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Carbon removed from the atmosphere by photosynthesis is released back by respiration.
Although some organic carbon is degraded quickly, older carbon persists; consequently
carbon stocks are much larger than predicted by initial decomposition rates. This disparity
can be traced to a wide range of first-order decay-rate constants, but the rate distributions
and the mechanisms that determine them are unknown. Here, we pose and solve an inverse
problem to find the rate distributions corresponding to the decomposition of plant matter
throughout North America. We find that rate distributions are lognormal, with a mean
and variance that depend on climatic conditions and substrate. Changes in temperature
and precipitation scale all rates similarly, whereas the initial substrate composition sets the
time scale of faster rates. These findings probably result from the interplay of stochastic pro-
cesses and biochemical kinetics, suggesting that the intrinsic variability of decomposers,
substrate and environment results in a predictable distribution of rates. Within this frame-
work, turnover times increase exponentially with the kinetic heterogeneity of rates, thereby
providing a theoretical expression for the persistence of recalcitrant organic carbon in the
natural environment.
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1. INTRODUCTION

Greater than 90 per cent of the carbon dioxide input to
the atmosphere–ocean system each year derives from
the natural decay of organic carbon [1,2]. Decay is het-
erogeneous in space and time: organic molecules vary in
lability [3,4]; micro-environmental heterogeneity such
as the aggregation of minerals in soil and sediments
interfere with degradation [5]; humification and repoly-
merization [4,6] result in polymers that are difficult
to degrade; and decomposer communities are diverse
and varied [4,7]. Physical and chemical changes in
local environment [8] can speed up or prevent decom-
position altogether. Spatial heterogeneity of soil
nutrient concentrations at the meter scale [9] may also
influence degradation rate heterogeneity. Combined,
these diverse effects yield kinetic heterogeneity: older
compounds appear to decay at slower rates than
younger compounds [10,11], and carbon stores and
their turnover times are larger than predicted from
initial decomposition rates [12].

The sizes of the organic carbon stores and their rates
of turnover are required for quantifying feedback
between climate and the carbon cycle [13,14] in order
to predict changes in carbon dioxide levels and cli-
mate [1,2,8,15]. Because decay time scales vary
widely, from minutes to millions of years, estimates of
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carbon stocks and turnover times require knowledge of
all decay rates, from fast to slow [16,17]. However,
rate distributions and the mechanisms that determine
them remain unknown. Identification of rate distri-
butions should provide insight, not only for predictive
purposes [17–19] but also for understanding the
ecological dynamics [20] of decomposition.

Because the wide range of time scales makes it
impossible to directly measure decay over all phases of
decomposition, we focus on plant litter decay and
early transformations to young soil organic matter.
Specifically, we investigate measurements from the
Long Term Intersite Decomposition Experiment Team
(LIDET) study [2,12,21–23]. This study monitored
the decomposition of 27 different types of litter, includ-
ing needles, leaves, roots, wood, grass and wheat
distributed among 28 different locations across North
America ranging from Alaskan tundra to Panamanian
rainforests. Litter was collected and then
re-distributed in litter bags at different sites in order
to investigate the effect of composition, ecosystem and
climatic parameters on decomposition. Litter bags
were collected and analysed at least once per year for
up to 10 years. We show how to estimate kinetic hetero-
geneity from these observations of decay. We also
analyse how these rate distributions are related to
climatic conditions and litter composition.

The remainder of this paper is organized as follows. In
§2, we pose and solve an inverse problem to find the rate
distributions corresponding to the decomposition of
This journal is q 2012 The Royal Society
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plant matter from the LIDET study. We then show in §3
that the distributions are lognormal on average. Sub-
sequently, in §4, we show how the two parameters of
the lognormal distribution depend on composition and
environment. In §5, we derive the relation of these par-
ameters to the turnover time of carbon stocks. These
results show that turnover times grow exponentially as
the heterogeneity of rates increase, thereby highlighting
the dependence of carbon stocks on their slowest rates
of decay [17].
2. DISORDERED KINETICS

Organic matter decomposition may be viewed as the
relaxation of a kinetically disordered system. In this sec-
tion, we specify a model for the influence of disorder on
decay. We then describe how we invert it to obtain a
distribution of decay rates.

2.1. Model

We suppose that decay rate constants k derive from sto-
chastic reactions between heterogeneous substrates and
ecological communities in a random environment. We
describe this scenario using a ‘static’ model of ‘disor-
dered kinetics’ [24–26]. In this model, the mass g(t) is
a decreasing function of time that derives from a con-
tinuous superposition of exponential decays e2kt

weighted by the probability pðkÞdk that the rate con-
stant k is present at the onset of decay. Given these
assumptions, decay proceeds as

gðtÞ
gð0Þ ¼

ð1

0
pðkÞe�ktdk; ð2:1Þ

where p(k) � 0 and
Ð1

0 pðkÞdk ¼ 1. Models similar or iden-
tical to equation (2.1) have been previously employed to
describe organic matter decay [17–19,27–33]. When the
distribution p(k) is discrete, the integral in equation (2.1)
becomes a sum known as a ‘multi-G’ or ‘multi-pool’
model [21,34,35]. Although equation (2.1) lacks detailed
mechanisms of the processes involved in decomposition,
its simplicity and common application suggest that it is a
reasonable first attempt at characterizing decomposition
dynamics. Dispersion of the rates k in this model are prob-
ably associated with variations in the quality of plant-
matter compounds [36,37], which range from highly labile
simple sugars to more refractory lignin, waxes and phenolic
compounds [35]; local spatial heterogeneity in soil moisture
andnutrients [9]; chemical transformationof compounds [6]
and decomposer and metabolic diversity [38,39]. Rather
than attempting a detailed characterization of these
individual mechanisms, we simply seek the distribution
of rates associated with the minimal description of
decomposition given by equation (2.1).

Although equation (2.1) represents a system of paral-
lel steady decays, decomposition also involves temporal
disturbances and serial processes. However, serial trans-
formation processes can be mathematically expressed as
parallel decays [17]. Regarding temporal fluctuations,
we interpret the steady distribution p(k) as the prob-
ability that decay occurs at an effective first-order
rate k that is averaged over seasonal and other disturb-
ances [17]. We also note that if the difference between
J. R. Soc. Interface (2012)
the time scales of two serial processes is large, the
system effectively relaxes at the time scale of the
slower process. For example, the degradation time
scale of a particle attached to a mineral surface may
be much larger than the duration of the transient
period before attachment; similarly, the time scale of
humification is probably short relative to the lifetime
of the slowly degrading humic substance [17]. Decompo-
sition may be approximated as proceeding initially from
the mineral-associated or humic state [17]. A conse-
quence of a parallel decay model is that resulting
decays g(t) are convex (concave-up). Specifically, any
completely monotone decay g(t)/g(0) can be described
by a linear superposition of rates weighted by a
probability density function p(k) [40].

We also note that the ‘random rate model’ [24] rep-
resented by equation (2.1) has been commonly used to
solve problems involving heterogeneous relaxation in
other fields. Examples include nuclear magnetic reson-
ance (NMR) spin decay [41,42], protein state
relaxation [43], as well as dielectric, luminescent and
mechanical relaxations [24–26].

2.2. Inverse problem

Under certain physical conditions, distributions p(k) of
reaction rates can be calculated analytically [24,27,28]
and evaluated by comparing g(t) to experimental
data. However, given the complex nature of decompo-
sition, purely physical models may not be appropriate.
We therefore seek to identify the distribution that
best fits the data without resorting to assumptions
beyond those implied by equation (2.1). Once the best
distribution is found, physical reasoning then allows
the identification of mechanisms that can generate
this distribution.

