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SUMMARY
Medical artificial intelligence (AI) has been moving from the research phase to clinical implementation. How-
ever, most AI-basedmodels are mainly built using high-quality images preprocessed in the laboratory, which
is not representative of real-world settings. This dataset bias proves a major driver of AI system dysfunction.
Inspired by the design of flow cytometry, DeepFundus, a deep-learning-based fundus image classifier, is
developed to provide automated and multidimensional image sorting to address this data quality gap.
DeepFundus achieves areas under the receiver operating characteristic curves (AUCs) over 0.9 in image
classification concerning overall quality, clinical quality factors, and structural quality analysis on both the
internal test and national validation datasets. Additionally, DeepFundus can be integrated into both model
development and clinical application of AI diagnostics to significantly enhance model performance for
detectingmultiple retinopathies. DeepFundus can be used to construct a data-driven paradigm for improving
the entire life cycle of medical AI practice.
INTRODUCTION

Artificial intelligence (AI) has long been expected to facilitate

clinical workflows, improve patient outcomes, and transform

current modes of healthcare services.1 Although AI-based

models have generally performed well in experimental condi-
Cell Rep
This is an open access article under the CC BY-N
tions, this capability cannot be sustained in real-world studies,

where multiple socioenvironmental hurdles impact data quality

and downstream analysis, producing a notable decline in model

performance, patient experience, and clinical workflow effi-

ciency.2–4 This data quality gap has been recognized as one of

the greatest barriers at all stages of medical AI research from
orts Medicine 4, 100912, February 21, 2023 ª 2022 The Authors. 1
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model development to clinical deployment, and current solutions

rely on already overburdened medical practitioners to perform

additional data classification tasks.5,6 This method, however, is

both subjective and labor intensive, presenting a major impedi-

ment for medical AI to achieve sustainable development.

Accordingly, automating high-throughput and systematic data

quality classification is essential for AI-driven health interven-

tions to thrive properly and become a new standard of care.

As an image-centric specialty, ophthalmology has become

one of the frontiers of deep-learning systems (DLSs) for health-

care applications, with IDx-DR, a software program designed

to perform diabetic retinopathy (DR) screening based on fundus

photography, being the first authorized autonomous diagnostic

AI system in any field of medicine in both China and the US.7,8

Fundus photography is one of the most commonly used modal-

ities for the evaluation of both systemic diseases that affect the

eye (e.g., diabetes and hypertension) and primary ocular

diseases (e.g., age-related macular degeneration [AMD]).9 It

has become an ideal candidate for telehealth services supported

by DLSs to promote the early diagnosis and timely treatment of

various disorders.10–14 To allow the implementation and adop-

tion of DLSs for clinical care, Lin et al. conducted a national study

to further validate their performance using prospective, real-

world data.8 From a broader application perspective, however,

according to a study led by Google Health in 11 clinics in

Thailand, 21% of retinal images collected in real-world clinical

workflows could not be identified by a validated DLS.3 These

ungradable images usually result from operator-dependent fac-

tors, camera-related issues, and ocular media opacities, which

can incur referrals and associated costs, such as travel or time

off work for patients.15 To alleviate the uncertainty from ungrad-

able images and reduce unnecessary referrals, a fundus image

quality classifier is urgently needed to facilitate the clinical imple-

mentation of DLSs.

Several automated image quality assessment systems have

been proposed for the identification of ungradable fundus

images, but none of them have achieved large-scale deploy-
2 Cell Reports Medicine 4, 100912, February 21, 2023
ment.16–20 One possible reason is that these systems only detect

poor-quality images without providing detailed information

about specific quality defects, which leads to poor explainability

in real practice. For fundus image quality assessment, multiple

aspects should be considered, including clarity, illumination,

and position. Discrimination of these factors is essential for

operators since they require distinct adjustments on site.21

Another limitation of these studies is that they only focused on

imageswhose ineligibility was caused by technical factors.While

technical factors, such as inappropriate illumination, positional

deviation, and lack of focus, can usually be corrected by

repeated image acquisition, ocular media opacity, a major cause

of obscured images, is indicative of the presence of ophthalmic

diseases that cannot be corrected by image recaptures,

including cataracts, vitreous hemorrhage, and corneal edema.

