as follows:
Section 2 discusses the various statistics-based gene
selection methods considered in the paper. Section 3
describes our two proposed machine learning methods.
Section 4 describes the experiment results and discusses
leukemia and prostate cancer. Finally, Section 5 presents
the conclusions of our study.

Statistics-Based Gene Selection Methods
Gene selection is widely used to select target genes in the
diagnosis of cancers. One of the primary goals of gene
selection is to avoid the over-fitting problems caused by
the high dimensions and relatively small number of sam-
ples of microarray data. Theoretically, in cancer classifi-
cation, only informative genes which are highly related to
particular classes (or subtypes) should be selected [24]. In
microarray data analysis, the challenge is to select infor-
mative genes that clearly differentiate the classes. Since
the number of informative genes is very small compared
to the total number of genes in each experiment, utilizing
a better search technique is critical. We divide such tech-
niques into two main categories: statistics-based methods
and machine learning-based methods. In this section, we
will discuss the statistics methods while addressing the
machine learning-based methods in the next section.

The statistics methods rank or score the discriminabil-
ity of each gene based on its own gene expression pat-
terns. Both parametric and nonparametric approaches
for estimations of discriminability have been proposed.
The parametric estimation approach assesses the dis-
criminability of genes using a variety of statistical analy-
ses, including Signal-to-noise ratio (SNR), t-Test, and
Least Significant Difference (LSD). Parametric estimation
depends on exact expression levels and the number of
replicate samples. The statistical criteria are based on the
assumption that the data comes from some kind of distri-
bution. Each parametric approach puts different weights
on the variance and number of samples of the criteria. In
this study, we use three parametric methods: Signal-to-
noise ratio (SNR), t-Test, and Least Significant Difference
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(LSD). A gene is considered more informative if it pos-
sesses a larger corresponding score.

Signal-to-Noise Ratio (SNR)
Each dataset consists of m samples and n genes. For each
gene gi, we normalize the gene expression data by sub-
tracting the mean (signal) and then dividing by the stan-
dard deviation of the expression value (noise). Every
sample is labeled with {+ 1,-1} (e.g. normal or cancer). We
use the following formula to calculate each gene's F score.

The μ and σ characters represent the mean and the
standard deviation of samples in each class (either + 1 or -
1) individually. We rank these genes by F score and then
select the top 25 gene sets as the features.

t-Test
The t-Test assesses whether the means of two groups are
statistically different from each other. In microarray data
analysis, the unpaired two-sample t-Test is often used
since samples may be derived from different experiments
and may have different distributions. We calculate the
discriminative power of the ith gene using a t-Test,

where M + and M- are the sample sizes and μ and σ are
the respective mean and standard deviation of samples in
each class (either + 1 or -1). We rank these genes with a T
score and then select the top 25 gene sets as the features.

Least Significant Difference (LSD)
Least Significant Difference, also called the Fisher crite-
rion, is a classical measure to assess the degree of separa-
tion between two classes. It is a t-Test-like statistic. The
score for gene i is defined as

where μ and σ are the respective mean and standard
deviation of samples in each class (either + 1 or -1). We
rank these genes by F score and then select the top 25
gene sets as the features.

In contrast to the parametric approach, nonparametric
approaches rank samples of each gene using their expres-
sion level and punish the disorders that damage a perfect
sample split. The less the punishment, the smaller the
score a gene receives. This means that a gene is more
informative if it has a smaller corresponding score. In this
study, we use three nonparametric methods: Threshold
Number of Misclassification (TNoM), Minimum Dis-
tance to Modal Ranking (MDMR), and Weighted Punish-
ment on Overlap (WEPO).

Threshold Number of Misclassification (TNoM)
TNoM assumes that an informative gene has different
values between the two classes, and thus we are able to
separate these using a threshold value. A decision rule
corresponding to a given expression level, such as sign
(ax + b), is used to score the given gene and predict the
unknown class. TNoM looks to select the values of a and
b in order to minimize the number of errors:

We then rank these genes with a TNoM score and
select the top 25 gene sets as the features.

Minimum Distance to Modal Ranking (MDMR)
The MDMR method first ranks all the sample values of a
gene and then computes the minimum distance between
these ranks and a modal rank. The ranking algorithm,
described by Park et al [28], is used in this study. A score
is defined as the minimum number of consecutive swaps
needed to arrive at a perfect split of two classes. A score
of 0 represents the gene that can split two classes exactly.
The MDMR score is defined as

where h(x) is the indicator function

We then rank these genes with an MDMR score and
select the top 25 genes for the study.

Weighted Punishment on Overlap (WEPO)
Chung et al. [30] proposed the WEPO method to reduce
possible loss of information when using the TNoM or
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MDMR methods. Because genes with identical ordered
expression data may not have the same discriminative
power, WEPO introduces the z-score into the rank swap-
ping scheme in order to avoid this problem. For gene k,
the expression levels of samples are first normalized via z-
score to eliminate the problem of scaling. The z-score is
defined as

where μ is the sample mean and MAD is the mean
absolute deviation of gene k. The punished score of each
gene is calculated by estimating the overlapping regions
of the two classes. The punishment is defined as

Machine Learning-Based Gene Selection Methods
Identifying biologically relevant genes, such as cancer-
related genes, from microarray gene expression data is
one of the most important areas in modern medical
research. In addition to the six statistical methods
described in the previous section, we also propose two
machine learning-based gene selection methods: Ran-
dom Forest Gene Selection (RFGS) and Support Vector
Sampling Technique (SVST).

Random Forest Gene Selection (RFGS)
Random forest is an algorithm for classification devel-
oped by Leo Breiman [31] that uses an ensemble of classi-
fication trees. Each of the classification trees is built using
a bootstrap sample of the data, and at each split the can-
didate set of variables is comprised of a random subset.
Thus, random forest uses both bagging and random vari-
able selection for tree building.