Mathematically, equation (2.1) is a Laplace trans-
form and p(k) can be found from its inverse. However,
the inverse Laplace transform is ill-posed [44], meaning
that small changes in the data g(t) can result in large
changes in the solution p(k). A standard method to
solve such ill-posed problems is to seek solutions p(k)
that are minimally ‘rough’ [44]. Here, we use Tikhonov
regularization [44,45] to identify an optimally smooth
p(k) that best fits the data (§2). Such methods have
been previously applied to problems of NMR spin relax-
ation [41] to probe the structure of porous media [46,47]
and the properties of biological tissue [42].
3. RATES ARE DISTRIBUTED
LOGNORMALLY

We apply this procedure to litter decomposition data
from the LIDET study. An example of decay from an
LIDET dataset is shown in figure 1a. The corresponding
estimate of the rate distribution in logarithmic space,
expressed as rðxÞ ¼ p½kðxÞ�dk=dx, where x ¼ ln k, is
shown in figure 1b. The rate k is rescaled by the period
of seasonal forcing (1 year) and is therefore non-dimen-
sional. The good fit of r(ln k) to a Gaussian indicates
that the distribution of rates is lognormal, characterized
by the parameters m and s, where m is the mean of ln k
and s2 is the variance of ln k.
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Figure 1. Rate distributions of plant-matter decay. (a) Litter decay from a LIDET dataset. Circles are data points. The curve is
the predicted decay corresponding to the forward Laplace transform of the solid (blue) curve in (b). (b) Solid curve (blue) is the
solution r(ln k) to the regularized inverse problem. Dashed curve (red) is a Gaussian distribution fit to r(ln k). s2 is the variance
of the Gaussian and m is its mean. (c) (b) shows just one inversion, whereas the solid curve (blue) is the average of the 182 sol-
utions r(ln k) having non-zero variance, each rescaled by the dataset-dependent parameters m and s. Dashed curve (red) is a
Gaussian with zero mean and unit variance. The shaded area contains the middle 68% of the numerical inversion results.
(d) Logarithmic transformation of the results of (c), where the dashed (red) straight lines indicate an exact lognormal
distribution.
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To investigate the extent to which the lognormal dis-
tribution applies to the remainder of the LIDET data,
we identify the 234 LIDET datasets that contain at
least five measurements with replicates. These datasets
contain 11 different litter types distributed among 26
sites. We then employ several tests on each of these
234 datasets to check whether equation (2.1) is an
appropriate description of these datasets. First, we
find that seven of these datasets show insignificant
mass loss between the first and last field measurement,
rendering equation (2.1) irrelevant. Six of these datasets
are associated with root decay, suggesting that roots
can persist for long times in certain conditions.

We next identify the datasets that decay faster than
exponentially, counter to the assumption of first-order
kinetics and a superposition of exponential decays. We
use two tests to identify these datasets. First, we check
the curvature of the datasets and find that nine of the
datasets have negative curvature (concave-down). Such
superexponential decay cannot be consistent with the
Laplace transform relation (2.1) [40]. These datasets
are primarily located at sites having low precipitation,
J. R. Soc. Interface (2012)
indicating that decay dynamics may be limited by moist-
ure or decomposer activity, rather than substrate
availability. Second, we apply our inversion procedure
to the remaining datasets and find that three datasets
have a significant trend in the residual error. These data-
sets decay faster than exponentially, but are not concave
down. All three of these datasets are associated with
wood decay. In summary, our tests disqualify 7 þ 9 þ
3 ¼ 19 datasets from further consideration. Further
details of the tests are given in appendix A.1.

Of the remaining 215 datasets, our inversion pro-
cedure indicates that 33 datasets are characterized by
a single rate constant and decay exponentially.
Guided by the result of figure 1b, we then fit a Gaussian
to the 182 estimates of r(ln k) exhibiting a non-zero
variance and rescale each by the fitted parameters m

and s. We plot the mean of the rescaled distributions
in figure 1c. Although there is scatter and skew
among the individual estimates of r(ln k), figure 1c
shows that the mean of the rescaled distributions of
ln k is very similar to a Gaussian distribution. Because
the 33 single-rate datasets correspond to a lognormal
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distribution with zero variance, our results indicate that
the lognormal represents the average rate distribution
of the 215 datasets for which the model (2.1) applies.

Lognormally distributed variables arise naturally
from multiplicative stochastic processes [48]. Here, log-
normally distributed rates may result from the
multitude of seemingly stochastic requirements for
decomposition, such as the presence of water, the pres-
ence of an appropriate microbe, the lack of predation,
the conditions for expression of hydrolytic enzymes,
the encounter of enzymes with the organic matter,
etc. [6]. More generally, the probability of completing
any task that relies on the successful completion of
many subtasks is lognormal [49]. In this context, the
lognormal can be viewed as a null hypothesis in which
decomposition rates result from the occurrence of a
large number of independent decay requirements [6].
Mathematically, if we assume that the probability P
of decomposing a parcel of organic matter over a time
span Dt is the product of independent probabilities of
satisfying various requirements for decay over that
interval, then the first-order rate constant k ¼ P/Dt
becomes asymptotically lognormal as the number of
requirements increases. In this manner, the multiplica-
tive stochasticity of a decay system results in the
lognormal distribution. This general description
suggests that attempts to precisely model the individual
mechanisms that stochastically interact to form this
broader pattern would be overly complex. It also
agrees with the idea that decay rates are the product
of many compositional and environmental effects [22].

Previously suggested forms of the rate distribution
p(k) are the gamma distribution [17,27] and the log-
uniform distribution [28]. The log-uniform distribution,
for which r(ln k) is constant and pðkÞ/ 1=k between
prescribed limits, approximates the lognormal when
ðln k � mÞ=2s2 � 1 [49]. Moreover, its Laplace transform
asymptotically approaches the Laplace transform of the
lognormal distribution as s! 0. The gamma distri-
bution, however, differs significantly from the lognormal.
We find that the lognormal distribution predicts both
the data g(t) and describes the inferred rate distribution
p(k) better than the gamma distribution for 177 out of
215 datasets (electronic supplementary material, §2).
We have also compared the lognormal to exponential
and multi-pool models. Because our inversion procedure
indicates that only 33 of 234 datasets are described by a
simple exponential decay, we find that simple exponential
decays are generally under-parametrized for describ-
ing litter decay datasets, consistent with previous
studies [12,35]. The best fitting type of multiple pool
model varies widely among the datasets, with no single
model type describing all datasets [12,50]. A universal
multiple pool model, containing pools of various types
(leached, labile, refractory, inert, etc.), would be over-
parametrized. Furthermore, the number of pools and
rates associated with each pool are sensitive to noise,
as different combinations of pools can represent the
same decay [51,50]. This sensitivity makes understand-
ing the constitutive relationships between pools and
environmental and compositional parameters difficult [31].

An advantage of the lognormal is that it parametrizes
decay by only two variables, m and s. We proceed in §4
J. R. Soc. Interface (2012)
to identify relations between the lognormal parameters m
and s, and the climatic and compositional parameters
associated with the LIDET study.
4. CONTROLS ON THE LOGNORMAL
PARAMETERS

We seek an understanding of the controls on m (the
mean order of magnitude of rates) and s 2 (the variance
of those orders of magnitude). Before analysing all 215
estimates of these parameters, we identify values of m
and s that are highly uncertain by disregarding the
small fraction of datasets having anomalously long
turnover times t. Assuming a soil carbon store is in
steady state with a constant litter input, its turnover
time t is equal to its mean residence time [52], which
in the random-rate model (2.1) equals the mean time
constant kk�1l [31]; thus

t ¼ kk�1l ¼
ð1

0
k�1pðkÞdk: ð4:1Þ

After evaluating the turnover times associated with all
215 datasets using equation (4.1), we find that there is a
distinct group of datasets associated with excessively
long turnover times greater than 1000 years
(figure 5). These datasets contain a significant mass
fraction that is effectively inert, having unknown
decay dynamics. Extrapolating the kinetics of such
slow processes therefore has considerable uncertainty.
There are 24 datasets in this outlying cluster. These
data are typically associated with root decay at certain
locations (table 2), suggesting that the soils of certain
ecosystems can enable the persistence of roots for long
times. We do not consider these 24 datasets in our sub-
sequent analysis of m and s. Further discussion of these
outliers can be found in appendix A.1.

Owing to the nature of the LIDET study, many
different litter types were placed at the same site and
we therefore have many estimates of m and s at each
value of temperature, precipitation and other climatic
variables. Similarly, because each litter type was
planted at many sites, there are many different esti-
mates of m and s for each value of initial lignin
concentration, nitrogen concentration, etc. In the fol-
lowing section, we study how the average values �m and
�s of the lognormal parameters m and s vary with
measured independent variables such as temperature,
lignin, nitrogen, etc. When analysing the effects of cli-
matic variables, �m and �s represent the averages over
all litters at each site, and when analysing the effects
of compositional variables, �m and �s represent the
averages over all sites where the litter was deployed.
Similarly, s2 represents the average variance s2, and �t
represents the average turnover time, etc. Analagous
depictions of the unaveraged data can be found in
appendix A.3.
4.1. The mean m

We first investigate how climatic conditions and compo-
sition affect �m. Figure 2a shows a significant positive
correlation between �m and temperature. From this



Table 1. Spearman rank correlation coefficients rs of field experiment parameters versus �m (left columns) and �s (right
columns). (p-values are based on number n of samples used in the rank correlation (final column).)

