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miR319, miR390, and miR393 Are Involved in Aluminum
Response in Flax (Linum usitatissimum L.)
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Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In
the present work, we investigated expression alterations of microRNAs in flax (Linum usitatissimum L.) plants under Al stress.
Flax seedlings of resistant (TMP1919 and G1071/4 k) and sensitive (Lira and G1071/4 o) to Al cultivars and lines were exposed to
AlCl
3
solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total,

97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated
with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al
genotypes. Expression level changes ofmiR319 andmiR390were confirmed using qPCR analysis. In flax, potential targets ofmiR319
are TCPs, miR390–TAS3 and GRF5, andmiR393–AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation
of plant growth and development.The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here
for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in
flax plants.

1. Introduction

Acid soils result in decrease of agricultural production all
over the world [1]. Toxicity of aluminum (Al) is a major
reason of crop losses in acid soils [2]. Different mechanisms
of plant response to Al stress were identified: organic acid
exudation by roots to chelate Al ions in soil, detoxification
of Al in plants via chelation or transportation into the
vacuole, modifications of cell wall to alter Al binding with its
components, and so forth [3–5].

MicroRNA (miRNA) negatively regulates gene expres-
sion and in this way controls numerous biological processes

in plants [6], including stress response [7–9].Gene expression
regulation viamiRNAwas revealed as one of themechanisms
of response to Al in different plant species [10–12]. However,
there is no data on involvement of miRNAs in response
to Al stress in important agricultural plant, flax (Linum
usitatissimum L.). Flax fiber is utilized in textile industry;
flax seeds are used for production of oil, linoleum, food,
and pharmaceutical products [13–15]. Flax genetics and
epigenetics are in the focus of research interest [16–20]. In
the previous works on flax, the involvement of miRNAs in
response to saline and alkaline stresses [21] and excessive or
deficient nutrition [22–24] was shown.
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In the present work, we performed high-throughput
sequencing of flax small RNAs under normal conditions and
Al exposure to identify miRNAs, whose expression was alte-
red in response to aluminum stress, and suggested potential
targets of these miRNAs in flax to speculate on affected
signaling pathways.

2. Materials and Methods

2.1. Plant Material. L. usitatissimum plants of resistant
(TMP1919 and G1071/4 k) and sensitive (Lira and G1071/4 o)
to aluminum cultivars and lines were used in the present
study. Seeds germinated on filter paper soaked with distilled
water for 5 days. Then seedlings were transferred to falcon
tubes with filter paper soaked with a 0.5mM CaCl

2
solution

at pH 4.5 for 24 h before being exposed to a 0.5mM CaCl
2

solution (pH 4.5) containing 0 (N) or 500𝜇MAlCl
3
for 4 (Al-

4) and 24 (Al-24) hours. Roots were cut off and immediately
frozen in liquid nitrogen. Plant samples were stored at −70∘C.

Total RNA was extracted from roots of flax plants using
RNA MicroPrep kit (Zymo Research, USA). RNA quality
and concentration were determined by Qubit 2.0 fluorom-
eter (Life Technologies, USA) and Agilent 2100 Bioanalyzer
(Agilent Technologies, USA). For further analysis, only RNA
samples with RNA Integrity Number (RIN) value not less
than 8.0 were used.

2.2. Flax Small RNA Sequencing. Library preparation was
performed using Illumina TruSeq small RNA preparation kit
(Illumina, USA) in compliance withmanufacturer’s protocol.
Twelve libraries from pooled plant samples were obtained:
N, Al-4, and Al-24 for each of four cultivars/lines (TMP1919,
G1071/4 k, G1071/4 o, and Lira). Library quality was evalu-
ated using Agilent 2100 Bioanalyzer (Agilent Technologies).
The sequencing was performed on Genome Analyzer IIx
(Illumina).