Therefore, accurate recognition of different quality factors will

not only avoid unnecessary recaptures but also allow eligible

patients to receive timely referrals. Moreover, it remains largely

unknown how the implementation of image quality analysis will

alter the performance of AI-based systems in real-world clinical

settings. The extent of performance alterations and how these

changes are associated with different quality factors can offer

great guidance for both healthcare providers and algorithm

engineers.

Inspired by the design of flow cytometry, which provides high-

throughput cell sorting according to multiple biomarkers, we

developed DeepFundus, a deep-learning-based fundus image

classifier, to provide automated, real-time image sorting accord-

ing to multidimensional quality properties and externally tested

its performance on both nationwide and non-Chinese datasets

collected from different scenarios. Then, DeepFundus was inte-

grated into a recently certified AI diagnostic system to remove

ungradable images before the detection of AMD, DR, and optic

disc edema in real-world prospective cohorts to demonstrate its

constructive role in the clinical deployment of medical AI. To

make AI models aware of this data quality gap upstream from

the clinical implementation phase, we identified a group of
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Table 1. Performance of DeepFundus on the national validation dataset

Model Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

Overall quality 0.946 (0.944, 0.948) 0.842 (0.838, 0.845) 0.949 (0.947, 0.951)

Position 0.958 (0.956, 0.96) 0.957 (0.955, 0.959) 0.987 (0.986, 0.988)

Position, macula 0.828 (0.824, 0.831) 0.995 (0.994, 0.996) 0.988 (0.987, 0.989)

Position, optic disc 0.815 (0.812, 0.819) 0.985 (0.984, 0.987) 0.966 (0.965, 0.968)

Illumination 0.852 (0.848, 0.855) 0.966 (0.964, 0.967) 0.971 (0.969, 0.972)

Illumination, macula 0.829 (0.825, 0.832) 0.977 (0.976, 0.979) 0.978 (0.976, 0.979)

Illumination, optic disc 0.862 (0.859, 0.865) 0.992 (0.992, 0.993) 0.987 (0.986, 0.988)

Illumination, retina 0.829 (0.825, 0.832) 0.971 (0.969, 0.972) 0.987 (0.986, 0.989)

Clarity 0.836 (0.832, 0.839) 0.965 (0.964, 0.967) 0.964 (0.962, 0.965)

Clarity, macula 0.922 (0.919, 0.924) 0.934 (0.932, 0.937) 0.948 (0.946, 0.950)

Clarity, optic disc 0.825 (0.821, 0.828) 0.993 (0.992, 0.994) 0.960 (0.959, 0.962)

Clarity, remaining retina 0.914 (0.911, 0.917) 0.943 (0.941, 0.946) 0.975 (0.974, 0.977)

Refractive media opacity 0.897 (0.736, 0.964) 0.859 (0.760, 0.922) 0.953 (0.950, 0.957)

AUC, area under the receiver operating characteristic curve.

Article
ll

OPEN ACCESS
low-quality images with sufficient diagnostic certainty and

proved that adding these images by a proper percentage to

training datasets during model development could enhance

model robustness. These procedures can be used to establish

a data-driven operating paradigm for boosting the entire life

cycle of medical AI practice.

RESULTS

Characteristics of the datasets
From 2018 to 2022, a total of 65,851 fundus images were

collected from 27 distinct cohorts to develop and evaluate

DeepFundus, which consisted of 13 quality classificationmodels

(Figures 1A and 1B). After image annotation, our study included

39,348 images of good overall quality and 26,503 images of poor

overall quality for various reasons. Examples and distribution of

fundus photographs in each quality aspect are shown in Fig-

ure S1 and Table S1. For images collected at the Third Affiliated

Hospital of Sun Yat-sen University (TAH), 1,655 fundus images

were labeled as poor clarity. Following additional reference to

their corresponding slit-lamp images, 514 were considered

blurred due to refractive media opacity and 1,141 due to tech-

nical reasons.

Performance of DeepFundus on the internal test dataset
In the 1,906-image internal test set, DeepFundus achieved an

under the receiver operating characteristic curve (AUC) of

0.975 (95% confidence interval [CI]: 0.968–0.982) in detecting

poor overall quality images and AUCs of 0.970–0.985, 0.967–

0.979, and 0.909–0.960 in classifying poor-quality images
Figure 1. Overall study design

(A) Data collection, including retinal fundus images and slit-lamp images (obtaine

(B) Fundus images are used to develop DeepFundus, a deep-learning-based sy

defects.