�m �s

parameters rs p rs p n

precipitation 0.63 2E� 3 �7E� 3 0.93 22
temperature 0.62 2E� 3 20.13 0.56 22
latitude 20.51 0.02 0.11 0.62 22
actual evapo-transpiration 0.72 1E� 4 0.11 0.62 22
potential evapo-transpiration 0.42 0.05 20.18 0.41 22
climate decomposition index [21] 0.88 8E� 8 20.02 0.88 22
C/S 20.71 0.02 20.87 9E� 4 11
C/N 20.77 8E� 3 20.85 2E� 3 11
C/P 20.45 0.17 20.48 0.14 11
K 0.65 0.03 0.55 0.09 11
lignin 20.78 7E� 3 20.71 0.02 11
lignin/N 20.89 4E� 4 20.92 0 11
ash 0.68 0.03 0.75 0.01 11
metal 0.63 0.04 0.43 0.18 11
tannin 0.36 0.27 0.25 0.45 11
water soluble 0.52 0.1 0.47 0.15 11
water soluble carbohydrate 0.32 0.34 0.35 0.30 11
cellulose 20.39 0.24 20.41 0.22 11
non-polar extractive 20.23 0.50 20.37 0.26 11
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Figure 2. Plots of the lognormal parameters �m and s

versus experimental variables. (a) �m versus mean annual
temperature. The Spearman rank-correlation coefficient rs

indicates a significant positive trend (rs ¼ 0.62, p ¼ 0.002,
n ¼ 22). (b) �m versus the initial litter lignin-to-nitrogen ratio
‘/N (rs ¼ 0.89, p ¼ 0.004, n ¼ 11). (c) �s versus mean annual
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trend, we find that the median decomposition rate e�m

increases by a factor Q10 ¼ 2.0+ 0.3 (1 s.d.) with a
108C increase in temperature, in agreement with pre-
vious estimates [2]. All other measured and synthetic
climatic parameters also significantly correlate with �m,
with the climate decomposition index [21,22] exhibiting
the highest correlation (table 1).

The parameter m is also related to composition:
figure 2b shows that �m decreases as the initial lignin-
to-nitrogen ratio (‘/N) increases. The observed trend
indicates that increases in the lignin concentration, a
refractory component of plant matter, are associated
with a reduction in �m, while increases in organic nitro-
gen, an important nutrient for microbial decomposers
[36,37], are associated with an increase in �m. This is con-
sistent with the use of ‘/N as a measurement of litter
quality [6,21,22,53]. The carbon-to-nitrogen ratio
(C/N) and other nutrient measures are also correlated
with �m (table 1). Concentrations of lignin, N, S, P,
etc., represent initial values associated with each type
of litter. Figure 2b also indicates that needles have
lower values of �m than leaves. This effect, however,
may be related to the difference in ‘/N between the
two tissue types.
temperature shows no significant relation (rs ¼ 20.13, p ¼
0.56, n ¼ 22). (d) �s versus ‘/N (rs ¼ 0.92, p , 1025, n ¼
11). The colour of data points in panels (b,d) indicates
tissue type: roots (blue), leaves (red), needles (green), wood
(black) and wheat (cyan). The data in (a,c) represent 22
sites containing at least six different litters each, while the
data in (b,d) represent 11 different litter types planted in at
least four different locations. Error bars represent one s.d. of
the mean.
4.2. The variance s2

We next investigate the relation of climatic conditions
to the heterogeneity of decomposition rates, represented
by s. Figure 2c shows that temperature has no signifi-
cant effect on �s. Moreover, �s is uncorrelated with all
climatic parameters monitored in the LIDET study
(table 1); thus climatic conditions appear unrelated to
s. We therefore find no evidence from the decadal
LIDET data that the Q10 of refractory components is
significantly different than the Q10 of labile com-
ponents. This supports respiration models such as
J. R. Soc. Interface (2012)
CENTURY [16,54], which uses the same temperature
and soil moisture factor for each pool of organic
matter, independent of lability. We note that if rate
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dispersion reflects the variation in activation energies of
decay processes [55], then Arrhenius kinetics suggest
that s only slightly decreases with temperature over
the 358 temperature range associated with the LIDET
sites. This is consistent with the data presented
in figure 2c, but the wide variation in �s indicates
that this trend is not significant and that kinetic
heterogeneity is controlled by other variables.

Although �s exhibits no relation to climate, it does
vary with composition. Figure 2d indicates that �s
decreases as the initial lignin-to-nitrogen ratio (‘/N)
increases. Because ‘/N correlates negatively with �m,
decreasing the ratio of these components tends to
both shift and stretch the rate distribution, increasing
the rate constants k of the faster decay processes,
while the rate constants of slower, more refractory pro-
cesses are relatively unchanged. Nutrients such as N
and S, and to a lesser extent P and K, exhibit similar
relationships with �m and �s (table 1). Physically, these
relationships indicate that nutrient limitation is present
at early times as faster processes appear to depend
strongly on the nutrient content of the litter. Slower,
more refractory processes take place at rates probably
sustained by the transport and immobilization of
nutrients from the surrounding soil [53] and are not
nutrient-limited. In fact, increased nitrogen content
may inhibit the degradation of transformed plant com-
pounds [6], widening the slow tail of the distribution
and increasing s. Lignin, on the other hand, may
reduce the rate constants k of more labile compounds
by shielding them via a ligno-cellulose polymer
matrix [21], suggesting that ‘/N measures a resistivity
to initial decay. The effect of ‘/N on �s also appears
to saturate at low ‘/N, suggesting that these mechan-
isms lose control after crossing a threshold [6] of high
N or low lignin content is reached. We also observe in
figure 2d that roots and leaves tend to have higher �s
than needles, yet the effect of ‘/N on �s appears less
strong for roots and wood, both of which decompose
underground. Roots and wood do however follow the
trend of �m versus ‘/N, suggesting that the effect of
initial composition may persist over time in roots and
wood, effecting a wider portion of their rate distri-
bution, not just the fast rates. This behaviour may be
related to components in their tissues, underground
decomposition or both.

Collectively, the results of figure 2 and table 1
suggest that climate variability changes the median
rate of decay, em, whereas the variance of decay time
scales, s2, appears to be a property of the litter
sample itself and its relationship to the decomposer
community inhabiting it.
4.3. Further trends

Table 1 identifies additional correlations between cli-
matic, compositional and the lognormal parameters.
Sulphur, another important microbial nutrient, is
highly correlated with both �m and �s. Potassium exhibits
a similar trend as well. The causality of the trends in
table 1 however is not always clear. For example, ash
also has a significant positive correlation with both �m
and �s. However, this is most probably explained by
J. R. Soc. Interface (2012)
the strong rank correlation (r ¼ 0.89) between ash and
sulphur, as well as a strong correlation between ash
and metals which also have a positive correlation with
�m and weak correlation with �s. Ash is composed of sul-
phates, K, P, Ca and other metals [4]. Phosphorus
surprisingly does not show as strong a signal as N or
S and its large p-values suggest that trends with �m and
�s may not be significant. It is possible that the initial
phosphorus concentrations may contain errors because
phosphorous, as with N, S, K and Ca, is present in
lower concentrations in conifer needles than in decid-
uous leaves [56]; the values of phosphorus measured in
the needles and leaves of the LIDET study do not
follow this pattern. Metals contain some important
rare nutrients for microbial decomposers; we find that
they are more significantly correlated with �m than �s.
The lack of a significant trend for organic compound
types (other than lignin) is also surprising, as we
would expect water soluble carbohydrates to affect
faster decomposition time scales, and cellulose to also
play a role in dynamics.