2.3. Bioinformatics Analysis of miRNAs. Low-quality reads
and adapter reads were removed from raw sequencing data
using Trimmomatic [25]. For further analysis, we used
cleaned reads with abundance six or more. To identify con-
served miRNAs in flax, small RNA sequences were aligned
with known matured miRNA sequences from miRBase 21.0
[26]. Prediction of miRNA targets was performed using psR-
NATarget server [27] with default parameters using identified
L. usitatissimum transcripts [16, 28].

miRNA levels were normalized to obtain reads per
million (RPM) values. The comparison of miRNA expres-
sion levels in Al-4 and Al-24 libraries with N library was
performed using fold change parameter: FC = RPM in Al-
4 or Al-24/RPM in N. 𝑃 values were calculated using 𝜒2
test with Benjamini-Hochberg multiple testing correction.
Changes were considered significant if FC or 1/FC were 1.5
or higher, that is, absolute value of log

2
FC ≥ 0.58.

2.4. Quantitative PCR (qPCR) Analysis of miRNA Expression.
We performed qPCR analysis to evaluate expression of
miR319 andmiR390. TaqManMicroRNAAssays aau-miR319
and ath-miR390a (Thermo Fisher Scientific, USA) were

used. Reverse transcription was performed in 15 𝜇L reaction
containing 1x RT primer (Thermo Fisher Scientific), 200U of
RevertAid Reverse Transcriptase (Thermo Fisher Scientific),
1x Reverse Transcription Buffer, 250 nM of dNTPs, and 10 ng
of total RNA using the following program: 16∘C for 30min,
42∘C for 30min, and 85∘C for 5min. QPCR was performed
using the 7500Real-TimePCRSystem in a 20𝜇L reactionmix
containing 1x PCR mix (GenLab, Russia), 250 nM of dNTPs,
2U of polymerase (GenLab), Rox dye, and RT product using
the following program: 95∘C for 15min, 40 cycles of 95∘C
for 15 s, and 60∘C for 60 s. Three technical replicates were
performed. For the evaluation of expression level alterations,
ΔΔ𝐶
𝑡

eff values, which are directly proportional to the expres-
sion level changes, were calculated [29, 30]. ETIF3H and
ETIF3E were chosen as the reference genes for the qPCR
data analysis [24, 29, 31]. All the calculations were done using
the Analysis of Transcription of Genes software [24, 32].
Correlation between high-throughput sequencing (log

2
FC)

and qPCR (ΔΔ𝐶
𝑡

eff ) expression data was evaluated using
Spearman’s correlation coefficient.

3. Results and Discussion

Seedlings of resistant (TMP1919 and G1071/4 k) and sensitive
(Lira and G1071/4 o) to Al flax cultivars and lines were ex-
posed to Al for 4 and 24 hours. Twelve small RNA libraries
were constructed and sequenced on Illumina GAIIx. In total,
about 40 million raw reads were obtained. All the sequences
were deposited in the European Nucleotide Archive, acces-
sion number PRJEB15342.

Search for flax miRNAs using miRBase sequences led to
identification of 97 potential flax miRNAs from 18 conserved
families: miR156, miR157, miR159, miR160, miR162, miR164,
miR165, miR166, miR167, miR168, miR171, miR319, miR390,
miR393, miR394, miR396, miR398, and miR408 (Supple-
mentary Table 1 in Supplementary Material available online
at https://doi.org/10.1155/2017/4975146). Among these miR-
NAs, the search for Al responsive miRNAs was performed.
To reveal common trends specific to flax plants, we evaluated
expression alterations after 4 and 24 hours of Al treatment
using pooled data for all examined cultivars and lines (log

2
FC

values are represented in Table 1).
After 4 hours of Al exposure, we observed significant

(absolute value of log
2
FC ≥ 0.58) upregulation of miR164,

miR319,miR393, andmiR394 and downregulation ofmiR159,
miR167, and miR408. After 24 hours of Al exposure, sig-
nificant expression decrease was revealed for all 18 miRNA
families except miR393. Thus, after 4 hours of Al treatment,
miRNA levels of different families were increased, decreased,
or stable. However, after 24 hours of Al exposure, expression
was decreased for almost all miRNA families.

We also performed analysis of expression alterations of
miRNA families in individual cultivars and lines to identify
trends in resistant and sensitive to Al flax plants (Supplemen-
tary Table 2). log

2
FC values are represented in Table 1. Some

of the miRNAs showed opposite directions of expression
alterations in studied flax cultivars and lines. As seen from
Table 1, after 4 hours of Al exposure, miR156,miR157,miR162,
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Table 1: Expression alterations ofmiRNAs after 4 and 24 hours of Al treatment in resistant (TMP1919 andG1071/4 k) and sensitive (G1071/4 o
and Lira) flax cultivars and lines.