(C) DeepFundus is integrated into an AI diagnostic system for removing unqualifi

poor-quality image groups are compared. SCES, South China Eye Screening Prog

Hospital, Sun Yat-sen University; XJH, The People’s Hospital of Xinjiang Uygur A

4 Cell Reports Medicine 4, 100912, February 21, 2023
concerning position, illumination, and clarity, respectively. In

the TAH internal test dataset consisting of 248 images,

DeepFundus achieved an AUC of 0.955 (0.946–0.965) in distin-

guishing poor-quality fundus images caused by refractive media

opacity from those whose poor quality was caused by technical

reasons. Details on the performance of the 13 models above are

displayed in Table S2.
Performance of DeepFundus on national validation and
non-Chinese population
In the national validation dataset consisting of 44,712 fundus

images, DeepFundus achieved an AUC of 0.949 (95% CI:

0.947–0.951) for detecting images of poor overall quality (Ta-

ble 1). For classifying images of poor position, the AUCs

were 0.987 (0.986–0.988), 0.988 (0.987–0.989), and 0.966

(0.965–0.968) for the overall image, macular area, and optic

disc, respectively. For identifying images of poor illumination,

the AUCs were 0.971 (0.969–0.972), 0.978 (0.976–0.979),

0.987 (0.986–0.988), and 0.987 (0.986–0.989) for the overall

image, macular area, optic disc, and the remaining retina,

respectively. For detecting images of poor clarity, the AUCs

were 0.964 (0.962–0.965), 0.948 (0.946–0.950), 0.960 (0.959–

0.962), and 0.975 (0.974–0.977) for the overall image, macular

area, optic disc, and the remaining retina, respectively. Further

information about its performance in 7 separate Chinese re-

gions is presented in Figures 2 and S2 and Data S1 and S2.

For detecting blurred fundus images caused by refractive

media opacity, DeepFundus obtained an AUC of 0.953

(0.950–0.957) in the external test dataset (Table 1). When tested

using the Kaggle dataset, DeepFundus obtained AUCs of
d only from TAH), was conducted from 27 distinct cohorts for 4 years.

stem for the identification of fundus images with 13 different types of quality

ed fundus images before diagnosis, and its performances in good-quality and

ram; NOS, Guangdong Neuro-ophthalmology Study; TAH, The Third Affiliated

utonomous Region; AI, artificial intelligence.
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Table 2. Performance of the certified AI diagnostic system in the detection of drusen in different quality groups

Quality filters Metrics (95% CI) GQ group PQ group Difference p valuea

Overall quality sensitivity 0.853 (0.830, 0.874) 0.494 (0.430, 0.557) 0.360 (0.289, 0.430) <0.001

specificity 0.975 (0.968, 0.981) 0.981 (0.972, 0.987) �0.005 (�0.015, 0.005) 0.344

accuracy 0.938 (0.929, 0.946) 0.914 (0.900, 0.926) 0.024 (0.008, 0.040) 0.002

Position sensitivity 0.791 (0.768, 0.813) 0.567 (0.392, 0.726) 0.225 (0.029,0.421) 0.006

specificity 0.978 (0.972, 0.982) 0.974 (0.941, 0.989) 0.004 (�0.022, 0.029) 0.947

accuracy 0.930 (0.923, 0.937) 0.920 (0.877, 0.949) 0.011 (�0.028, 0.049) 0.630

Illumination sensitivity 0.812 (0.788, 0.834) 0.489 (0.389, 0.582) 0.327 (0.221, 0.434) <0.001

specificity 0.977 (0.971, 0.982) 0.982 (0.966, 0.991) �0.005 (�0.019, 0.009) 0.574

accuracy 0.934 (0.926, 0.941) 0.900 (0.873, 0.921) 0.034 (0.008, 0.061) 0.003

Clarity sensitivity 0.837 (0.814, 0.858) 0.471 (0.398, 0.545) 0.366 (0.285, 0.447) <0.001

specificity 0.975 (0.968, 0.981) 0.983 (0.974, 0.989) �0.008 (�0.018, 0.003) 0.183

accuracy 0.935 (0.926, 0.942) 0.917 (0.901, 0.930) 0.018 (0.001, 0.036) 0.031

Macula sensitivity 0.851 (0.828, 0.872) 0.513 (0.449, 0.575) 0.339 (0.269, 0.408) <0.001

specificity 0.976 (0.968, 0.981) 0.980 (0.972, 0.986) �0.005 (�0.015, 0.005) 0.407