Latitude, used as a proxy for the variability in seasonal
temperature, does not show a correlation with �s, indicat-
ing that temporal fluctuations in temperature do not
contribute to the rate heterogeneity. A comparison of
average monthly temperature and precipitation data with
�s also supports this finding. This result provides further
evidence that rate heterogeneity is set by non-climatic
factors, and that climate scales the time scale of both
labile and refractory processes roughly equally.
5. SCALING UP TO THE CARBON CYCLE

The heterogeneity of decomposition rates has strong
implications for the dynamic properties of carbon stocks.
The derivative of equation (2.1) at t¼ 0 reveals that

_gð0Þ
gð0Þ ¼

ð1

0
kpðkÞdk ¼ kkl: ð5:1Þ

Equation (5.1) states that the effective initial rate of
decay is the mean rate constant [31] because all com-
ponents are initially present. When p(k) is lognormal,

kkl ¼ emþs
2=2: ð5:2Þ

The mean kkl is exponentially greater than the median
em because of the heavy tail of p(k). A similar amplifica-
tion acts to exponentially increase the turnover time t

to values much greater than e�m. Using equation (4.1)
and assuming p(k) is lognormal, one finds

kk�1l ¼ e�mþs
2=2

¼ kkl�1es
2
: ð5:3Þ

These relations show that rate heterogeneity has a pro-
found effect: kkl�1 underestimates t by a factor that
grows exponentially with the variance s2. As the distri-
bution widens, fast rate-constants weigh heavily on the
calculation of kkl, whereas slower rate-constants set the
mean residence time kk�1l. The upshot is that both
the size of organic carbon stocks (proportional to t in
the steady state) and the time scale of the transient
response to a disturbance (also related to t) grow
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Figure 3. The effect of composition on the initial decomposition rate kkl and the turnover time t. The colour of data points
indicates the tissue type: roots (blue), leaves (red), needles (green), wood (black) and wheat (cyan). (a) ln kkl versus the initial
lignin-to-nitrogen ratio ‘/N exhibits a strong negative correlation (rs ¼ 20.85, p ¼ 0.002, n ¼ 11). (b) Turnover time ln t

versus ‘/N shows no significant correlation (rs ¼ 0.36, p ¼ 0.27, n ¼ 11). (c) �m and s2=2 for each litter type are significantly cor-
related (rs ¼ 0.85, p ¼ 0.002, n ¼ 11) The dashed line represents both a constant turnover time t ¼ expð�mþ s2=2Þ and, by
inspection of figure 2b,d, the direction of changing ‘/N. Data points represent 11 different litter types averaged over at least
four different locations.
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exponentially with the heterogeneity s2 of rates. These
effects are a consequence of the heavy tail of the
lognormal distribution.

We calculate kkl and t for each dataset from our inver-
sion using equations (5.1) and (4.1) and find the average
of the log of their values, ln kkl and ln t, for each litter
type. Focusing on the effects of composition, figure 3a
shows a strong negative correlation between ln kkl and
‘/N, whereas figure 3b shows no significant correlation
between the average order of magnitude of turnover time
ln t and ‘/N. Physically, these relations reflect the
unequal influence of composition on faster and slower
rate constants k. Because kkl is also the initial decompo-
sition rate, we conclude that the initial ‘/N exhibits
strong control over early decomposition [21,53]. This
influence of initial composition is eventually lost, not
only at later times [6] but also in the steady state. Math-
ematically, these observed trends follow from equations
(5.2) and (5.3), given that ‘/N correlates negatively
with both �m and �s (figure 2b,d).

We find that leaves, needles and roots on average have
roughly the same turnover times: 10 years, 11 years and
14 years, respectively. The geometric mean turnover time
of all 191 datasets is 11.5 years, but deviations from this
characteristic value appear not to be controlled by initial
composition. Recall from §4 that roots may also have
uncharacterizably long residence times in certain
locations and these are not analysed in figure 3,
suggesting a larger departure of root turnover time
from needles and leaves. Conditions resulting in extre-
mely persistent root organic matter are unclear (see
appendix A.1). Because the turnover time is unaffected
by initial nitrogen concentration, we cannot claim that
changes in the nitrogen content of the litter (perhaps
through changes in nitrogen deposition) will affect the
turnover time of plant matter or carbon storage in
soils. It is possible that soil composed of the parent
material (as opposed to the LIDET transplant study)
may show a different relationship between nitrogen
and turnover time. Changes in temperature and precipi-
tation on the other hand affect �m only and therefore do
influence turnover time and soil carbon storage.
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Figure 3a additionally shows a separation in initial
decay rate among the different litter types, with
leaves and roots initially decaying faster than needles.
Because the kinetic heterogeneity of roots and needles
is wide, one should be especially careful when extra-
polating turnover times from short-duration decay
experiments associated with these tissue types and
other litters with high ‘/N.

Simple patterns emerge from the relationship bet-
ween composition, m, s, kkl and t. The lack of a trend
in figure 3b, combined with equation (5.3), suggests
that �mþ s2=2 ≃ constant, indicating that m and s2

may be positively correlated under a compositional
change. Figure 3c shows that s2 is indeed correlated
with �m across different litter types. Moreover, the
compositional parameter ‘/N changes the values of �m

and s2 roughly along a line of constant turnover time,
as expected when �mþ s2=2 ≃ constant. Figure 3c
also concisely portrays the partitioning of different
tissue types in parameter space; needles and wood are
characterized by low m and s, leaves by high m and s

and roots by a range of m and high s.
The patterns observed in figure 3a–c suggest the

following physical interpretation: initial litter compo-
sition tends to change the faster rates in the
continuum, which affect both m and s. The slower
rates associated with a long-term behaviour and turn-
over time are less related to initial litter chemistry and
are more likely to be determined by soil and microbial
community properties. Therefore, during the later
stages of litter decay, continued transformation to
soil organic matter and its subsequent decay are less
a function of the parent material and more a function
of semi-transformed compounds and its local inter-
action with soil [6]. Furthermore, early degradation
may be nutrient-limited and depend on the nutrient
content of the litter, whereas the slower paced degra-
dation of more recalcitrant materials may be sustained
by immobilization of nutrients from the surrounding
soil. The departure of roots from the trend in
figure 3c, specifically the relative constancy of s

under a change in m, suggests that the effect of initial
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composition may persist during root decay or
decomposition below ground, influencing the rates of
slower processes as well.
6. CONCLUSION

Figure 4 depicts our main findings: (i) decomposition
rates are distributed lognormally; (ii) environmental
change acts as a catalyst that scales all rates similarly,
consistent with the models (such as CENTURY) that
assign the same temperature and moisture sensitivity
across all pools of organic matter; and (iii) faster pro-
cesses are more sensitive to litter composition (e.g.
‘/N, tissue type) than slower processes. The first
result, made possible by inverting equation (2.1), ident-
ifies the structure of the kinetic heterogeneity associated
with decomposition. The second addresses an ongoing
debate concerning the temperature sensitivity of
decomposition at different time scales [21,55]. The
third result identifies a control for the dispersion of
decomposition time scales and shows why composition
affects initial decay without changing the turnover
time. Each conclusion is separate and independent of
the others.

Ecosystem models are often coupled with global
circulation models [14,57–61] in order to provide an
insight into the climate system. Incorporation of lognor-
mally distributed decay rates in popular ecosystem
models and use of the lognormal to precisely predict
carbon turnover and storage would require careful
parametrizations [6,14,16,54] between the lognormal
parameters m and s and climatic, soil and com-
positional parameters. We have provided a first
approach for quantifying these relations. However, a
more detailed analysis incorporating known mechan-
isms [6] is required to provide a more comprehensive
picture.

We note that the wide range of conditions under
which lognormal rates are expected suggests that our
J. R. Soc. Interface (2012)
results are general, applicable to other degradation pro-
cesses in natural environments. Evidence of this
generality is seen in the decay of marine sedimentary
organic matter, which is well described by the quanti-
tatively similar log-uniform distribution [28]. The
ubiquity of lognormally distributed degradation rates
suggests that a focus on factors that affect rate hetero-
geneity, rather than specific rates themselves, will lead
to a greater understanding—and improved predic-
tions [6,13]—of the ways in which the carbon cycle
interacts with climate.
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APPENDIX A

A.1. Data screening

Our analysis uses litter bag data from the LIDET
study [12,21–23]. An important measurement taken
during the study is the fraction of original ash-free
mass remaining after a given type of plant matter
decomposes for a set amount of time in a particular
location. Each measurement represents the average of
up to four replicates at each site, litter type and removal
time. Litter bags were typically collected and analysed
each year for up to 10 years, except for bags at tropical
and sub-tropical sites, which were more frequently col-
lected at three to six month intervals.

