
1Scientific RepoRts | 6:24954 | DOI: 10.1038/srep24954

www.nature.com/scientificreports

Imaging mass spectrometry for the 
precise design of antibody-drug 
conjugates
Yuki Fujiwara1,2, Masaru Furuta3, Shino Manabe4, Yoshikatsu Koga1, Masahiro Yasunaga1,2 & 
Yasuhiro Matsumura1,2

Antibody-drug conjugates (ADCs) are a class of immunotherapeutic agents that enable the delivery 
of cytotoxic drugs to target malignant cells. Because various cancers and tumour vascular endothelia 
strongly express anti-human tissue factor (TF), we prepared ADCs consisting of a TF-specific monoclonal 
antibody (mAb) linked to the anticancer agent (ACA) monomethyl auristatin E (MMAE) via a valine-
citrulline (Val-Cit) linker (human TF ADC). Identifying the most efficient drug design in advance is 
difficult because ADCs have complicated structures. The best method of assessing ADCs is to examine 
their selectivity and efficiency in releasing and distributing the ACA within tumour tissue. Matrix-
assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) can be used to directly 
detect the distributions of native molecules within tumour tissues. Here, MALDI-IMS enabled the 
identification of the intratumour distribution of MMAE released from the ADC. In conclusion, MALDI-
IMS is a useful tool to assess ADCs and facilitate the optimization of ADC design.

Antibody-drug conjugates (ADCs) are a class of immunotherapeutic agents that enable the delivery of cyto-
toxic drugs to target malignant cells. ADCs passively accumulate in solid tumour tissue through the enhanced 
permeability and retention effect1 and actively accumulate in target malignant cells because of the specific 
antibody-antigen binding2. The selection of a suitable monoclonal antibody (mAb), an anticancer agent (ACA), 
and a linker have supported the clinical success of ADCs3. The ADC strategy should be confined to highly toxic 
ACAs and not applied to ordinary ACAs, such as taxane, adriamycin, and others, because fewer than four ACA 
molecules should be conjugated to the mAb to prevent a decrease in the affinity of the mAb when too many ACA 
molecules are attached4. Monomethyl auristatin E (MMAE) is one of the most useful and potent ACAs for the 
clinical development of novel ADCs5,6. MMAE inhibits cell division by blocking the polymerization of tubulin.

In our laboratory, we have created an anti-human tissue factor (TF) mAb attached to valine-citrulline 
(Val-Cit)-MMAE (human TF ADC) and have reported its antitumour effect against xenografts of a human 
pancreatic cancer cell line, BxPC-37. The Val-Cit-MMAE has been designed for maximum serum stability and 
efficient release into the tumour environment8. Once human TF ADC binds to the target malignant cells, it is 
internalized by endocytosis, and MMAE is theoretically released into the tumour environment through the action 
of the lysosomal enzymes on the linker. TF is a transmembrane glycoprotein involved in the initiation of the 
extrinsic pathway of blood coagulation9, is expressed in various types of cancer, and plays a role in cancer progres-
sion, angiogenesis, tumour growth, and metastasis10. Because pancreatic cancer tissue expresses high levels of TF, 
it is a useful target antigen for this condition11–13.

To optimize the efficacy of an ADC against TF-positive solid tumours, a preclinical pharmacological evalua-
tion of the ADC should be performed to determine whether the human TF ADC has been optimally designed. 
Regarding antitumour effects, ACAs must penetrate the tumour tissue efficiently and be retained there at a high 
and biologically active concentration14,15. For such analyses, high-performance liquid chromatography (HPLC) or 
liquid chromatography mass spectrometry (LC-MS) is generally used. However, these techniques do not provide 
information about the drug distribution in a specific target area, although they allow optimization of the drug 
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design to a certain extent, enabling more efficiently targeted delivery. Autoradiography can be used to examine 
the tissue distribution of radiolabelled small molecules16. However, this method cannot distinguish between a 
radiolabelled drug conjugated to an ADC and free radiolabelled drug released from the ADCs17.