In this paper, we propose a random forest concept to
identify biologically relevant genes. The flowchart of our
approach is shown in Figure 1. We first randomly divide
all genes into 1000 groups; for example, there are approx-
imately 7 genes in each group for the leukemia dataset
and 13 genes in each group for the prostate cancer data-
set. When all genes are randomly assigned into a group,
we then build up a decision tree for each group. The most
significant gene in each tree will serve as the root gene,
and these root genes are marked by adding a number in
the gene array. After the first cycle is completed, we initi-
ate another cycle by again randomly assigning all genes,
and this process is repeated for 100 cycles. The more fre-
quently a gene is selected as the root, the higher a score it

will receive. After 100 cycles, all genes will be ranked
based on their score. In this paper, we select the top 25
genes and confirm them based on supporting evidence
culled from current medical literature. If the genes are
found to have a relationship with the target cancers, we
call them "biologically relevant genes". Because the ran-
dom forest approach may generate different biological
genes each time, we run the code 10 times. Those genes
which on average appear most consistently within the top
25 are used in comparison with the results of other meth-
ods.

This approach is displayed in the following pseudo
code, where X is the cancer's gene expression data (con-
taining S samples G and genes) and the YS is the label of
each sample.

The Pseudo Code of the Random Forest Gene Selection
Method

Input: , S = 1.. s, G = 1.. g, YS � {-1,1}, X �

Rg
s = number of samples, g = number of genes

Output: n top genes
1. begin
2. for i = 1 to S
3. do normalize X
4. end
5. for I = 1 to N (N = 100 used here)
6. while (All genes assigned completely)
7. Randomly assign all genes into M groups (M =

1000 used here)
8. for J = 1 to M
9. Build up a decision tree on each group
10. Mark the root of each group
11. end
12. end
13. Rank gene following the number of marks for every

gene
14. Select the top 25 genes from the ranking list
15. Confirm the genes with biological evidence from

public resources
16. Calculate the average biological genes found in the

top 25 genes

Support Vector Sampling Technique (SVST)
In the ongoing effort to improve the accuracy of cancer
classification, many machine learning methods have been
developed over the past few years. Among them, SVM is
arguably one of the best methods. Although the SVM
classification method has been widely used in the
machine learning domain, there is little research focused
on the actual support vectors. These support vectors have
several computational and learning theoretic conse-
quences [32]. Gene selection is a common way to avoid
the high dimensional feature problem; however, the
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majority of past research has applied gene selection algo-
rithms using all available samples. The accuracy of SVM
is largely dependent on a hyperplane that can clearly sep-
arate different classes, and many samples may be outliers
or may be separated incorrectly. Thus, using all samples
could cause some degree of inaccuracy in classification
performance.

In this paper, we develop a new method to identify bio-
logically relevant genes using only quality samples which
are located on support vectors. We assume that the use of
support vectors is critical in eliminating irrelevant tissue
composition-related genes. We called this method the
support vector sampling technique (SVST). Our hypoth-
esis is that by using samples located only on support vec-

Figure 1 The flowchart of the random forest gene selection method.
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tors, we have a higher probability of identifying more
relevant genes. To verify this hypothesis experimentally,
we compared SVST with other statistical methods using
two cancer datasets. SVST is a two-step process which
includes first selecting support vector samples and then
performing the SNR gene selection method. This
approach allows us to narrow the field to only the most
relevant samples in order to select the most biologically
relevant genes.

The approach process is displayed in the following
pseudo code. Xis the cancer's gene expression data, con-
taining S samples and G genes, and the YS is the label of
each sample.

The Pseudo Code of the SVST Method

Input: , S = 1.. s, G = 1.. g, YS � {-1,1}, X � Rg
s = number of samples, g = number of genes

Output: n top genes
1. begin
2. for i = 1 to S
3. do normalize X
4. end
5. Set K = linear function
6. do train SVM(K(XS), YS) [6]
7. sv = extract support vectors from training SVM
8. for i = 1 to S
9. svs = extract support vector samples by sv from all

samples
10. end
11. for i = 1 to G
12. r-genes = do SNR scoring function(svs)
13. end
14. rank r-genes by SNR score

15.   = select n top genes from r-genes
16. end

Theoretical basis of the SVST
The SVST is briefly described as follows. A binary SVM
attempts to find a hyperplane which maximizes the "mar-
gin" between two classes (+ 1/-1). Let

be the gene expression data with positive and negative
class labels, and the SVM learning algorithm should find
a maximized separating hyperplane

where W is the n-dimensional vector (called the normal
vector) that is perpendicular to the hyperplane, and b is
the bias. The SVM decision function is shown in formula

(1), where αi are positive real numbers and ϕ is the map-
ping function

Only of ϕ(Xi) of αi > 0 would be used, and these points
are support vectors. The support vectors lie close to the
separating hyperplane (shown in Figure 2). αi represents
non-negative Lagrange multipliers, and it is used to dis-
criminate every piece of training data which has a differ-
ent influence on the hyperplane in high dimension
feature spaces. To explain the meaning of αi, we first max-
imize the Lagrange problem:

When αi = 0 then LD = 0 in formula (2), as in this case, αi 

means that the i th data has no influence on the hyper-

plane; therefore, this sample is correctly classified by the 

hyperplane (such as point A in Figure 2).
When 0 <αi < C, where C > 0 is the penalty parameter of

the error term, the Lagrange problem LD is subject to

Therefore, LD = αi, and under this circumstance, αi
means that the ith data has a degree of influence on the
hyperplane (such as point B in Figure 2).