We call a data point the average mass fraction
remaining of all replicates of a given plant-matter
type, site and duration. If a data point consists of
only one litter bag (no replicates), we average that
litter bag with the litter bags of the temporally nearest
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data point (typically 1 year before or 1 year after). We
call the time series of data points ~gðtÞ ¼ gðtÞ=gð0Þ
associated with a given combination of site and litter
type a dataset. Before analysis, we subject the LIDET
datasets to a series of four tests.

(1) First, we consider only the 234 LIDET datasets that
each contained at least five data points (not including
time zero) with at least one replicate each.

(2) The datasets are subjected to a Mann–Kendall test
of trend [62] to check for a significant trend of mass
loss between the time of the first data point (not
time zero) and the final data point. According to
this criterion, seven datasets have no significant
decay over this duration and are therefore
eliminated from further consideration.

(3) The remaining datasets are then checked against the
assumption that mass loss is described by the super-
position of exponential decays given in equation
(2.1) of the main text and equation (A 1) given
below. To be consistent with the superposition,
any decay~gðtÞ must be completely monotone, mean-
ing that all even derivatives of ~gðtÞ must be �0 and
all odd derivatives must be �0 (see §XIII.4 of
Feller [40]). Because, the Mann–Kendall trend test
identifies significant decreasing trends, we addition-
ally check only the average sign of the second
derivative. To do so, we fit a quadratic function
a þ btþ ct2 to ~gðtÞ and eliminate the nine datasets
for which c , 0.

(4) Of the remaining 218 datasets, three more datasets
are eliminated because the inversion algorithm
cannot identify a solution p(k) satisfying pðkÞ . 0
and

Ð1

0 pðkÞdk ¼ 1 without having a significant
trend in the residual error. The combined appli-
cation of these four criteria leaves 215 datasets for
analysis. As discussed in the text, we find that
the average r(ln k) determined from the inversion
of these 215 datasets appears lognormal.

Before identifying trends in the parameters m and s, we
check their values for outliers. Outliers are identified by
checking the turnover times of each dataset by substitut-
ing the inversion into using equation (4.1). While 155 out
of these 215 datasets had turnover times less than 50
years, a few datasets were characterized by turnover
times extremely large for litter decay, over 1000 years.
As shown in figure 5, a histogram of turnover times ident-
ified two clusters of datasets: a main cluster of 191
datasets having turnover times less than 1000 years, and
24 datasets having turnover times greater than 1000
years. For the remaining analysis of the parameters m

and s, we do not analyse the outlying cluster of 24 data-
sets with t . 1000 for the reasons discussed in the main
text. Inclusion of these datasets in our analysis adds
noise to our estimates of �m and �s but does not change
general trends.

A.1.1. Trends in data not well described by a superpo-
sition of exponential decays. We present the datasets
that do not appear well described by equation (2.1) in
table 2 and find that there are noticeable patterns.
J. R. Soc. Interface (2012)
The datasets flagged by test 2 (negligible mass loss)
and test 5 (turnover time) are associated with slow
degradation and the persistence of organic carbon.
Table 2 shows that these datasets are predominantly
associated with the decay of roots located at the sites
CPR, HFR, VCR, NIN, NWT, ARC and BSF. While
it is known that roots can be highly recalcitrant [6], it
is unclear from this data what controls the persistence
of roots; there appear to be no common patterns
among the associated sites; they vary highly in climatic
parameters and biome type. Although all three types of
roots (ANGE, DRGL, PIEL) were also planted at the
sites AND, CDR, CWT, HBR, KNZ, LBS, LUQ,
LVW, OLY, SMR and UFL, these sites do not contain
a single dataset showing extremely slow root decay.
There also appears to be no common patterns among
these sites.

As discussed in the main text, the datasets filtered
by tests 3 (negative curvature) or 4 (trend in residual
error) both identify faster than exponential decays.
These were consistently located at sites that had low
precipitation or were wood, indicating that decay in
dry conditions and decay of wood may not always be
substrate-limited.

A.2. Regularized inversion

As described in the main text, we assume that a
superposition of exponential decays

~gðtÞ ¼ gðtÞ
gð0Þ ¼

ð1

0
pðkÞe�ktdk; ðA 1Þ

describes a typical decay experiment, where ~gðtÞ is the
mass fraction remaining at time t and p(k) is the initial
probability distribution of first-order decay rates k.
Mathematically, ~gðtÞ is the Laplace transform of a
given rate distribution p(k). As mentioned in the main
text, distributions p(k) have been hypothesized and
evaluated by inserting them into equation (A 1) and
comparing the resulting ~gðtÞ with data [27,28]. In prin-
ciple, we could calculate the inverse Laplace transform
of ~gðtÞ exactly to determine p(k). However, the inverse
Laplace transform is ill-posed [44,63], meaning that
small changes in ~gðtÞ can result in large changes in



Table 2. Datasets that were flagged by tests 2–5. Datasets
numbered 1–19 were not considered in both the inversion
and analysis of �m and �s. Datasets 20–43 were included in
the inversion but not considered for the analysis of �m and �s.
The second column states the code for the location of the
dataset, as described in table E1 of the electronic
supplementary material. The third column states the
substrate code for the dataset as explained in the table
footer. The fourth column states the type of tissue used in
each experiment, either needle, leaf, root, wood or wheat.
The final column states the reason why each dataset is
considered not well described by a superposition of rates, as
described in the text of this section. The species and
common names associated with each code is as follows;
ANGE: Andropogon gerardii (Big blue stem), PIEL: Pinus
elliottii (Slash pine), THPL: Thuja plicata (Western red
cedar), TRAE: Triticum aestivum (Wheat), PIRE: Pinus
resinosa (Red pine), QUPR: Quercus prinus (Chestnut
oak), GOBA: Gonystylus bananus (Ramin), ACSA: Acer
saccharum (Sugar maple), DRGL: Drypetes glauca
(Asolillo). t has units [yr]. Descriptions of the LIDET sites
can be found in the ESM Table E1.

site substrate tissue reason

1 CPR ANGE root insignificant mass loss
2 HFR ANGE root insignificant mass loss
3 VCR ANGE root insignificant mass loss
4 NIN ANGE root insignificant mass loss
5 NIN PIEL root insignificant mass loss
6 NWT PIEL root insignificant mass loss
7 SMR THPL needle insignificant mass loss
8 CPR TRAE wheat g(t) is concave down
9 GSF TRAE wheat g(t) is concave down

10 GSF DRGL root g(t) is concave down
11 GSF PIRE root g(t) is concave down
12 JRN TRAE wheat g(t) is concave down
13 JRN PIRE needle g(t) is concave down
14 JRN THPL needle g(t) is concave down
15 SMR QUPR leaf g(t) is concave down
16 LUQ GOBA wood g(t) is concave down
17 BCI GOBA wood trend in residual error
18 BNZ GOBA wood trend in residual error
19 LBS GOBA wood trend in residual error
20 ARC DRGL root t ¼ 2 � 104

21 ARC PIEL root t ¼ 2 � 104

22 BNZ PIEL root t ¼ 8 � 103

23 BSF ANGE root t ¼ 9 � 103

24 BSF DRGL root t ¼ 1 � 104

25 BSF QUPR leaf t ¼ 3 � 103

26 CPR GOBA wood t ¼ 8 � 103

27 CPR PIEL root t ¼ 2 � 104

28 GSF THPL needle t ¼ 1 � 104

29 HFR PIEL root t ¼ 2 � 103

30 JRN PIEL root t ¼ 2 � 104

31 LVW ACSA leaf t ¼ 1 � 104

32 LVW PIEL needle t ¼ 1 � 104

33 LVW QUPR leaf t ¼ 1 � 104

34 NIN DRGL root t ¼ 1 � 104

35 NWT ANGE root t ¼ 3 � 103

36 NWT DRGL root t ¼ 1 � 104

37 SEV PIEL root t ¼ 2 � 104

38 SMR GOBA wood t ¼ 1 � 104

39 SMR ASCA leaf t ¼ 1 � 104

40 UFL GOBA wood t ¼ 3 � 103

41 VCR DRGL root t ¼ 1 � 104

42 VCR GOBA wood t ¼ 3 � 104

43 VCR PIEL root t ¼ 2 � 104
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Figure 6. Plots of the unaveraged lognormal parameters m and
s versus experimental variables temperature and ‘/N. All 191
datasets are shown in each figure. Colours indicate tissue
types. Roots (blue), leaves (red), needles (green), wood
(black) and wheat (cyan). (a) m versus mean annual tempera-
ture. (b) m versus ‘/N. (c) s versus mean annual temperature.
(d) s versus ‘/N. Comparison with figure 2 of the main text
shows similar trends.