There are two types of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS): 
One type can detect larger molecules18, although it is currently difficult to directly ionize high-molecular weight 
proteins, such as mAbs. The other type, which was used in our study, is specifically designed for low-molecular 
weight substances, such as ACAs. Although it is difficult to determine the distribution of ADCs from a technical 
standpoint, MALDI-IMS is a useful analytical tool for verifying whether the ADCs release their cytotoxic agent 
within the tumour tissues as designed. Mass spectrometry (MS) and tandem MS (MS/MS) do not require label-
ling reagents, and MALDI-IMS can provide accurate maps of the target molecules in tissue specimens directly19.

In this study, we investigated the efficiency of MMAE release from human TF ADCs within tumour tissue and 
the spatial distribution of the released MMAE therein by using MALDI-IMS. The imaging data were acquired 
using a mass microscope capable of analysing low-molecular weight compounds. The MMAE was imaged with 
accurate mass at a pixel size between 10 and 20 μ m.

Results
Visualization of MMAE based on the MMAE-specific MS/MS fragment m/z 496.3 using MALDI-IMS.  
For the application of MALDI to MMAE analysis, α -cyano-4-hydroxycinnamic acid (CHCA) in 75% acetonitrile, 
0.02% trifluoroacetic acid, 2.0-mM sodium acetate and a 1/1000 dilution of aniline were used for crystalliza-
tion. The chemical formula of MMAE is C39H67N5O7, and its monoisotopic mass is 717.504. Three positive-ion 
peaks derived from MMAE were observed by MS analysis: single-charge hydrogen, and the sodium and potas-
sium adducts, denoted as [M +  H]+, [M +  Na]+, and [M +  K]+, respectively (Fig. 1a). The main fragment at m/z 
496.3 was observed when m/z 740.4 was used as a precursor ion in the MS/MS analysis (Fig. 1b). The validation 
of the MMAE distribution in each sample was performed in MS/MS mode, and m/z 496.3 was selected as an 
assigned MMAE-specific fragment peak. The results of the MS and MS/MS analyses of MMAE were summarized 
in Table 1.

Semi-quantitative analysis of MMAE using MALDI-IMS. MMAE was semi-quantitatively detected at 
different concentrations with IMS (Fig. 2a). Then, 0.2-mg/kg MMAE alone was injected intravenously into the 
tail vein of the BxPC-3 xenograft model. The 5.0-mg/mL CHCA solution was applied by pinpoint spray gun to the 
tissue sections. The signals originating from the MMAE were detected in the tumour tissues at 3, 24, and 72 h after 
the administration of MMAE alone. The MMAE signal decreased in a time-dependent manner (Fig. 2b). Tissue 
sections serial to those used for MALDI-IMS were also quantified using LC-MS/MS (Fig. 2c), and the results were 
consistent with the IMS data from MMAE.

Selective detection of MMAE alone over MMAE conjugated to mAb using MALDI-IMS. We 
prepared the human TF ADC and its control ADC, which did not bind the TF antigen, and the drug-to-antibody 
ratio (DAR) of the ADCs was 2–4 (Fig. 3a). The ADCs were crystallized with the CHCA solution. MALDI-IMS 
was performed on the ADC sample and on MMAE alone in MS mode (Fig. 3b,c). The signal intensity of MMAE 
increased in a concentration-dependent manner, and the signal intensity obtained from 1.0 μ L of 1.0-μ M 
MMAE alone was significantly higher than that from 1.0 μ L of 1.0-μ M human TF ADC and the control ADC 

Figure 1. MS and MS/MS of MMAE. (a) To define the MS and MS/MS analyses of MMAE, the matrix, CHCA in 75% 
acetonitrile, 0.02% trifluoroacetic acid, 2.0-mM sodium acetate and a 1/1000 dilution of aniline (10 mg/mL, 1.0 μ L) was 
used for the ionization of the MMAE standard (1.0 μ M, 1.0 μ L). [M +  H]+, [M +  Na]+, and [M +  K]+ were m/z 
718.4, 740.4, and 756.4, respectively. (b) The MMAE-specific MS/MS fragment, m/z 496.3, was determined 
when [M +  Na]+ was used as a precursor ion in the MS/MS analysis.
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(Tukey-Kramer, P <  0.01). The MALDI analysis was capable of distinguishing between MMAE alone and ADCs 
conjugated with MMAE.