accuracy 0.937 (0.928, 0.945) 0.917 (0.903, 0.929) 0.020 (0.004, 0.036) 0.009

Optic disc sensitivity 0.826 (0.802, 0.848) 0.606 (0.541, 0.668) 0.220 (0.149, 0.291) <0.001

specificity 0.976 (0.969, 0.981) 0.981 (0.971, 0.987) �0.005 (�0.016, 0.005) 0.395

accuracy 0.934 (0.925, 0.942) 0.920 (0.904, 0.933) 0.014 (�0.003, 0.031) 0.090

Retina sensitivity 0.854 (0.831, 0.874) 0.478 (0.413, 0.543) 0.376 (0.308, 0.448) <0.001

specificity 0.977 (0.970, 0.982) 0.979 (0.969, 0.985) �0.002 (�0.012,0.009) 0.839

accuracy 0.940 (0.932, 0.948) 0.908 (0.892, 0.921) 0.032 (0.016, 0.049) <0.001

This experiment was conducted in a community-based, age-related macular degeneration study consisting of 1,234 images with drusen and 3,732

images without drusen. p <0.05 was considered significantly different. All patients were diagnosed through comprehensive imaging examinations.

GQ, good quality. PQ, poor quality.
ap values were calculated between the good-quality and poor-quality groups using the two-proportion Z-test.
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0.764–0.987 to identify retinal images with different quality

defects (Table S3).

Heatmap analysis
To visualize the areas contributing most to the 13 models of

DeepFundus, we generated a heatmap that superimposed a

visualization layer on the original images. The quality defects

corresponding to poor clarity, illumination, and position were

explicitly highlighted in the heatmaps (Figure S3). Notably, the

heatmap of poor overall quality highlighted both poor-clarity

and poor-illumination areas. Furthermore, heatmaps for

structural quality analysis models (e.g., clarity, optic disc) can

primarily highlight corresponding retinal areas despite other

blurred structures. Typical examples of the heatmaps for other

models are presented in Figure S3.

Clinical application of DeepFundus
To facilitate the implementation of DeepFundus in clinical

settings, we designed a standardized workflow to properly
Figure 2. Performance of DeepFundus on the national validation datas

(A) After model development, DeepFundus was externally tested using a nationa

munity-based cohorts across China.

(B) On the national validation dataset, DeepFundus achieved AUCs of 0.911–0.985

images of poor position concerning the overall image; AUCs of 0.924–0.991 for de

0.922–0.971 for detecting images of poor clarity concerning the overall image in 7 d

curve.

6 Cell Reports Medicine 4, 100912, February 21, 2023
arrange the 13 models of DeepFundus. Each fundus pho-

tograph collected in real-world settings will undergo

DeepFundus classification, and real-time feedback will be pro-

vided to improve clinical application efficiency, as shown in

Figure S4.

Then, we integrated DeepFundus into a certified AI retinal

diagnostic system as a preprocessing function to investigate

its effects on diagnostic performance (Figure 1C). After

DeepFundus image filtration, the diagnostic metrics for detect-

ing AMD, referable DR, and optic disc edema in the good quality

(GQ) and poor quality (PQ) groups were compared in Tables 2,

S1–S4, and S2–S4, respectively. In a community-based cohort

for AMD screening, AI achieved sensitivities of 0.853 (95% CI:

0.830–0.874) and 0.494 (0.430–0.557); specificities of 0.975

(0.968–0.981) and 0.981 (0.972–0.987); and accuracies of

0.938 (0.929–0.946) and 0.914 (0.900–0.926) in detecting drusen

in the overall GQ and PQ groups, respectively; the GQ group

demonstrated significantly higher sensitivity and accuracy

values. Similar results were also observed in the other 6 quality
et

l validation dataset prospectively collected from 16 clinic-based and 6 com-

for detecting images of poor overall quality; AUCs of 0.965–0.997 for detecting

tecting images of poor illumination concerning the overall image; and AUCs of

ifferent Chinese regions. AUC, area under the receiver operating characteristic



Table 3. Performance of established models in the detection of diabetic retinopathy using different model architectures

Model

Architecture

Metrics

(95% CI) Model 1 Model 2 Model 3 Model 4 P1 P2 P3 P4 P5 P6

InceptionV3 sensitivity 0.775

(0.734,

0.816)