When αi = C, the Lagrange problem LD is subject to

LD is negative, and therefore, αi means the ith data is
incorrectly classified by the hyperplane (such as point C
in Figure 2). Each αi determines the degree by which each
training example influences the SVM function. Because
the majority of the training examples do not affect the
SVM function, most of the αi are 0. We can then infer that
these support vectors should contain the desired strong
classification information. By extracting only the samples
(such as point B) located on the hyperplane, we can run a
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gene selection algorithm that better identifies biologically
relevant genes.

We applied our method to two microarray datasets for
leukemia and prostate cancer. In order to simplify the
selection of the SVM parameters, we tested several differ-
ent settings to ascertain the best classification perfor-
mance. The selection of SVM parameters used in our
SVST method is summarized in Table 1. These parameter
settings may not be optimized settings; however, they are
sufficient for the selection of quality support vectors.
Using these parameter values, we found 32 support vec-
tor samples in 72 leukemia samples and 44 support vector
samples in 102 prostate cancer samples. We then used
these samples to find the most informative genes through
the SNR gene selection algorithm.

Results and Discussion
In this paper, we experiment using two cancer gene
expression microarray datasets: leukemia and prostate
cancer. We chose this data not only out of concern for the

potential influence on human beings but also for the
data's characteristics. Leukemia microarray data is easily
classified; many cancer classification researchers consider
this data as a performance comparison standard. Prostate
cancer microarray data, however, is not easily classified.
Therefore, utilizing both datasets provides a measurable
way to demonstrate the benefits of our proposed meth-
ods.

Application to the leukemia microarray dataset
Leukemia dataset
This original gene expression data was downloaded from
http://www.genome.wi.mit.edu/MPR/[23]. The data con-
tains 72 bone marrow or peripheral blood samples with
either acute myeloid leukemia (AML) or acute lympho-
blastic leukemia (ALL). The data set provides 7129
human genes produced by Affymetrix high-density olig-
nucleotide microarrays. The intensity of gene expression
is rescaled to normalize overall intensities for each
microarray. Even though this data provides a plethora of
genetic information, its feature dimension is too high for
practical analysis. We need a selection method that can
reduce this feature dimension.
Identifying biologically relevant leukemia genes
Table 2 compares the resulting biologically relevant genes
in leukemia identified using the 8 methods. Among these
8 methods, WEPO finds the least number of biological
genes at 5 genes, while TNoM identifies 6 genes. LSD and
t-Test both identify 7 biological genes. SNR and random
forest identify 8 and 9 biological genes respectively. SVST
and MDMR find the most biologically relevant genes,
where SVST identified 15 and MDMR identified 12. Our

Table 1: Parameter settings in SVM for SVST method.

Parameter Setting

Kernel Type Linear

Gamma [Default: 1/(# of 
genes)]

1/7200 for leukemia 1/12600 
for prostate cancer

Cost 1

Figure 2 The hyperplane and the support vectors. The red line is the hyperplane which separates the two classes of samples. The blue points are 
the support vectors. A is the right classified sample but has less influence on the hyperplane. B is the right classified sample and has influence on the 
hyperplane. C is the incorrectly classified sample.

http://www.genome.wi.mit.edu/MPR/
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proposed SVST method has the best performance in
terms of identifying biologically relevant genes for leuke-
mia.

For the random forest method, we can identify, on aver-
age, 9 biologically relevant genes from the top 25 ranked
genes. In Table 2, we show the results of running the
method 10 times and order the relevant genes by decreas-
ing number of hits. As shown in Figure 3, 9 genes are
recorded in the following order: MGST1 (7 hits), CD63 (6
hits), SERPING1 (5 hits), QSOX1 (5 hits), APLP2 (5 hits),

PLCB2 (5 hits), POU2AF1 (5 hits), CTSD (5 hits), and
ACADM (4 hits).

Our proposed SVST method has the benefit of identify-
ing more biologically relevant genes. For example, 15
genes (60%) were found to be biologically relevant to leu-
kemia among the top 25 ranked genes selected using the
SVST method. Table 3 describes the gene names and
their possible function. The medical literature regarding
each gene is included in the same table.

Table 2: The biologically relevant genes found in leukemia.

SNR t-TEST LSD TNoM MDMR WEPO RFGS* SVST

Gene1 ZYX SNRPD1 SNRPD1 KLHDC10 ZYX PTMA MGST1 ZYX

Gene2 TCF3 PRPF18 LAMP2 BTG2 APLP2 CXCR4 CD63 TCF3

Gene3 CCND3 LAMP2 PRPF18 CD68 MGST1 IFITM3 SERPING1 CD33

Gene4 CST3 PRKCI PRKCI EIF4A1 CSTA ADA QSOX1 CD63

Gene5 CD33 MSH2 GTF2E2 PFKL CD63 RPL23A APLP2 TCRA

Gene6 CD79A GTF2E2 MSH2 LIPE CTSD PLCB2 SPTAN1

Gene7 SPTAN1 DCK ALCAM LYN POU2AF1 MPO

Gene8 Macmarc
ks

CLU CTSD CST3

Gene9 FAH ACADM HOXA9

Gene10 PLEK CD79A

Gene11 MPO Macmarc
ks

Gene12 LRPAP1 CCND3

Gene13 PSMB9

Gene14 IL18

Gene15 STOM

8 7 7 6 12 5 9* 15

Comparison of biologically relevant genes in leukemia identified using 8 methods An * indicates the average number of biologically relevant 
genes found in the top 25 genes using the random forest gene selection method.
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In this section, we individually examine these 15 genes
for relevance in the diagnosis of leukemia. All 15 genes
have some relevance to leukemia and deserve a more
detailed analysis to understand their role in the cancer's
development. The role of some of these biologically rele-
vant genes can be easily explained because they code for
proteins whose role in leukemia has been long identified
and widely studied. Such is the case of the HoxA9 gene,
where Hoxa9 collaborates with other genes to produce
highly aggressive acute leukemic disease [33]. The other
example is the Macmarcks gene, where tumor necrosis
factor-alpha rapidly stimulates Macmarcks gene tran-
scription in human promyelocytic leukemia cells [34].
The presence of some of the other genes in our list can be
explained by recently published studies. For example, the
role of the CD33 gene, CD33, is a myeloid cell surface
antigen that is expressed on blast cells in acute myeloid
leukemia (AML) in a majority of all patients regardless of
age or subtype of disease [35].