Visualization of MMAE released from ADCs in tumour tissues through MALDI-IMS. The signals 
originating from the MMAE released from ADCs were detected in the tumour tissues at 3, 24, and 72 h after the 
administration of the ADCs. The MMAE signal detected following the accumulation of the human TF ADC 
in the tumour tissue was greatest 24 h after administration, compared with the control ADC at the same time 
(Tukey-Kramer, P <  0.01, Fig. 4a,b). Tissue sections serial to those for MALDI-IMS were also quantified with 
LC-MS/MS (Fig. 4c), and the results were consistent with the IMS data from MMAE.

High-resolution MALDI-IMS of MMAE in tumour tissues. To determine the characteristics of the 
MMAE distribution 24 h after the injection of the ADCs, MMAE was imaged at a pixel size of 10 μ m. After 24 h, 
the released MMAE was present at a significantly higher concentration in the cancerous part after the injection 
of the human TF ADC, compared with the control ADC (Fig. 5a,b). The proportion of areas in the cancerous 
parts that contained MMAE after the injection of human TF ADC after 24 h was higher than that in the stroma 
parts (Student’s t-test, P =  0.003). Haematoxylin and eosin (H&E) staining revealed the histology of the BxPC-3 
tumour tissue, which was composed of cancerous and stroma parts. Anti-mouse CD31 immunohistochemistry 
revealed the distribution of vascular endothelial cells in the BxPC-3 tumour tissue sections. CD31 was expressed 
in the stroma parts. Anti-rat IgG immunohistochemistry revealed that the anti-human TF mAb or its corre-
sponding ADC was observed mainly in the cancerous parts. In contrast, the control mAb or its corresponding 
ADC was observed mainly in the stroma parts (Fig. 5c).

Discussion
Nearly 50 individual ADCs are currently being examined in clinical trials, and 62% of the ACAs used for the 
ADCs are auristatin analogues, such as MMAE and monomethyl auristatin F (MMAF)20. Optimized linker 
design is required to release ACAs selectively at tumour sites. To improve the therapeutic window of an ADC, 
efforts have been made to improve linker technology over the past decade. We conducted quantitative and a 
semi-quantitative analyses of MMAE in BxPC-3 subcutaneous tumours by using LC-MS/MS and MALDI-IMS, 
respectively.

Unlike a pharmacological study using conventional tools, such as HPLC and LC/MS, MALDI-IMS can 
provide additional information about the distribution of MMAE in tumour tissues. Despite recent progress in 
MALDI techniques, it remains difficult to ionize macromolecular proteins21,22. The MALDI-IMS technique used 
in our study is specifically designed for low-molecular weight substances. Although we attempted to directly 
ionize the mAb and ADC in the tumour tissue by selective fragmentation with different proteases, it was dif-
ficult to determine MMAE alone, mAb, and ADC. However, our MALDI-IMS technique is valuable for opti-
mizing the ADC. The present study clearly showed that MALDI-IMS can be used to visualize only free MMAE 
without interference from MMAE conjugated to mAb. Thus, MALDI-IMS is a novel evaluation method for the 
semi-quantitative determination of the intratumour distributions of MMAE released by ADCs.