0.925

(0.899, 0.951)

0.775

(0.734, 0.816)

0.725

(0.681, 0.769)

0.117 1 0.796 0.117 0.039 0.796

specificity 1

(1, 1)

0.986

(0.975, 0.998)

0.992 (0.983, 1) 0.992

(0.983, 1)

0.073 0.247 0.247 0.722 0.722 1

accuracy 0.978

(0.963,

0.992)

0.980

(0.966, 0.994)

0.970

(0.953, 0.987)

0.965

(0.947, 0.983)

1 0.658 0.397 0.497 0.280 0.842

Inception

ResnetV2

sensitivity 0.675

(0.629,

0.721)

1 (1, 1) 0.725

(0.681, 0.769)

0.750

(0.708, 0.792)

<0.001 0.807 0.621 0.001 0.002 1

specificity 1

(1, 1)

0.969 (0.953, 0.986) 0.997

(0.992, 1)

0.997

(0.992, 1)

0.002 1 1 0.009 0.009 1

accuracy 0.968

(0.950,

0.985)

0.973 (0.957, 0.989) 0.970

(0.953, 0.987)

0.973

(0.957, 0.989)

0.836 1 0.836 1 1 1

Densenet sensitivity 0.525

(0.476,

0.574)

0.725 (0.681, 0.769) 0.700

(0.655, 0.745)

0.725

(0.681, 0.769)

0.106 0.169 0.106 1 1 1

specificity 1 (1, 1) 1

(1, 1)

0.992

(0.983, 1)

0.989

(0.979, 0.999)

1 0.247 0.133 0.247 0.133 1

accuracy 0.953

(0.932, 0.973)

0.973

(0.957, 0.989)

0.963

(0.944, 0.981)

0.963

(0.944, 0.981)

0.193 0.599 0.599 0.550 0.550 1

P1 indicates the p value calculated betweenmodel 1 andmodel 2 using the two-proportion Z-test. P2 indicates the p value calculated betweenmodel 1

and model 3 using the two-proportion Z-test. P3 indicates the p value calculated between model 1 and model 4 using the two-proportion Z-test. P4

indicates the p value calculated between model 2 and model 3 using the two-proportion Z-test. P5 indicates the p value calculated between model 2

and model 4 using the two-proportion Z-test. P6 indicates the p value calculated between model 3 and model 4 using the two-proportion Z-test.
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filters. In another community-based dataset for DR screening,

the system showed remarkably better performance in the GQ

groups for 2 quality filters (illumination and clarity). In a clinic-

based dataset for optic disc edema analysis, the application of

DeepFundus yielded significantly higher sensitivities in 5 quality

filters and markedly higher accuracy in the optic disc qual-

ity filter.

To evaluate the robustness of DeepFundus among different

retinal disease types and grades, we performed subgroup anal-

ysis in the aforementioned AMD and DR datasets (Table S5). In

both datasets, DeepFundus demonstrated consistent perfor-

mance between the two groups. Additionally, typical examples

of failure cases in DeepFundus analysis were provided to facili-

tate better understanding and application of DeepFundus

(Figure S5).

Effects of adequate-quality fundus images on model
development
After image annotation and dataset construction, the distribution

of diagnosis classifications in each dataset is summarized in

Table S6. For each task, the performances of the 4 designed

models using 3 types of selected model architectures are

demonstrated in Tables 3, S1–S7, and S2–S7 and Figure 3. In

the detection of optic disc edema, model 3 achieved the best

accuracy for all types of model architecture. In the detection of
drusen, the accuracy of model 2 was the best in the

InceptionV3 and InceptionResNetV2 architectures and second

only to model 4 by a narrow gap with the DenseNet architecture.

However, model 4 with the DenseNet architecture had an

extremely unbalanced distribution of sensitivity (0.490) and

specificity (0.967). In the detection of DR, model 2 achieved

the best accuracy and sensitivity with all types of model

architecture.

DISCUSSION

Currently, the majority of AI applications are model driven and

focus on designing empirical tests to develop the best model ar-

chitecture and training procedure to improve the performance of

the model. These applications, however, fail to perform properly

in real-world settings where data are at the core of every

decision-making process, necessitating a paradigm shift

from model-driven to data-driven approaches. Data-driven

approaches involve systematically improving datasets to

enhance the performance of AI applications, which is important

but often neglected because it is traditionally regarded as a

tedious, low-skill job. To facilitate such data-driven approaches,

this study introduced DeepFundus, an automated deep-

learning-based fundus image quality classifier involving a total

of 13 models using the InceptionResNetV2 technique.
Cell Reports Medicine 4, 100912, February 21, 2023 7



Figure 3. Performance of established models in the detection of retinal diseases using different model architectures

(A–C) ROCs for the detection of optic disc edema using InceptionV3, InceptionResNetV2, and DenseNet.