2264 Common structure in plant matter decay D. C. Forney and D. H. Rothman

J. R. Soc. Interface (2012)
p(k), effectively resulting in non-unique solutions. We
address this problem as follows.

First, we transform the probability density function
p(k) to rðxÞ, where x ¼ ln k:

rðxÞ ¼ pðkðxÞÞ dk
dx
; k ¼ ex : ðA 2Þ

The Laplace transform (A 1) then becomes

~gðtÞ ¼
ð1

�1

rðln kÞe�ktd ln k: ðA 3Þ

To solve for r(ln k) from a given set of data ~gðtÞ, we dis-
cretize equation (A 3) as

g ¼ Ar ðA 4Þ

where g is a vector of data points ~gðtÞ of length m, A is
the discretized Laplace transform operator of size m � n
and r is the solution vector of length n associated with
n prescribed intervals of ln k.

Because the system is both constrained and under-
determined (n . m), we seek the r that minimizes the
norm of the residual error. In other words, we find the
distribution r that solves

min
r
k g�Ar k

;
Xn

i¼1

gi �
Xm
j¼1

Aijrj

 !2 !1=2

, ðA 5Þ

subject to the non-negativity constraint

ri . 0; i ¼ 1 . . . n, ðA 6Þ



2 3 4 2 3 4 –4 –2 0
0

2

4

6

0

2

–2

4

–4

6

0

2

4

6
8

10

2 4

ln
 ·k

Ò

ln
t

m

s
2  / 2

 

ln (  /N) ln (  /N)
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and the constraint that r(ln k) integrates to unity:

Xn

j¼1

A1jrj ¼ 1: ðA 7Þ

This constrained inversion of the Laplace transform,
however, remains ill-posed.

Regularization techniques are commonly used to
solve under-determined and ill-posed inverse pro-
blems [44,45,63]. These techniques typically work by
attempting to find the ‘simplest’ solution that fits the
data signal but not the noise. Here, we use a Tikhonov
regularization technique [44,45,63], which favours
smooth solutions by minimizing both the residual
error and a quantitative measure of the complexity of
r(ln k). Solution complexity is commonly associated
with the roughness or the intensity of fluctuations pre-
sent in the solution. Here, we measure roughness by the
squared norm of the first derivative of the solution
vector, i.e.

drðln kÞ
d ln k

����
����

����
���� ¼ X

i

riþ1 � ri

ln kiþ1 � ln ki

� �2
 !1=2

: ðA 8Þ

The problem then becomes

min
r
fk g�Ar k2 þl k Rr k2g; ðA 9Þ

where R is the bi-diagonal first derivative operator (i.e.
the discretization of equation (A 8)) and l is the regu-
larization parameter, which controls the relative
weights of the solution roughness and the residual
error norm.

The method proceeds by identifying the value of l
that sets an optimal balance between the residual error
k g�Ar k and the roughness k Rr k. A common
approach is to use an L-curve technique [44,63]. An
L-curve is generated by parametrically varying l

and solving equation (A 9) for r(ln k), obtaining
values for the residual error norm k g�Ar k and the
roughness norm k Rr k for each value of l. The para-
metric relationship of k Rr k versus k g�Ar k
typically has the shape of an ‘L’. Although each point
on the L-curve may be considered an optimal solution
for a certain value of l, the corner of this curve is associ-
ated with the regularized solution to the inverse
J. R. Soc. Interface (2012)
problem. The corner represents the value of l for
which increasing l strongly increases solution rough-
ness, while providing little reduction in residual norm,
and also for which decreasing l greatly sacrifices
residual norm with little reduction in roughness.

Before choosing the corner, we check the solution
with l ¼ 0 in case it is just a single delta function, indi-
cating that only one rate is present during decay. If
greater than 0.99 of the mass fraction is contained
within one rate, we conclude that the simplest solution
is an exponential decay having a single rate constant.
This occurs for 33 of the datasets.
A.3. Unaveraged parameter analysis

We present here the unaveraged data shown in figures 2
and 3 of the main text. Figure 6 shows how the values
of m and s for the 191 LIDET datasets vary with temp-
erature and the lignin-to-nitrogen ratio ‘/N. Figure 7a,b
show the unaveraged variation of kkl and t with ‘/N.
Figure 7c shows the unaveraged plot of s2 versus m.
While there is much scatter among the data, the general
trends remain the same as in figures 2 and 3 of the
main text.
REFERENCES

1 Falkowski, P. et al. 2000 The global carbon cycle: a test of
our knowledge of earth as a system. Science 290, 291–296.
(doi:10.1126/science.290.5490.291)

2 Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon,
M. E. & Parton, W. J. 2000 Long-term dynamics of pine
and hardwood litter in contrasting environments: toward
a global model of decomposition. Glob. Change Biol. 6,
751–765. (doi:10.1046/j.1365-2486.2000.00349.x)

3 Tenney, F. G. & Waksman, S. A. 1929 Composition of
natural organic materials and their decomposition in the
soil. IV. The nature and rapidity of decomposition of the
various organic complexes in different plant materials,
under aerobic conditions. Soil Sci. 28, 55–84. (doi:10.
1097/00010694-192907000-00005)

4 Berg, B. & McClaugherty, C. 2007 Plant litter: decompo-
sition, humus formation, carbon sequestration, 2nd edn.
Berin, Germany: Springer.

5 Oades, J. 1988 The retention of organic matter in soils.
Biogeochemistry 5, 35–70. (doi:10.1007/BF02180317)

http://dx.doi.org/10.1126/science.290.5490.291
http://dx.doi.org/10.1046/j.1365-2486.2000.00349.x
http://dx.doi.org/10.1097/00010694-192907000-00005
http://dx.doi.org/10.1097/00010694-192907000-00005
http://dx.doi.org/10.1007/BF02180317


2266 Common structure in plant matter decay D. C. Forney and D. H. Rothman
6 Prescott, C. E. 2010 Litter decomposition: what controls it
and how can we alter it to sequester more carbon in forest
soils? Biogeochemistry 101, 133–149. (doi:10.1007/
s10533-010-9439-0)

7 Blair, J. M., Parmelee, R. W. & Beare, M. H. 1990 Decay
rates, nitrogen fluxes, and decomposer communiies of
single- and mixed-species foliar litter. Ecology 71, 1976–
1985. (doi:10.2307/1937606)

8 Trumbore, S. 2009 Radiocarbon and soil carbon dynamics.
Annu. Rev. Earth Planet. Sci. 37, 47–66. (doi:10.1146/
annurev.earth.36.031207.124300)

9 Johnson, D. W., Miller, W. W., Rau, B. M. & Meadows,
M. W. 2011 The nature and potential causes of nutrient
hotspots in a Sierra Nevada forest soil. Soil Sci. 176,
596–610. (doi:10.1097/SS.0b013e31823120a2)

10 Middelburg, J. J. 1989 A simple rate model for organic
matter decomposition in marine sediments. Geochim.
Cosmochim. Acta 53, 1577–1581. (doi:10.1016/0016-7
037(89)90239-1)

11 Janssen, B. H. 1984 A simple method for calculating
decomposition and accumulation of ‘young’ soil organic
matter. Plant Soil 76, 297–304. (doi:10.1007/BF022
05588)

12 Harmon, M. E., Silver, W. L., Fasth, B., Chen, H., Burke,
I. C., Partons, W. J., Hart, S. C. & Currie, W. S. 2009
Long-term patterns of mass loss during the decomposition
of leaf and fine root litter: an intersite comparison. Glob.
Change Biol. 15, 1320–1338. (doi:10.1111/j.1365-2486.
2008.01837.x)

13 Friedlingstein, P. et al. 2006 Climate-carbon cycle feed-
back analysis: results from the C4MIP model
intercomparison. J. Clim. 19, 3337–3353. (doi:10.1175/
JCLI3800.1)

14 Todd-Brown, K., Hopkins, F., Kivlin, S., Talbot, J. &
Allison, S. In press. A framework for representing
microbial decomposition in coupled climate models.
Biogeochemistry (doi:10.1007/s10533-011-9635-6)

15 Kirschbaum, M. U. F. 2000 Will changes in soil organic
carbon act as a positive or negative feedback on global
warming? Biogeochemistry 48, 21–51. (doi:10.1023/
A:1006238902976)

16 Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S.
1987 Analysis of factors controlling soil organic matter
levels in great plains grasslands. Soil Sci. Soc. Am. J. 51,
1173–1179. (doi:10.2136/sssaj1987.0361599500510005
0015x)

17 Bolker, B. M., Pacala, S. W. & Parton, W. J. 1998 Linear
analysis of soil decomposition: insights from the century
model. Ecol. Appl. 8, 425–439. (doi:10.2307/2641082)

18 Agren, G. I. & Bosatta, E. 1998 Theoretical ecosystem
ecology: understanding element cycles, 1st edn.
Cambridge, UK: Cambridge University Press.