The selection of a proper rational matrix is important to ionize MMAE using MALDI. We tested several 
matrixes, including 2, 5-dihydroxybenzoic acid, 9-aminoacridine, sinapine acid and CHCA, and found that 
CHCA was the optimal matrix for the IMS analysis of MMAE in tumour tissue. A CHCA solution containing 
2.0-mM sodium acetate and aniline promoted the ionization of MMAE to create sodium adducts. According 
to the MS/MS peak in the present study–m/z 496.3, which was selected as an MMAE-specific fragment peak–
MMAE can be observed with high reliability and accuracy in tumour tissues. MALDI-IMS was able to detect 

MS

MMAE

m/z

(a)

[M +  H]+ 718.4

[M +  Na]+ 740.4

[M +  K]+ 756.4

(b)

Precursor ion

[M +  H]+
321.2

506.3

687.4

[M +  Na]+
496.3

682.3

722.4

[M +  K]+
512.2

544.3

698.3

Table 1.  MS and MS/MS of MMAE. (a) The three positive-ion peaks derived from MMAE were observed by 
MS analysis: single-charge hydrogen and sodium and potassium adducts, denoted as [M +  H]+, [M +  Na]+, and 
[M +  K]+, respectively. (b) MS/MS fragments of MMAE determined from each of the three positive-ion peaks 
of MMAE.
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1.0 fmol of MMAE, although the signal intensity was low. However, some aspects of the ionization uncertainty 
might not be captured by MALDI classification and are otherwise difficult to quantify. Further studies examining 
the adequacy of quantification using MALDI-IMS are needed.

The laser beam diameter used corresponded to a spatial resolution of 10 μ m. This resolution allowed us to 
discriminate between the cancerous and cancer stroma parts of tumour tissue. However, cellular-level investi-
gations remain impossible because the diameters of cells are typically 5 to 25 μ m. Thus, improved resolution is 
needed to investigate whether MMAE is located within the tumour cells. However, MALDI-IMS represents a 
step forward, revealing the accumulation of MMAE released from human TF ADCs in the cancerous part. This 
distinctive accumulation of MMAE is reasonable given the high antitumour effects of human TF ADCs against 
the TF-positive BxPC-3 tumour.

In conclusion, MALDI-IMS is expected to be a powerful tool for design optimization of ADCs in the preclin-
ical stage.

Materials and Methods
ADCs. Previously, we have developed several clones of anti-human TF mAb. Clone 1849 rat IgG2b has a high 
affinity for the TF antigen, whereas clone 372 rat IgG2b does not bind the TF antigen at all. Thus, we used clone 
372 as an isotype-control mAb. The Val-Cit-MMAE consisted of a maleimide serving as the connection to the 

Figure 2. Semi-quantitative analysis of MMAE using MALDI-IMS. (a) Only CHCA was used as a negative 
control. From left to right, the concentrations of MMAE were 0.10, 1.0, 10, 100, and 1000 nM. The CHCA 
solution (10 mg/mL, 1.0 μ L) was used for the ionization of each MMAE sample (1.0 μ L). MMAE was semi-
quantitatively detected in a concentration-dependent manner using MALDI-IMS. (b) The yellow rectangles 
on the bright field show the measurement area (2500 ×  2500 μ m). Pixel size, 20 μ m; original magnification, x5; 
scale bar, 200 μ m. The images obtained from m/z 496.3 using MALDI-IMS for MMAE detection in tumour 
tissues are shown as a pseudo-colour image (Red-Purple). The 5.0-mg/mL CHCA solution was applied with 
a pinpoint spray gun. Minimum intensity, 4; maximum intensity, 10. Each merged image superposed the IMS 
image on the measurement area image obtained 3, 24, or 72 h after the administration of MMAE alone.  
(c) LC-MS/MS analysis quantified the MMAE concentration in the tumours 3, 24, and 72 h after the 
administration of MMAE alone. The contents of MMAE in the tumour tissues 3, 24, and 72 h after 
administration were 1155 ±  609, 736 ±  319, and 413 ±  88 fmol/g (mean ±  SD, N =  5 for each group), respectively.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:24954 | DOI: 10.1038/srep24954

mAbs, PEG12 (Quanta BioDesign, CA, USA) to increase the polarity, a Val-Cit dipeptide to trigger cleavage 
by intracellular proteases, and a para-amino benzyl carbamate (PABC) as a self-immolative spacer for efficient 
MMAE release. MMAE (Medchem Express, NJ, USA) was dissolved in dimethyl sulfoxide (10 mM) and stored at 
− 80 °C. The ADCs were produced by reducing the inter-chain disulfide bonds. The DAR of the ADCs was 2–4, 
as determined by the colourimetric measurement of thiol groups in biological samples using Ellman’s reagent, 
DTNB.