The role of the 15 genes in Table 3 is described as fol-
lows. The ZYX gene: Zyxin encodes a LIM domain pro-
tein localized at focal contacts in adherent
erythroleukemia cells [36]. The TCF3 gene: The
t(1;19)(q23;p13.3) is one of the most common chromo-
somal abnormalities in B-cell precursor acute lympho-
blastic leukemia and usually gives rise to the TCF3-PBX1
fusion gene. The TCF3 gene has been shown to be
involved in the majority of cases with a cytogenetically

visible t(1;19) translocation, while the remaining TCF3-
negative ALLs demonstrated breakpoint heterogeneity
[37]. The CD63 gene: In the rat basophilic leukemia cell
line, an antibody against CD63 (AD1) inhibited immuno-
globulin E (IgE)-mediated histamine release, suggesting a
role for CD63 in events associated with mediator release
[38]. The TCRA gene: T-cell prolymphocytic leukemia is
a sporadic, mature T-cell disorder in which there is usu-
ally an aberrant T-cell receptor alpha (TCRA) rearrange-
ment that activates the TCL1 or MTCP1-B1 oncogenes
[39]. The SPTAN1 gene: In a human chronic myeloge-
nous leukemia cell line with the Ph1 chromosome, K562,
the SPTAN1 mapped centromeric to the translocation
breakpoint, indicating that the alpha-fodrin gene is not
translocated to the Ph1 chromosome in this cell line [40].
The MPO gene: The tumour cells were positive for CD68
(KP1), CD68 (PGM1), lysozyme and CD45. They were
negative for MPO, CD15, CD163, TdT, CD117, T and B
cell markers [41]. The CST3 gene: Sun Y explores differ-
entially expressed genes in leukemia gene expression pro-
files and identifies main related genes in acute leukemia.
The results show that in four patient/donor pairs with
ALL, 5 up-regulated (RIZ, STK-1, T-cell leukemia/lym-
phoma 1A, Cbp/p300, Op18) and 1 down-regulated
genes (hematopoietic proteoglycan core protein) were
identified. In five patient/donor pairs with AML, 6 up-
regulated (STAT5B, ligand p62 for the Lck SH2, CST3,
LTC4S, myeloid leukemia factor 2 and epb72) and 1

Figure 3 The average number of hits generated by the random forest method regarding biologically relevant genes in leukemia.
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Table 3: Functions of the biologically relevant genes found in leukemia.

Gene Name Gene Function Evidence References

ZYX Adhesion plaque protein. Binds alpha-
actinin and the CRP protein. May be a 
component of a signal transduction 
pathway that mediates adhesion-
stimulated changes in gene expression.

[36]

TCF3 Heterodimers between TCF3 and tissue-
specific basic helix-loop-helix (bHLH) 
proteins play major roles in determining 
tissue-specific cell fate during 
embryogenesis, like muscle or early B-cell 
differentiation. Binds to the kappa-E2 site 
in the kappa immunoglobulin gene 
enhancer.

[37]

CD33 In the immune response, may act as an 
inhibitory receptor upon ligand induced 
tyrosine phosphorylation by recruiting 
cytoplasmic phosphatase(s).

[35]

CD63 This antigen is associated with early stages 
of melanoma tumor progression. May play 
a role in growth regulation. Lysosome 
membrane; Multi-pass membrane protein. 
Late endosome membrane; Multi-pass 
membrane protein. Note = Also found in 
Weibel-Palade bodies of endothelial cells. 
Located in platelet dense granules. 
melanomas, hematopoietic cells, tissue 
macrophages.

[38]

TCRA T cell receptor alpha-chain. [39]

SPTAN1 Fodrin, which seems to be involved in 
secretion, interacts with calmodulin in a 
calcium-dependent manner.

[40]

MPO Part of the host defense system of 
polymorphonuclear leukocytes. It is 
responsible for microbicidal activity 
against a wide range of organisms.

[41]

CST3 As an inhibitor of cysteine proteinases, this 
protein is thought to serve an important 
physiological role as a local regulator of 
this enzyme activity.

[42]

HoxA9 Sequence-specific transcription factor 
which is part of a developmental 
regulatory system that provides cells with 
specific positional identities on the 
anterior-posterior axis.

[33]
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down-regulated genes (CCR5) were identified [42]. The
CD79A gene: Expression of the CD79A (MB-1) chain has
been studied in leukemia and is shown to be present in
most B lineage acute lymphoblastic leukemia [43]. The
CCND3 gene: A 51-bp deletion was detected in CCND3
in a patient with normal karyotype acute myeloid leuke-
mia [44]. The PSMB9 gene: PSMB9 (LMP2) is expressed
both in normal EBV latency and EBV-associated patholo-
gies. EBV is associated with a variety of haematopoietic
cancers such as African Burkitt's lymphoma, Hodgkin's,
and adult T-cell leukemia [26]. The IL18 gene: IL18
(IGIF) proposed to be designated as IL-18, selectively up-
regulates ICAM-1 expression in KG-1 cells, a human
myelomonocytic cell line, human IL-18 was measurable
in the plasma of leukemia patients [45]. The STOM gene:
STORP is homologous to the STOM (Epb72) gene cod-
ing for the erythrocyte band 7 integral membrane pro-
teins or stomatin. The STORP gene is positioned 2 kb

upstream of the promyelocytic leukemia gene in a head-
to-head configuration [46].