(D–F) ROCs for the detection of drusen using InceptionV3, InceptionResNetV2, and DenseNet.

(G–I) ROCs for the detection of diabetic retinopathy using InceptionV3, InceptionResNetV2, and DenseNet.

ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve.
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DeepFundus was designed to assess fundus images in terms of

overall quality, clinical quality factors, affected retinal structures,

and refractive media opacity. In both the internal test and na-

tional validation datasets, DeepFundus achieved AUCs >0.9

for all quality aspects. DeepFundus also demonstrated general-

izability to non-Chinese ethnicities in the Kaggle dataset,

presenting AUCs of 0.764–0.987 in different quality aspects.

Moreover, in clinical application, our results demonstrated the

positive effects of DeepFundus in removing inadequate fundus

images and enhancing the real-world performance of estab-

lished AI diagnostics in the detection of multiple retinopathies.

During the development phase of the medical AI models, we

proposed another group of quality analysis criteria and

enhanced model robustness by adding an appropriate propor-

tion of adequate-quality images to the training datasets.

Several studies have reported on the use of deep-learning

algorithms for image quality assessment. Mahapatra et al.

proposed a system using convolutional neural networks

(CNNs) to assess fundus image quality for the first time and
8 Cell Reports Medicine 4, 100912, February 21, 2023
obtained an accuracy of 97.9% in distinguishing gradable from

ungradable fundus images.16,22 Afterward, Li et al. developed

another AI system to evaluate fundus images in terms of both

clarity and location.23 This system achieved robust performance

in a 6,200-image external test dataset. Compared with these

studies, our study demonstrated several important features.

First, previous studies focused on the classification of retinal

images disqualified by different technical factors. However, a

large proportion of real-world retinal images are ungradable

due to refractive media opacity, especially cataracts.24 Igno-

rance of refractivemedia opacity will not only cause unnecessary

image recaptures without quality improvement but also lead to

the delayed diagnosis and treatment of ophthalmic diseases.

To the best of our knowledge, our study established the first

automated system for differentiating between images obscured

by refractive media opacity and those obscured due to technical

factors, which can be of great assistance to both technicians and

patients. Second, our system included both generic quality

factors (position, illumination, and clarity) and affected retinal



Figure 4. Clinical application of DeepFundus

Each fundus photograph collected in real-world settings will receive DeepFundus classification in terms of clinical quality factors, refractive media opacity, and

structural quality analysis before entering downstream analysis. This system can also provide effective adjustments in real time for image acquisition based on

quality analysis. These functions allow DeepFundus to serve as a data management tool in the whole life cycle of medical AI.
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structures (optic disc, macula, and other retinal areas) in the

quality assessment, thus evaluating fundus image quality from

a more specific and clinically relevant perspective. Third, the

datasets used to validate DeepFundus were acquired via various

types of digital fundus cameras from multiethnic populations in

different clinical settings and were therefore more representative

of the real world. These features could enable DeepFundus to

serve as a practical and fundamental tool in medical AI research,

such as flow cytometry in biological research. To facilitate auto-

mated, multidimensional quality analysis of fundus images and

improve interinstitutional collaboration, we built a website-based

platform freely available at http://www.myopiaprediction.com/

modelstore/#/model/list. After registration, users can upload

retinal images from a file. Then, the analysis results concerning

different quality aspects and recommended adjustments will

be presented on the website for downstream utilization, as pre-

sented in Figure 4.

Data quality issues have aroused great concerns in the field of

medical AI, but solutions remain to be investigated.5,6,15

Recently, Dai et al. integrated on-site image quality assessment

into DeepDR, a deep-learning-based DR screening system, and

demonstrated that real-time quality feedback can improve DR

diagnosis using DeepDR.25 Still, it remains to be explored how

image quality analysis will alter AI diagnosis in other retinal dis-

eases and how these changes are associated with different qual-
ity factors. To further elucidate this problem, DeepFundus was

embedded into a certified AI diagnostic system to remove PQ

images prior to the detection of three types of retinal abnormal-

ities: drusen, referable DR, and optic disc edema. In the identifi-

cation of drusen, the AI system achieved significantly higher

sensitivities and accuracies in the GQ groups than in the PQ

groups for most quality filters. In the detection of referable DR

and optic disc edema, DeepFundus seemed to produce slightly

distinct impacts on its diagnostic performance. There are a num-

ber of possible reasons for these differences in performance.