Pancreatic cancer cell line BxPC-3 xenograft model. The human pancreatic cancer cell line BxPC-3 
was obtained from the American Type Culture Collection (Manassas, VA). BxPC-3 cells were maintained at 37 °C 
in a humidified atmosphere with 5% CO2 and grown in RPMI-1640 medium (Wako, Osaka, Japan) containing 
10% foetal bovine serum (FBS; Gibco, Grand Island, NY), 100-U/mL penicillin, 100-μ g/mL streptomycin, and 
0.25-μ g/mL amphotericin B (Wako).

Six-week-old female BALB/c nude mice (CLEA Japan, Tokyo, Japan) were used. The anesthetized mice were 
subcutaneously inoculated with 1.0 ×  106 BxPC-3 cells suspended in 100 μ L of phosphate-buffered saline (PBS) 
on the right back. The mice were injected with the agents (MMAE alone, human TF ADC, or control ADC) when 
the tumour volume (TV) reached 350 ±  150 mm3 (5 mice per group, N =  5). The TV was calculated using the 
following formula and the length (L) and width (W) of the subcutaneous tumour: TV =  (L ×  V2)/2. The mice 
were maintained in cages under specific pathogen-free conditions, provided with standard food, and given free 
access to sterilized water.

To evaluate the distribution of MMAE in the tumour tissue, 0.2-mg/kg MMAE alone and 10-mg/kg ADCs 
were injected intravenously into the tail vein. The tumour tissue samples were surgically removed from a xeno-
graft model at 3, 24, or 72 h after the administration of the agents. The samples were wrapped in gauze, frozen in 
dry ice powder, and stored in a − 80 °C freezer until further analysis. For analysis, the samples were sectioned at 
a thickness of 10 μ m and transferred to an indium tin oxide (ITO)-coated glass slide (Sigma, St. Louis, MO), and 
the tissue sections were dried before matrix coating. Continuous sections were stained with H&E (Muto Pure 
Chemicals, Tokyo, Japan) and immunohistochemistry.

The study was approved by the Committee for Animal Experimentation of the National Cancer Center, 
Tokyo, Japan. All animal procedures were performed in accordance with the Guidelines for the Care and Use of 
Experimental Animals established by the Committee. These guidelines meet the ethical standards required by law 
and also comply with the guidelines for the use of experimental animals in Japan.

MALDI-IMS using mass microscopy. The IMS analysis was performed using an atmospheric pressure 
MALDI-ion trap (IT)-time-of-flight (TOF) mass spectrometer (prototype Mass Microscope; Shimadzu, Kyoto, 
Japan). The MALDI-IMS used in our study is specifically designed for detecting low-molecular weight analytes 
(with a mass detection range from m/z 50 to m/z 5,000).

For the application of MALDI to MMAE imaging, CHCA (Nacalai, Kyoto, Japan) in 75% acetonitrile, 0.02% 
trifluoroacetic acid, 2.0-mM sodium acetate and a 1/1000 dilution of aniline were used. To determine the defini-
tion of the MS and the MS/MS analysis of MMAE, 1.0 μ L of a 10-mg/mL CHCA solution was used for the ioniza-
tion of an MMAE standard (1.0 μ L) onto an ITO slide. The mass spectrum was obtained by summing the signal 
intensities in the measurement areas. The CHCA on the tissue section was applied with a pinpoint spray gun (GSI 