Application to the prostate cancer microarray dataset
Prostate cancer dataset
The original gene expression data for prostate cancers is
available at http://www.genome.wi.mit.edu/cgi-bin/can-
cer/datasets.cgi[47]. The dataset contains expression lev-
els for 52 prostate tumor samples and 50 normal samples.
Each sample contains 12600 genes measured using
Afffymertix oligonucleotide arrays. We set the tumor
sample to (-1) and the normal samples to (+ 1), and we
then merged these data sets together for the 8 methods.
Identifying biologically relevant prostate cancer genes
To complete our study, we proceed similarly with the
prostate cancer data by running our 8 gene selection
methods on the entire dataset of 102 samples. The com-
parison of biologically relevant genes in prostate cancer
identified using these 8 methods are shown in Table 4.

CD79A Required in cooperation with CD79B for 
initiation of the signal transduction 
cascade activated by binding of antigen to 
the B-cell antigen receptor complex.

[43]

Macmarcks May be involved in coupling the protein 
kinase C and calmodulin signal 
transduction systems.

[34]

CCND3 Essential for the control of the cell cycle at 
the G1/S (start) transition. Potentiates the 
transcriptional activity of ATF5.

[44]

PSMB9 The proteasome is a multicatalytic 
proteinase complex which is characterized 
by its ability to cleave peptides with Arg, 
Phe, Tyr, Leu, and Glu adjacent to the 
leaving group at neutral or slightly basic 
pH. The proteasome has an ATP-
dependent proteolytic activity. This 
subunit is involved in antigen processing 
to generate class I binding peptides.

[26]

IL18 Augments natural killer cell activity in 
spleen cells and stimulates interferon 
gamma production in T-helper type I cells.

[45]

STOM Interacting selectively with one or more 
specific sites on a receptor molecule, a 
macromolecule that undergoes 
combination with a hormone, 
neurotransmitter, drug or intracellular 
messenger to initiate a change in cell 
function.

[46]

The 15 biologically relevant genes found in the top 25 ranked genes in leukemia selected using the SVST method.

Table 3: Functions of the biologically relevant genes found in leukemia. (Continued)

http://www.genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
http://www.genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
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Among these 8 methods, TNoM finds the least number
of genes at 3 genes. The MDMR and WEPO methods
identify 7 genes and 8 genes respectively. All the follow-
ing four methods (SNR, LSD, t-Test, and Random forest)
are in the next group, where they identify 9 biologically
relevant genes. SVST method, once again, is capable of
finding the most at 13 biologically relevant genes. Among
these 8 methods, our proposed SVST method has the
best performance.

For the random forest method, we identify, on average,
9 biologically relevant genes in the top 25 ranked genes.
In Table 2, we show the results gathered from running the
method 10 times and order the biologically relevant genes
by decreasing of number of hits. As shown in Figure 4,
these 9 genes are recorded in the following order: PTGDS
(9 hits), HPN (8 hits), CLU (6 hits), NELL2 (6 hits),

SERPINF1 (6 hits), HSPA8 (5 hits), XBP1 (4 hits),
ALCAM (4 hits), and AGR2 (4 hits).

Table 5 lists 13 genes found to be biologically relevant
to prostate cancer among the top 25 ranked genes
selected using the SVST method. The possible function
of each gene and its medical references are also included
in Table 5. In this section, we individually examine these
13 top ranked genes for relevance in the diagnosis of
prostate cancer. All 13 genes have some relevance and
deserve a more detailed analysis to understand their role
in prostate cancer's development. The role of some of
these biologically relevant genes can be easily explained
because they code for proteins whose role in prostate
cancer has long been identified and widely studied. Such
is the case of the NELL2 gene. In situ hybridization analy-
sis of hyperplastic prostate specimens demonstrated that

Table 4: The biologically relevant genes found in prostate cancer.

SNR t-Test LSD TNoM MDMR WEPO RFGS* SVST

Gene1 HPN UCK2 UCK2 NFIX HPN NF2 PTGDS HPN

Gene2 PTGDS LPIN1 LPIN1 FOXG1 PDIA5 PTGDS HPN NELL2

Gene3 NELL2 KIAA0746 KIAA0746 PML ICA1 KLK3 CLU PTGDS

Gene4 S100A4 GNB2L1 GNB2L1 AGR2 CLU NELL2 S100A4

Gene5 TARP CAV2 CAV2 KLK3 MYL6 SERPINF1 TNFSF10

Gene6 COL4A6 IGBP1 IGBP1 UAP1 FLNA HSPA8 SERBP1

Gene7 ANGPT1 CASP3 CASP3 FBP1 SERPING1 XBP1 RBP1

Gene8 RBP1 DOPEY2 DOPEY2 ACTG2 ALCAM GSTM1

Gene9 GSTM1 PDIA5 PDIA5 AGR2 ANGPT1

Gene10 LMO3

Gene11 COL4A6

Gene12 DIO2

Gene13 TARP

9 9 9 3 7 8 9* 13

Comparison of biologically relevant genes in prostate cancer identified using 8 methods. An * indicates the average number of biologically 
relevant genes found in the top 25 genes using the random forest gene selection method.
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NELL2 mRNA expression is predominantly localized in
basal cells of the epithelium. Disease-related changes in
the levels of NELL2 may contribute to alterations in epi-
thelial-stromal homeostasis in BPH [48]. The presence of
some other genes in our list can be explained by recently
published studies. For example, the discovery that the
GSTM1 gene, GSTM1, may be linked to prostate cancer
risk was published only a year ago [49]. Another example
is the ANGPT1 gene, published 2 years ago, where Ang-2
was expressed predominantly in prostate epithelial cells
whereas Ang-1 (ANGPT1) was expressed in epithelium
and smooth muscle [50].