miRNA family
log
2
FC

TMP1919 G1071/4 k G1071/4 o Lira All samples
Al-4 Al-24 Al-4 Al-24 Al-4 Al-24 Al-4 Al-24 Al-4 Al-24

miR156 0.77 0.29 −1.79 −2.16 0.20 −1.58 0.74 −0.87 −0.42 −1.44
miR157 0.79 0.36 −1.40 −1.51 0.59 −1.93 −0.52 0.20 −0.26 −0.90
miR159 −2.81 −1.57 −0.11 −1.97 −0.51 −2.17 0.11 0.66 −0.62 −1.13
miR160 −0.23 −1.00 12.13 0.00 −0.30 −2.28 −1.22 −0.74 −0.35 −1.40
miR162 1.09 −0.86 −0.92 −0.29 −0.88 −1.94 −1.43 −1.78 −0.47 −1.04
miR164 1.27 −1.18 0.15 −1.72 0.50 −2.40 −2.49 0.46 0.61 −0.98
miR165 1.62 −0.84 −1.98 −3.16 0.19 −1.10 0.54 −1.86 −0.34 −2.13
miR166 1.13 −1.19 −1.75 −2.23 0.27 −1.60 −0.39 −2.33 −0.36 −1.98
miR167 −0.65 −1.46 −1.84 −15.07 −0.32 −2.34 −2.07 −0.22 −0.78 −1.54
miR168 0.20 −1.14 −0.39 −1.81 −0.30 −1.60 −0.60 −1.25 −0.28 −1.41
miR171 0.94 0.31 −2.36 −1.78 −1.22 −2.60 13.02 0.00 −0.01 −0.95
miR319 1.16 −0.65 0.22 −2.23 0.28 −2.04 0.45 −1.29 0.58 −1.40
miR390 1.27 −0.01 0.85 −0.84 −0.78 −3.04 −0.35 −1.77 0.17 −1.38
miR393 1.66 0.20 1.10 0.07 −0.46 −1.43 −0.10 0.51 0.61 −0.33
miR394 1.54 −0.18 13.71 12.33 −0.44 −1.99 −0.83 −1.24 0.71 −0.68
miR396 0.40 −1.45 −0.99 −1.90 −0.23 −1.51 −1.00 −1.26 −0.32 −1.45
miR398 −0.06 −1.22 0.00 0.00 0.38 −0.51 0.56 −2.83 0.47 −1.78
miR408 −0.17 −0.37 −0.35 −1.86 1.40 1.98 −2.20 −3.61 −0.82 −0.86

miR165, miR166, and miR171 were significantly upregulated
in one of the resistant genotypes and significantly downreg-
ulated in the other one. The same was observed for miR171
and miR408 in sensitive genotypes. We suggested that these
miRNAs with opposite regulation under Al stress in resistant
or sensitive cultivars and lines do not play the key role in flax
response to Al. After 24 hours of Al treatment, the majority
of miRNAs was downregulated in all 4 cultivars and lines.

Definite regularities were revealed for expression alter-
ations of miR319, miR390, and miR393 families. The level
of miR319 was changed in a similar way in resistant and
sensitive to Al cultivars and lines: expression was increased
after 4 hours of Al exposure (log

2
FC varied from 0.22 to 1.16)

and decreased after 24 hours (log
2
FC varied from −0.65 to

−2.23; Figure 1). miR390 level was decreased after 4 hours
of Al exposure in sensitive to Al flax genotypes (log

2
FC was

−0.78 for G1071/4 o and −0.35 for Lira), but increased in
resistant genotypes (log

2
FC was 1.27 in TMP1919 and 0.85 in

G1071/4 k; Figure 1). Moreover, after 24 hours of Al exposure,
we revealed retention ormoderate downregulation ofmiR390
in resistant to Al cultivar and line (log

2
FC was −0.01 for

TMP1919 and −0.84 for G1071/4 k), but strong downregu-
lation in sensitive cultivar and line (log

2
FC was −3.04 for

G1071/4 o and −1.77 for Lira). miR393 was upregulated in
resistant to Al genotypes (log

2
FC was 1.66 for TMP1919 and

1.10 for G1071/4 k), but slightly decreased in sensitive to
Al genotypes (log

2
FC was −0.46 for G1071/4 o and −0.10

for Lira) after 4 hours of Al exposure (Figure 1). After 24
hours of Al exposure, miR393 level was stable in resistant
to Al genotypes (log

2
FC was 0.20 for TMP1919 and 0.07

for G1071/4 k) and deregulated in sensitive to Al genotypes
(log
2
FC was −1.43 for G1071/4 o and 0.51 for Lira).
For validation of high-throughput sequencing data,

expression ofmiR319 andmiR390 was evaluated using qPCR.
RNA samples of flax plants, which were used for high-
throughput sequencing and were taken into qPCR analysis.
The data obtained by qPCR and high-throughput sequencing
methods were highly consistent: Spearman’s correlation coef-
ficient was 0.68 for miR319 and 0.76 for miR390 (𝑃 < 0.05;
Figure 2).