Figure 3. Selective detection of MMAE alone over MMAE conjugated to mAb using MALDI-IMS. (a) The 
DAR of the ADCs was 2–4. A CHCA solution (10 mg/mL, 1.0 μ L) was used for the ionization of mAbs (1.0 μ M, 
1.0 μ L), ADCs (1.0 μ M, 1.0 μ L) and MMAE (1.0 and 3.0 μ M, 1.0 μ L). (b) The mass spectrum of human TF 
ADC (1.0 μ M, 1.0 μ L) is indicated. (c) The intensities (m/z 740.4) of the mAbs, ADCs, and each MMAE sample 
were measured with MS (Tukey-Kramer, **P <  0.01, N =  3 for each group). The intensity was expressed as the 
mean ±  SD. Pixel size, 20 μ m; measurement area, 200 ×  200 μ m.
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Creos, Tokyo, Japan). Then, a 5.0-mg/mL CHCA solution was used for the ionization of the tissue samples. The 
total amount of CHCA per ITO slide was 30–35 mg.

MS and MS/MS analyses were performed in positive-ion mode within a mass range of m/z 150–770 for 
MMAE, with spatial resolutions of 10 and 20 μ m. The laser was modulated to 80–160 shots/spectrum with a 
frequency of 400–800 Hz, and the laser power was set to 50–65 using the Mass Microscope operation software. 
The MS/MS analysis was performed with the collision-induced dissociation (CID) function of the quadruple 
ion trap cell on the Mass Microscope. The m/z 496.3 fragment ion was generated when [M +  Na]+ was used as a 
precursor ion in the MS/MS analysis. The MMAE distribution mapping was performed using BioMap (Novartis, 
Basel, Switzerland) with the m/z 496.3 fragment ion signal obtained by MS/MS analysis. The non-treated BxPC-3 
tumour tissues were used as a negative control to determine the baseline of the MS/MS analysis. The IMS data are 
shown as pseudo-colour images (Red-Purple). The baseline intensity had a value of 3; therefore, the minimum 
intensity was set to 4. To achieve a visible IMS signal, the maximum intensity was set to 10. The ratio [%] of the 
areas occupied by MMAE [μ m2] to the whole measurement areas [μ m2] in the tumour tissues was measured with 
ImageJ software23.

LC-MS/MS. The samples were analysed using a liquid chromatograph tandem mass spectrometer API3200 
LC-MS/MS system (AB SCIEX, Framingham, MA). The analytical column, a reversed-phase LC column (4.0 μ m 

Figure 4. Visualization of MMAE released from ADCs in tumour tissues using MALDI-IMS. (a) H&E 
staining is shown in the left column (original magnification, x5). The yellow rectangles on the bright field show 
the measurement area (2500 ×  2500 μ m). Pixel size, 20 μ m; scale bar, 200 μ m. (a,b) The images obtained from 
m/z 496.3 using MALDI-IMS for detection of MMAE in tumour tissues are shown as pseudo-colour images 
(Red-Purple). The 5.0-mg/mL CHCA solution was applied with a pinpoint spray gun. Minimum intensity, 4; 
maximum intensity, 10. Each merged image was superposed with the IMS image on the measurement area 
image obtained 3, 24, and 72 h after the administration of the ADCs. At 24 h after the administration of the 
ADCs, the accumulation of MMAE released from human TF ADC was visibly higher than that of the control 
ADC. (c) The contents of MMAE in the tumour tissues 3, 24, and 72 h after the administration of the control 
ADC were 985 ±  500, 504 ±  222, and 92 ±  31 fmol/g (mean ±  SD, N =  5 for each group), respectively. The 
contents of MMAE in the tumour tissues 3, 24, and 72 h after the administration of the human TF ADC were 
785 ±  354, 2399 ±  637, and 353 ±  125 fmol/g (mean ±  SD, N =  5 for each group), respectively. There was a 
significant difference between the contents of the control ADC and human TF ADC 24 h after administration 
(Tukey-Kramer, **P <  0.01, N =  5 for each group).
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polar, 80 Å; 50 ×  3.0 mm, Synergi; Shimazu), was heated to 40 °C. The injection volume was 10 μ m, and the flow 
rate was 0.4 mL/min. The autosampler was equipped with a cooling stack set at 4 °C. Acetonitrile and a 0.1% (w/v) 
formic acid solution were used as the mobile phases. For the gradient elution, the mobile phase composition 
was as follows: 5% acetonitrile for 1.0 min, increased to 40% for 2.0 min, increased to 100% for 2.0 min, main-
tained at 100% for 2.0 min, and then decreased back to 5.0% for 2.0 min. The mobile phase was introduced into 
the spectrometer via electrospray ionization in positive-ion mode under multiple reaction monitoring (MRM) 
conditions. The MRM transitions were used for MMAE (m/z 718.4/152.2) and MMAF as an internal standard 
(m/z 732.4/170.3). The standard curve had a linear range from 0.10 nM to 100 nM. Samples from the non-treated 
BxPC-3 tumour tissues were used as a negative control.