We also list the roles of the rest of the biological genes
shown in Table 5. The TNFSF10 gene: the FOXO family
of forkhead transcription factors is implicated in
TNFSF10 transcriptional activation in prostate carci-
noma cells [51]. The S100A4 gene: S100A4 protein is
expressed in neither benign nor malignant prostatic epi-
thelium nor in LNCaP and Du145 cells. The mechanism
underlying absent S100A4 expression in prostatic epithe-
lium and cell lines may involve methylation [52]. The
RBP1 gene: Altered CRBP1 expression and promoter
hypermethylation occur in several tumours, these
changes were investigated in prostate tumorigenesis [25].
The COL4A6 gene: COL4A6 expression is missing in
nearly all cancerous tissues as evidenced by the Boolean
function [53]. The PTGDS gene: Lipocalin-type prosta-
glandin D syntheses (L-PGDS) and prostaglandin D2

(PGD2) metabolites produced by normal prostate
stromal cells inhibited tumor cell growth through a per-
oxisome proliferator-activated receptor gamma (PPAR-
gamma)-dependent mechanism [54]. The SERBP1 gene:
The expression of hepsin, uPA, PAI-RBP1 (SERBP1),
PAI-1, and factor XIII may influence fibrinolysis and are
regulated by the tumour microenvironment [55]. The
LMO3 gene: The protein encoded in this gene is a LIM-
only protein (LMO), which is involved in cell fate deter-
mination. This gene has been noted to up-regulate in the
prostate cancer samples [56]. The DIO2 gene: Subtype II
tumours represent the second clinically aggressive
tumour subclass, and the gene expression feature that
characterizes this subgroup includes several genes identi-
fied in supervised analysis to be associated with both high
grade and advanced stage cancer, such as HDAC9 and
DIO2 [57]. The TARP gene: TARP is exclusively
expressed in the prostate in males and is up-regulated by
androgen in LNCaP cells, an androgen-sensitive prostate
cancer cell line [58]. The HPN gene: Xu L has identified a
pair of robust marker genes (HPN and STAT6) by inte-
grating microarray datasets from three different prostate
cancer studies [59].

In Table 6, we summarize the results from related stud-
ies. Since few studies focus on identifying biologically rel-
evant genes in cancers, we summarize their results based
on the study's computing methods. We then compare all
these 8 gene selection methods, including our two pro-

Figure 4 The average number of hits generated by the random forest method regarding biologically relevant genes in prostate cancer.



Chen et al. BMC Genomics 2010, 11:274
http://www.biomedcentral.com/1471-2164/11/274

Page 14 of 21

Table 5: Functions of the biologically relevant genes found in prostate cancer.

Gene Name Gene Function Evidence References

HPN Plays an essential role in cell growth and 
maintenance of cell morphology.

[59]

S100A4 S100 calcium binding protein A4. [52]

RBP1 Intracellular transport of retinol. [25]

ANGPT1 Appears to play a crucial role in mediating 
reciprocal interactions between the 
endothelium and surrounding matrix and 
mesenchyme.

[50]

COL4A6 Type IV collagen is the major structural 
component of glomerular basement 
membranes (GBM), forming a 'chicken-
wire' meshwork together with laminins, 
proteoglycans, and entactin/nidogen.

[53]

NELL2 Chicken nel-like 2 homolog with a wide 
and weak expression, expressed in adult 
and fetal brain and hemopoietic cells 
(nucleated peripheral blood cells) but not 
in B cells.

[48]

GSTM1 Conjugation of reduced glutathione to a 
wide number of exogenous and 
endogenous hydrophobic electrophiles.

[49]

PTGDS It is likely to play important roles in both 
maturation and maintenance of the 
central nervous system and male 
reproductive system.

[54]

TARP Transmembrane receptor activity. [58]

LMO3 Lim domain only 3. [56]

DIO2 Essential for providing the brain with 
appropriate levels of T3 (3,5,3'-
triiodothyronine) during the critical period 
of development.

[57]

SERBP1 May play a role in the regulation of mRNA 
stability.

[55]

TNFSF10 Induces apoptosis. Its activity may be 
modulated by binding to the decoy 
receptors TNFRSF10C/TRAILR3, 
TNFRSF10D/TRAILR4 and TNFRSF11B/OPG 
that cannot induce apoptosis.

[51]
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posed novel methods, with the results in Table 6. In dif-
ferent cancer types and methods, very few biologically
relevant genes are identified. Our methods, especially our
proposed SVST method, are significantly superior to
these. For example, in the leukemia dataset, the SVST
method identifies 15 biologically relevant genes out of the
top 25 while Covell et al. [60] identifies 11 biologically rel-
evant genes out of the top 68. In the prostate cancer data-
set, the SVST method identifies 13 biologically relevant
genes out of the top 25 while Covell et al. [60] identifies
only 6 biologically relevant genes out of the top 36.
Statistically sound performance comparison among these 8 
methods
As Ambroise and McLachlan [61] point out, the perfor-
mance of a classification method may be overestimated
when using the Leave-out-out method. In this study,
therefore, we verified our experiment using a random

average 3-fold method. This method randomly separates
datasets into 3-folds and chooses one subset among the
three as the validation set used to verify the model. The
remaining two subsets are used as the model's training
sets. The cross validation process is repeated 3 times with
each of the three subsets used once for validation. This
process is then repeated 100 times in order to gain a sta-
tistically impartial performance result for our model. In
order to compare the classification performance of the 8
methods used in the paper, we used the SVM classifier
with the linear kernel function and with default parame-
ter settings.

The performance comparison of these 8 methods is
summarized in Table 7. This table shows the average clas-
sification accuracy (with ranges in the parentheses) after
running experiments for all 8 methods 100 times as dis-
cussed in this paper. For ease of visualization, we also

Table 6: Comparison of related methods and results.