19 Manzoni, S., Katul, G. G. & Porporato, A. 2009 Analysis
of soil carbon transit times and age distributions using net-
work theories. J. Geophys. Res. 114, G04025. (doi:10.
1029/2009JG001070)

20 May, R. M. 1975 Patterns of species abundance and diver-
sity. In Ecology and evolution of communities (eds M. L.
Cody & J. M. Diamond), pp. 81–120. Cambridge, MA:
Harvard University Press.

21 Adair, E. C., Parton, W. J., Del Grosso, S. J., Silver,
W. L., Harmon, M. E., Hall, S. A., Burke, I. C. & Hart,
S. C. 2008 Simple three-pool model accurately describes
patterns of long-term litter decomposition in diverse cli-
mates. Glob. Change Biol. 14, 2636–2660. (doi:10.1111/
j.1365-2486.2008.01674.x)

22 Currie, W. S., Harmon, M. E., Burke, I. C., Hart, S. C.,
Parton, W. J. & Silver, W. 2010 Cross-biome transplants
J. R. Soc. Interface (2012)
of plant litter show decomposition models extend to a
broader climatic range but lose predictability at the deca-
dal time scale. Glob. Change Biol. 16, 1744–1761. (doi:10.
1111/j.1365-2486.2009.02086.x)

23 Harmon, M. 2007 LTER Intersite Fine Litter Decompo-
sition Experiment (LIDET), Forest Science Data Bank
code TD023, Corvallis, OR [Database]. See http://andrews-
forest.oregonstate.edu/data/abstract.cfm?dbcode=TD023.

24 Vlad, M. O., Huber, D. L. & Ross, J. 1997 Rate statistics
and thermodynamic analogies for relaxation processes in
systems with static disorder: application to stretched expo-
nential. J. Chem. Phys. 106, 4157–4167. (doi:10.1063/1.
473100)

25 Ross, J. & Vlad, M. O. 1999 Nonlinear kinetics and new
approaches to complex reaction mechanisms. Annu. Rev.
Phys. Chem. 50, 51–78. (doi:10.1146/annurev.physchem.
50.1.51)

26 Plonka, A. 2001 Dispersive kinetics, 1st edn. Berlin,
Germany: Springer.

27 Boudreau, B. P. & Ruddick, B. R. 1991 On a reactive con-
tinuum representation of organic matter diagenesis.
Am. J. Sci. 291, 507–538. (doi:10.2475/ajs.291.5.507)

28 Rothman, D. H. & Forney, D. C. 2007 Physical model
for the decay and preservation of marine organic
carbon. Science 316, 1325–1328. (doi:10.1126/science.
1138211)

29 Bosatta, E. 1995 The power and reactive continuum
models as particular cases of the q-theory of organic
matter dynamics. Geochim. Cosmochim. Acta 59, 3833–
3835. (doi:10.1016/0016-7037(95)00287-A)

30 Carpenter, S. 1981 Decay of heterogenous detritus: a gen-
eral model. J. Theor. Biol. 89, 539–547. (doi:10.1016/
0022-5193(81)90026-6)

31 Feng, Y. 2009 K-model-A continuous model of soil organic
carbon dynamics: theory. Soil Sci. 174, 482–493. (doi:10.
1097/SS.0b013e3181bb0f80’)

32 Feng, Y. 2009 Fundamental considerations of soil organic
carbon dynamics. Soil Sci. 174, 467–481. (doi:10.1097/
SS.0b013e3181bb0e87)

33 Manzoni, S. & Porporato, A. 2009 Soil carbon and nitro-
gen mineralization: theory and models across scales. Soil
Biol. Biochem. 41, 1355–1379. (doi:10.1016/j.soilbio.
2009.02.031)

34 Berner, R. A. 1980 Early diagenesis. Princeton, NJ:
Princeton University Press.

35 Minderman, G. 1968 Addition, decomposition and
accumulation of organic matter in forests. J. Ecol. 56,
355–362. (doi:10.2307/2258238)

36 Manzoni, S., Jackson, R. B., Trofymow, J. A. &
Porporato, A. 2008 The global stoichiometry of litter
nitrogen mineralization. Science 321, 684–686. (doi:10.
1126/science.1159792)

37 Manzoni, S., Trofymow, J. A., Jackson, R. B. &
Porporato, A. 2010 Stoichiometric controls on carbon,
nitrogen, and phosphorus dynamics in decomposing
litter. Ecol. Monogr. 80, 89–106. (doi:10.1890/09-0179.1)

38 Hättenschwiler, S., Tiunov, A. V. & Scheu, S. 2005 Bio-
diversity and litter decomposition in terrestrial
ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218.
(doi:10.2307/30033802)

39 Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G.,
Bardgett, R. D., Wall, D. H. & Hättenschwiler, S. 2010
Diversity meets decomposition. Trends Ecol. Evol. 25,
372–380. (doi:10.1016/j.tree.2010.01.010)

40 Feller, W. 1971 An introduction to probability theory and
its applications, vol. 2, 2nd edn. New York, NY: Wiley.

41 Lamanna, R. 2005 On the inversion of multicomponent
NMR relaxation and diffusion decays in heterogeneous

http://dx.doi.org/10.1007/s10533-010-9439-0
http://dx.doi.org/10.1007/s10533-010-9439-0
http://dx.doi.org/10.2307/1937606
http://dx.doi.org/10.1146/annurev.earth.36.031207.124300
http://dx.doi.org/10.1146/annurev.earth.36.031207.124300
http://dx.doi.org/10.1097/SS.0b013e31823120a2
http://dx.doi.org/10.1016/0016-7037(89)90239-1
http://dx.doi.org/10.1016/0016-7037(89)90239-1
http://dx.doi.org/10.1007/BF02205588
http://dx.doi.org/10.1007/BF02205588
http://dx.doi.org/10.1111/j.1365-2486.2008.01837.x
http://dx.doi.org/10.1111/j.1365-2486.2008.01837.x
http://dx.doi.org/10.1175/JCLI3800.1
http://dx.doi.org/10.1175/JCLI3800.1
http://dx.doi.org/10.1007/s10533-011-9635-6
http://dx.doi.org/10.1023/A:1006238902976
http://dx.doi.org/10.1023/A:1006238902976
http://dx.doi.org/10.2136/sssaj1987.03615995005100050015x
http://dx.doi.org/10.2136/sssaj1987.03615995005100050015x
http://dx.doi.org/10.2307/2641082
http://dx.doi.org/10.1029/2009JG001070
http://dx.doi.org/10.1029/2009JG001070
http://dx.doi.org/10.1111/j.1365-2486.2008.01674.x
http://dx.doi.org/10.1111/j.1365-2486.2008.01674.x
http://dx.doi.org/10.1111/j.1365-2486.2009.02086.x
http://dx.doi.org/10.1111/j.1365-2486.2009.02086.x
http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=TD023
http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=TD023
http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=TD023
http://dx.doi.org/10.1063/1.473100
http://dx.doi.org/10.1063/1.473100
http://dx.doi.org/10.1146/annurev.physchem.50.1.51
http://dx.doi.org/10.1146/annurev.physchem.50.1.51
http://dx.doi.org/10.2475/ajs.291.5.507
http://dx.doi.org/10.1126/science.1138211
http://dx.doi.org/10.1126/science.1138211
http://dx.doi.org/10.1016/0016-7037(95)00287-A
http://dx.doi.org/10.1016/0022-5193(81)90026-6
http://dx.doi.org/10.1016/0022-5193(81)90026-6
http://dx.doi.org/10.1097/SS.0b013e3181bb0f80
http://dx.doi.org/10.1097/SS.0b013e3181bb0f80
http://dx.doi.org/10.1097/SS.0b013e3181bb0e87
http://dx.doi.org/10.1097/SS.0b013e3181bb0e87
http://dx.doi.org/10.1016/j.soilbio.2009.02.031
http://dx.doi.org/10.1016/j.soilbio.2009.02.031
http://dx.doi.org/10.2307/2258238
http://dx.doi.org/10.1126/science.1159792
http://dx.doi.org/10.1126/science.1159792
http://dx.doi.org/10.1890/09-0179.1
http://dx.doi.org/10.2307/30033802
http://dx.doi.org/10.1016/j.tree.2010.01.010