Immunohistochemistry. The 10-μ m frozen sections were fixed with 4% paraformaldehyde (Wako) for 
10 min. To block endogenous peroxidase, 3% hydrogen peroxide for 20 min was used. After being blocked with 
3% skim milk in PBS for 30 min, the sections were incubated with an anti-rat IgG goat antibody (Histostar; 
MBL, Nagoya, Japan) for mAb/ADC according to the manufacturer’s instructions. The continuous sections 
were incubated with an anti-mouse CD31 goat antibody for vascular endothelial cells (10 μ g/mL; R&D Systems, 
Minneapolis, MN) for 1 h at room temperature. After being washed with PBS, the sections were incubated with a 
horseradish peroxidase (HRP)-conjugated anti-goat IgG antibody (Jackson IR, West Grove, PA) according to the 
manufacturer’s instructions. Counterstaining was performed using haematoxylin. Negative controls included the 
replacement of the primary antibody by PBS and isotype antibodies.

Figure 5. Distribution of the MMAE released from ADCs in tumour tissues. Original magnification, x10. 
The yellow rectangles on the bright field show the measurement area (1200 ×  1200 μ m). Pixel size, 10 μ m; scale 
bar, 100 μ m. The blue curved lines show the borders between the cancerous and stroma parts in the BxPC-3 
tumour tissues. The MMAE images in the tumour tissues obtained from m/z 496.3 using MALDI-IMS are shown 
as pseudo-colour images (Red-Purple). The 5.0-mg/mL CHCA solution was applied with a pinpoint spray gun. 
Minimum intensity, 4; maximum intensity, 10. The merged images show the superposition of the IMS images on 
the measurement area image obtained 24 h after the administration of the ADCs. The red region of the merged 
images indicates the cancerous parts. (a) At 24 h after the administration of the human TF ADC, MMAE was 
distributed predominantly within the cancerous tissues. (b) The accumulation of MMAE within the cancerous 
parts was higher than that within the stroma parts in the BxPC-3 tumour tissues (Student’s t-test, **P =  0.003, 
N =  3 for each group). (c) Immunohistochemistry (mouse CD31 and IgG/ADC) revealed the distributions of the 
vascular endothelial cells and IgG on the corresponding ADCs, and H&E staining is shown in the left column.
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Statistics. Measured differences were considered significant at P <  0.05. For the quantification of MMAE 
using LC-MS/MS, statistical significance was determined using the Tukey-Kramer multiple comparison test. To 
distinguish between MMAE alone and MMAE conjugated to a mAb, statistical significance was determined using 
the Tukey-Kramer multiple comparison test. For the high-resolution MALDI-IMS of MMAE in tumour tissues, 
statistical significance was determined using the two-sided Student’s t-test. The bar graph data were expressed 
as the mean ±  standard deviation (SD). The error bars indicated the SD. The statistical analyses were performed 
using Statcal QC (The publisher OMS, Saitama, Japan).
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