Authors Methods Cancer Type Results

Ben-Tor et al. [27] TNoM Ovarian 4/137 (Among the top 137 
genes, 8 are cancer-related 
genes. 4 genes (GAPDH, SLPI, 
HE4 and keratin 18) are 
ovarian genes.)

Covell et al. [60] SOM Bladder 1/5 (1 out of the top 5 genes is 
a Bladder gene)

Up-regulated in tumor cells 
and down-regulated in 
normal cells

Breast 1/3 (1 out of the top 3 genes is 
a Breast gene)

CNS 5/62 (5 out of the top 62 genes 
are CNS genes)

Colorectal 2/37 (2 out of the top 37 genes 
are Colorectal genes)

Leukemia 11/68 (11 out of the top 68 
genes are Leukemia genes)

Lung 1/4 (1 out of the top 4 genes is 
a Lung gene)

Lymphoma 7/33 (7 out of the top 33 genes 
are Lymphoma genes)

Melanoma 3/12 (3 out of the top 12 genes 
are melanoma genes)

Mesothelioma 0/49 (0 out of the top 49 genes 
is a Mesothelioma gene)

Pancreas 2/9 (2 out of the top 9 genes 
are Pancreas genes)

Prostate 6/36 (6 out of the top 36 genes 
are Prostate genes)

Renal 4/26 (4 out of the top 26 genes 
are Renal genes)

Uterine 1/42 (1 out of the top 42 genes 
is a Uterine gene)
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drew a bar comparison as shown in Figure 5. The results
clearly show the superior performance of our SVST
method. Compared to the other 7 methods, SVST signifi-
cantly improves upon the average classification accuracy
rate from 5% to 30% for leukemia datasets.

The same approach is also applied to prostate cancer
datasets. Table 8 summarizes the performance compari-

son of 8 methods for analyzing prostate cancer datasets.
A bar comparison is also shown in Figure 6. Once again,
our SVST method demonstrates significant improvement
in classification performance compared to 7 alternative
methods. The average classification accuracy rate
increased from 5% to 35% for prostate datasets. The
results imply that the genes selected using the SVST not

Table 7: Statistically sound performance comparison for the leukemia dataset.

Methods 25 genes 50 genes 75 genes 100 genes 125 genes 150 genes

SNR .90(.87 to 1) .93(.87 to .99) .94(.89 to .1) .95(.87 to .99) .94(.88 to 1) .96(.85 to 1)

t-Test .88(.67 to 1) .91(.66 to .99) .91(.69 to .99) .91(.65 to 1) .92(.69 to .99) .92(.64 to 1)

LSD .85(.50 to 1) .88(.53 to .95) .89(.51 to .94) .89(.52 to 1) .87(.54 to .97) .89(.54 to 1)

TNoM .73(.67 to .91) .73(.65 to .90) .73(.66 to .91) .73(.67 to .90) .76(.69 to .92) .75(.67 to .92)

MDMR .91(.79 to 1) .93(.74 to .98) .93(.72 to .96) .94(.78 to 98) .94(.76 to .1) .94(.79 to .99)

WEPO .64(.46 to .79) .61(.51 to .79) .60(.50 to 76) .67(.52 to 81) .69(.50 to .85) .73(.53 to .86)

RFGS .86(.75 to .95) .85(.76 to .98) .85(.75 to .94) .86(.75 to .95) .88(.78 to .99) .86(.73 to .97)

SVST .95(.88 to 1) .98(.87 to .99) .97(.85 to .1) .98(.87 to 1) .98(.88 to .99) .97(.87 to 1)

Figure 5 Statistically sound performance comparison among 8 methods for the leukemia dataset.
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only are more biologically relevant but are also more
informative with regards to the diagnosis and treatment
of both leukemia and prostate cancers.
Preliminary study of gene-gene interaction of biologically 
relevant leukemia genes identified by the SVST method
Due to the superior characteristics of our SVST method
(i.e. identifying a greater number of biologically relevant

genes and yielding better classification accuracy rates),
we would like to further investigate the possible gene-
gene interactions among these biologically relevant
genes. Our hypothesis is that the gene-gene interactions
among these biologically relevant genes, if present, may
provide additional benefits with regards to the diagnosis
of cancers. As a preliminary study, we ran the experiment

Table 8: Statistically sound performance comparison for the prostate cancer dataset.

Methods 25 genes 50 genes 75 genes 100 genes 125 genes 150 genes

SNR .86(.82 to .95) .86(.82 to .95) .85(.80 to .97) .86(.83 to .95) .83(.80 to .93) .84(.82 to .96)

t-Test .80(.67 to .94) .82(.66 to .92) .82(.67 to .90) .81(.67 to .93) .81(.68 to .93) .80(.69 to .95)

LSD .79(.65 to .94) .81(.63 to .93) .81(.62 to .95) .81(.64 to .95) .81(.67 to .94) .82(.64 to .93)

TNoM .65(.53 to .80) .65(.51 to .78) .63(.50 to .79) .65(.53 to .80) .65(.52 to .78) .63(.51 to .81)

MDMR .87(.76 to .95) .84(.75 to .97) .86(.76 to .98) .86(.75 to .97) .87(.78 to .95) .87(.74 to .98)

WEPO .56(.43 to .70) .57(.44 to .69) .67(.53 to .74) .70(.55 to .79) .68(.52 to .75) .73(.64 to .86)

RFGS .80(.65 to .91) .81(.68 to .92) .78(.63 to .91) .82(.68 to .92) .79(.65 to .90) .81(.67 to .92)

SVST .92(.85 to .95) .90(.83 to .96) .91(.84 to .95) .92(.87 to .94) .92(.82 to .95) .93(.81 to .97)
Figure 6 Statistically sound performance comparison among 8 methods for the prostate cancer dataset.
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Table 9: The gene-gene interaction among identified leukemia genes.