Common structure in plant matter decay D. C. Forney and D. H. Rothman 2267
systems. Concepts Magn. Reson. A 26, 78–90. (doi:10.
1002/cmr.a.20036)

42 Kroeker, R. M. & Henkelman, R. M. 1986 Analysis of bio-
logical NMR relaxation data with continuous distributions
of relaxation times. J. Magn. Reson. 69, 218–235. (doi:10.
1016/0022-2364(86)90074-0)

43 Ansari, A., Berendzen, J., Bowne, S. F., Frauenfelder, H.,
Iben, I. E., Sauke, T. B., Shyamsunder, E. & Young, R. D.
1985 Protein states and proteinquakes. Proc. Natl Acad.
Sci. USA 82, 5000–5004. (doi:10.1073/pnas.82.15.5000)

44 Hansen, P. C. 1987 Rank-deficient and discrete ill-
posed problems: numerical aspects of linear inversion.
Monographs on Mathematical Modeling and Compu-
tation. Philadelphia, PA: Society for Industrial
Mathematics.

45 Press, W. H., Flannery, B. P., Teukolsky, S. A. &
Vetterling, W. T. 1992 Numerical recipes in C: the art of
scientific computing, 2nd edn. Cambridge, UK:
Cambridge University Press.

46 Gallegos, D. P. & Smith, D. M. 1988 A NMR technique for
the analysis of pore structure: determination of continuous
pore size distributions. J. Colloid Interface Sci. 122, 143–
153. (doi:10.1016/0021-9797(88)90297-4)

47 Kleinberg, R. 1996 Utility of NMR T2 distributions, con-
nection with capillary pressure, clay effect, and
determination of the surface relaxivity parameter P2.
Magn. Reson. Imaging 14, 761–767. (doi:10.1016/S0730-
725X(96)00161-0)

48 Limpert, E., Stahel, W. A. & Abbt, M. 2001 Log-normal
distributions across the sciences: keys and clues.
BioScience 51, 341–352. (doi:10.1641/0006-3568(2001)
051[0341:LNDATS]2.0.CO;2)

49 Montroll, E. W. & Shlesinger, M. F. 1982 On 1/f noise and
other distributions with long tails. Proc. Natl Acad. Sci.
USA 79, 3380–3383. (doi:10.1073/pnas.79.10.3380)

50 Forney, D. C. & Rothman, D. H. 2012 Inverse method for
estimating respiration rates from decay time series. Bio-
geosci. Discuss. 9, 3795–3828. (doi:10.5194/bgd-9-3795-
2012)

51 Yeramian, E. & Claverie, P. 1987 Analysis of multiexpo-
nential functions without a hypothesis as to the number
of components. Nature 326, 169–174. (doi:10.1038/
326169a0)
J. R. Soc. Interface (2012)
52 Bolin, B. & Rodhe, H. 1973 A note on the concepts of age
distribution and transit time in natural reservoirs. Tellus
25, 58–62. (doi:10.1111/j.2153-3490.1973.tb01594.x)

53 Melillo, J. M., Aber, J. D. & Muratore, J. F. 1982 Nitrogen
and lignin control of hardwood leaf litter decomposition
dynamics. Ecology 63, 621–626. (doi:10.2307/1936780)

54 Parton, W. J. et al. 1993 Observations and modeling of
biomass and soil organic matter dynamics for the grass-
land biome worldwide. Glob. Biogeochem. Cyc. 7, 785–
809. (doi:10.1029/93GB02042)

55 Craine, J. M., Fierer, N. & McLauchlan, K. K. 2010 Wide-
spread coupling between the rate and temperature
sensitivity of organic matter decay. Nat. Geosci. 3, 854–
857. (doi:10.1038/ngeo1009)

56 Berg, B. & Laskowski, R. 2006 Litter decomposition: a
guide to carbon and nutrient turnover, vol. 38. Amster-
dam, The Netherlands: Elsevier.

57 Cox, P. M. 2001 Description of the TRIFFID dynamics
global vegetation model. Technical Note 24. Hadley
Centre, Met Office, UK. See http://www.metoffice.com/
publications/HCTN/

58 Moorcroft, P. R., Hurtt, G. C. & Pacala, S. W. 2001 A
method for scaling vegetation dynamics: the ecosystem
demography model (ED). Ecol. Monogr. 71, 557–585.
(doi:10.2307/3100036)

59 Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y. &
Moorcroft, P. R. 2009 Mechanistic scaling of ecosystem
function and dynamics in space and time: ecosystem Demo-
graphy model version 2. J. Geophys. Res. 114, G01002.
(doi:10.1029/2008JG000812)

60 Sitch, S. et al. 2003 Evaluation of ecosystem dynamics,
plant geography and terrestrial carbon cycling in the
LPJ dynamic global vegetation model. Glob. Change
Biol. 9, 161–185. (doi:10.1046/j.1365-2486.2003.00569.x)

61 Krinner, G. 2005 A dynamic global vegetation model for
studies of the coupled atmosphere-biosphere system.
Glob. Biogeochem. Cyc. 19, GB1015. (doi:10.1029/
2003GB002199)

62 Kendall, M. & Gibbons, J. D. 1990 Rank correlation
methods, 5th edn. New York, NY: Oxford University Press.

63 Hansen, P. C. 1994 Regularization tools: a Matlab package
for analysis and solution of discrete ill-posed problems.
Numer. Algorithms 6, 1–35. (doi:10.1007/BF02149761)

http://dx.doi.org/10.1002/cmr.a.20036
http://dx.doi.org/10.1002/cmr.a.20036
http://dx.doi.org/10.1016/0022-2364(86)90074-0
http://dx.doi.org/10.1016/0022-2364(86)90074-0
http://dx.doi.org/10.1073/pnas.82.15.5000
http://dx.doi.org/10.1016/0021-9797(88)90297-4
http://dx.doi.org/10.1016/S0730-725X(96)00161-0
http://dx.doi.org/10.1016/S0730-725X(96)00161-0
http://dx.doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
http://dx.doi.org/10.1073/pnas.79.10.3380
http://dx.doi.org/10.5194/bgd-9-3795-2012
http://dx.doi.org/10.5194/bgd-9-3795-2012
http://dx.doi.org/10.1038/326169a0
http://dx.doi.org/10.1038/326169a0
http://dx.doi.org/10.1111/j.2153-3490.1973.tb01594.x
http://dx.doi.org/10.2307/1936780
http://dx.doi.org/10.1029/93GB02042
http://dx.doi.org/10.1038/ngeo1009
http://www.metoffice.com/publications/HCTN/
http://www.metoffice.com/publications/HCTN/
http://www.metoffice.com/publications/HCTN/
http://dx.doi.org/10.2307/3100036
http://dx.doi.org/10.1029/2008JG000812
http://dx.doi.org/10.1046/j.1365-2486.2003.00569.x
http://dx.doi.org/10.1029/2003GB002199
http://dx.doi.org/10.1029/2003GB002199
http://dx.doi.org/10.1007/BF02149761

	Common structure in the heterogeneity of plant-matter decay
	Introduction
	Disordered kinetics
	Model
	Inverse problem

	Rates are distributed lognormally
	Controls on the lognormal parameters
	The mean µ
	The variance σ2
	Further trends

	Scaling up to the carbon cycle
	Conclusion
	We thank C. Follett, Y. Friedman, H. Hartman, D. Medvigy, A. Petroff and M. Polz for insightful discussions. This work was supported by NSF grant EAR-0420592 and NASA grant NNA08CN84A. D.H.R. thanks the Radcliffe Institute for Advanced Study for providing a 1 year fellowship during which a portion of this work was performed.
	Appendix A
	Data screening
	Regularized inversion
	Unaveraged parameter analysis

	References