In plants, miR319, miR390, and miR393 families have
been identified as Al responsive [10, 11]. For miR319, both
upregulation [33] and downregulation [34] were revealed in
Medicago truncatula in response to Al stress. miR390 was up-
regulated in wild soybean under Al exposure [35]. However,
in M. truncatula, miR390 was slightly downregulated after
short-term Al treatment and was significantly upregulated
after long-term one [34]. For miR393, upregulation was rev-
ealed in common bean roots in response to Al treatment for
24 hours [36], and downregulation in rice roots after 8 hours
of Al treatment [37]. Opposite directions of the alterations of
miRNA levels could be associated with different time of Al
treatment or diverse resistance of examined genotypes to Al
stress.

In previous flax studies, potential targets for some
miRNAs from miR319, miR390, and miR393 families were
predicted [21, 38, 39]. Here, we performed target prediction
for flax highly-expressedmiRNAs frommiR319, miR390, and
miR393 families (Supplementary Table 3).

For miR319, the following targets were predicted by us
in flax: transcripts encoding cysteine-rich secretory proteins,
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Figure 1: Expression alterations of miR319, miR390, and miR393 in
resistant and sensitive flax cultivars and lines under Al stress.

antigen 5, pathogenesis-related 1 protein; myb domain pro-
tein 65 (MYB65); Teosinte Branched/Cycloidea/PCF tran-
scription factor 3 (TCP3) superfamily protein; TCP family
transcription factor 4; ABC transporter. Within predicted
targets of miR319, Lus10002195 and Lus10000463 transcripts
encoding TCP3 and TCP4 are the most interesting. It was
previously shown that miR319 targets mRNA of TCP tran-
scription factors, which control plant growth and develop-
ment [40–42]. We suggest that the most probable target of
miR319 in flax is also TCPs.

For miR390, predicted targets in flax were transcripts en-
coding leucine-rich receptor-like protein kinase family pro-
tein; protein kinase superfamily protein; growth-regulating
factor 5 (GRF5); root hair specific 10 (RHS10); poor homol-
ogous synapsis 1 (PHS1); leucine-rich repeat (LRR) family

protein; TAS3. Transcript Lus10009533 encoding GRF5 was
one of the potential targets of miR390. GRFs play important
role in plant developmental processes and growth under
adverse environments and could be regulated by TCP4
[43]. TAS3-coding transcript, genolin c19878 from L. usi-
tatissimum unigene library, was also predicted as potential
target of miR390. In other plant species, miR390 initiates
tasiRNA (trans-acting small interfering RNA) biogenesis via
cleavage or interaction with TAS3 transcript. TAS3 tasiRNAs
negatively regulate ARFs (auxin response factors) that is
necessary for proper plant development [44–48].We suppose
that TAS3 and GRF5 are the most likely targets of miR390 in
flax.

Auxin signaling F-box 2 (AFB2), zinc finger (C3HC4-
type RING finger) family protein, and pol-like 5 (PLL5)
transcripts were predicted as targets of miR393 in flax.
Lus10031991 and Lus10035160 encoding AFB2 are the most
interesting targets of miR393. It was previously reported that
targets of miR393 are AFB1 (auxin f-box protein1), AFB2, and
AFB3, which are involved in auxin signaling [32, 49–51]. We
speculate that miR393 probably regulates AFB2 expression in
flax.

Thus, expression alterations of miR319, miR390, and
miR393, which were revealed as Al-responsive in flax, could
affect expression level of a number of key transcripts involved
in plant growth and development.

4. Conclusions

High-throughput sequencing and qPCR analyses of flax
small RNAs allowed us to reveal miRNAs with expres-
sion alterations under Al exposure. Our results suggest the
involvement of miR319, miR390, and miR393 in Al response
in L. usitatissimum plants. Moreover, we revealed diverse
alterations of miR390 and miR393 levels in resistant and
sensitive toAl genotypes.We concluded that, in flax, potential
targets of miR319 are TCPs, miR390–TAS3 and GRF5, and
miR393–AFB2. Thus, we speculate that miR319, miR390,
and miR393 play an important role in Al stress response
via regulation of growth and development processes in flax
plants.
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