Biologically relevant
gene1

Number of interacted
gene

Bridge gene between
gene1 and gene2

Biologically relevant
gene2

ZYX 15 NEDD9 TCF3

ATXN1 CST3

TES SPTAN1

TCF3 47 NEDD9 ZYX

CREBBP HOXA9

CD33 3 PTPN6 CD79A

SRC SPTAN1

CD63 13 HLADRA TCRA

TCRA 15 HLADRA CD63

HSPA5 MPO

SPTAN1 46 ACTB MPO

CASP3 IL18

TES ZYX

SRC CD33

MPO 35 ACTB SPTAN1

HSPA5 TCRA

CST3 9 ATXN1 ZYX

HOXA9 13 CREBBP TCF3

CD79A 16 PTPN6 CD33

MACMARCKS 1 -

CCND3 26 -

PSMB9 13 -

IL18 8 CASP3 SPTAN1

STOM 8 -

Preliminary study of gene-gene interaction of biologically relevant leukemia genes identified by the SVST method
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using 15 biologically relevant genes selected from a leuke-
mia dataset. At first, we screened several protein-protein
interaction (PPI) websites, and we found the IPIR (inte-
grated protein interaction resource, http://
ymbc.ym.edu.tw/ipir/) to be an excellent tool for building
PPI graphs of leukemia gene products. The IPIR is a pow-
erful web tool which retrieves protein-protein interaction
information from BIND, DIP, HPRD, MINT, MIPS, and
IntAct databases.

The protein-protein interaction graph based on the 15
biologically relevant leukemia genes selected using the
SVST method is displayed in Figure 7. The name of each
gene is viewable by expanding the scale of graph. In Fig-
ure 7, we find that 11 biologically relevant genes (marked
in red) out of 15 genes form a PPI graph. To further
understand the relationships among these genes, we sum-
marize the neighbourhood genes and bridge genes in
Table 9. The 11 biologically relevant genes we found
which have interactions are ZYX, TCF3, CD33, CD63,
TCRA, SPTAN1, MPO, CST3, HOXA9, CD79A, and
IL18. Among these 11 genes, TCF3 has the largest num-
ber of interacting genes (47). SPTAN1 has the second
largest number of interacted genes (46), and the remain-
ing 9 genes (with the number of interacting genes shown
in the subsequent parentheses) are: MPO (35), CD79A
(16), ZYX (15), TCRA (15), CD63 (13), HOXA9 (13),
CST3 (9), IL18 (8), and CD33 (3).

There are several sub-networks among these genes. For
instance, the sun-network links ZYX with TCF3, CST3,
and SPTAN1via NEDD9, ATXN1, and TES, respectively
(marked in yellow). The sun-network links TCF3 with
ZYX and HOXA9 via NEDD9 and CREBBP, respectively.
The sun-network links CD33 with CD79A and APTAN1
via PTPN6 and SRC, respectively. The sun-network links
CD63 with TCRA via HLADRA. The sun-network links
TCRA with CD63 and MPO via HLADRA and HSPA5,
respectively. The sun-network links SPTAN1 with MPO,
IL18, ZYX, and CD33 via ACTB, CASP3, TES, and SRC,
respectively. The sun-network links MPO with SPTAN1

and TCRA via ACTB and HSPA5, respectively. The sun-
network links CST3 with ZYX via ATXN1. The sun-net-
work links HOXA9 with TCF3 via CREBBP. The sun-net-
work links CD79A with CD33 via PTPN6. The sun-
network links IL18 with SPTAN1 via CASP3.

Whether the identified PPI graph is the key mechanism
to better classification performance currently remains
unproven and is beyond the scope of this particular
paper. However, our SVST method has the capability to
identify a group of biologically relevant leukemia genes
with a significant gene-gene interaction relationship. We
believe this finding merits further study.

Conclusions
It is difficult in cancer research to identify sensitive and
specific gene markers. In order to overcome problems
caused by high dimensional input spaces, accurate and
efficient gene selection methods are critical. Traditional
selection approaches, however, do not consider the qual-
ity of the samples they analyze, the result of which affects
the selection of biologically relevant genes.

In this paper, we have proposed two novel gene selec-
tion algorithms, the SVST and the RFGS methods. Both
identify more biologically relevant genes concerning leu-
kemia and prostate cancer. The proposed RFGS method
is capable of searching for a global optimal or near opti-
mal subset of genes due to their randomized characteris-
tics. The proposed SVST method first extracts quality
samples (i.e. support vector samples located only on sup-
port vectors) and avoids selecting incorrect genes. These
quality samples are then used to form an optimal subset
of genes that have a better chance to be biologically rele-
vant.

We demonstrate experimentally that our proposed
RFGS and SVST methods identify more genes relevant to
cancers. Our proposed RFGS method has the ability to
identify an average of 9 biologically relevant genes out of
the top 25 genes in both leukemia and prostate cancers.
Our proposed SVST method produces the best results
among all 8 methods. From the top 25 genes selected
using SVST method, we find that 15 are biologically rele-
vant in patients with leukemia and 13 genes are biologi-
cally relevant in patients with prostate cancers. In
contrast to traditional statistical methods, which only
identify 8 or less genes in patients with leukemia and 8 or
less genes in patients with prostate cancer, our methods
yield significantly better results. The significance of iden-
tifying biologically relevant genes cannot be understated;
research in the fields of biology and medicine can benefit
substantially from the identification of biologically rele-
vant genes to confirm recent discoveries in cancer
research or suggest new avenues for exploration.

Figure 7 The gene-gene interaction graph of biologically rele-
vant leukemia genes identified by the SVST method.

http://ymbc.ym.edu.tw/ipir/
http://ymbc.ym.edu.tw/ipir/
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