While drusen are delicate features and thereby vulnerable to

degraded image quality, referable DR is a relatively obvious

characteristic and can still be recognized in some unqualified im-

ages; this probably accounts for the comparatively minor effects

of DeepFundus on AI detection of referable DR. Compared with

macular areas, where drusen are mostly located, optic discs are

less likely to be affected by inadequate illumination and opacity.

Accordingly, the accuracy of the AI-based diagnosis of optic

disc edema may not benefit as much from the application of

DeepFundus. Nevertheless, it should be noted that in the detec-

tion of optic disc edema, the AI system attained markedly higher

sensitivities in the GQ groups than in the PQ groups for most

quality filters. Since optic disc edema usually indicates severe

vision-threatening or even life-threatening conditions such as

multiple sclerosis, optic neuritis, and intracranial hypertension,
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an increase in sensitivity can be of substantial importance to

these patients, particularly in large-scale disease screening.

To solve data quality issues upstream from the clinical imple-

mentation phase, we extended our quality annotation criteria to

cater to data classification tasks during model development,

where levels of quality defects are more relevant than the types

of quality factors. We demonstrated that adding adequate-qual-

ity images to training datasets could contribute to better model

performance in the test datasets, where both excellent-quality

and adequate-quality images exist. In addition, the best models

were generally trained on datasets whose data quality distribu-

tion was the closest to that of the test dataset. Accordingly, to

guarantee model robustness in real-world settings, where multi-

ple data quality defects can arise, including an appropriate pro-

portion of low-quality images in the training datasets is

necessary.

Thus, DeepFundus exhibited robust performance in the sys-

tematic quality classification of fundus images, constituting a

practical data management system for medical AI. Based on

its model framework, DeepFundus can provide specific instruc-

tions for operators and patients on site, contributing to standard-

ization of retinal image datasets, accurate detection of both

ophthalmic and systemic disorders, and improved real-world

application of AI diagnostics. Furthermore, we demonstrated

that the concept of data quality classification can also be applied

to the model development stage to enhance model robustness,

indicating the great potential of this system to be integrated into

a data-driven workflow to deploy and maintain DLSs more reli-

ably and flexibly. Considering the ubiquity of data quality issues

in medical imaging, irrespective of the field, the concept and

design of DeepFundus could be considered when developing

an image-based AI diagnostic system.

Limitations of the study
The study findings should be interpreted with several limitations.

First, DeepFundus was designed to classify ineligible images

based on a single fundus image focusing on the posterior pole.

Consequently, this system cannot be used for the retinal exam-

ination of different fields based on multiple fundus images, such

asmydriatic 7-field imaging. Second, only threemajor retinal dis-

eases were included in the clinical assessment. The effects of

DeepFundus filtration on the diagnostic performance of other

retinal diseases, such as glaucoma, central serous chorioretin-

opathy, and retinitis pigmentosa, will be investigated in our future

studies. Third, the generalizability of DeepFundus in other real-

world datasets, such as DeepDRiD26 and Messidor,27 also

remains to be explored in the future.
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METHOD DETAILS

Study design and participants
The overall study design is shown in Figure 1. We formed the development and internal test datasets using fundus images collected

from 4 different cohorts fromApril 2018 to April 2019 to develop DeepFundus. Then, fundus images from another 22 hospitals nation-

wide and the Kaggle dataset (EyePACS LLC, San Jose, CA, USA) featuring different geographical and ethnic compositions were used

to externally test its performance.28 Detailed information about the datasets is described in Table S8.

Image quality annotation criteria
All retinal images were labeled according to three-level annotation criteria: overall quality, clinical quality factors, and structural qual-

ity analysis. Detailed definitions and examples of each quality aspect and their logical relations are demonstrated in Figure S1. The

proposed quality factors (position, illumination, and clarity) are well-established image quality assessment aspects in clinical prac-

tice.29 For each quality factor, the affected retinal areas were also labeled to constitute structural quality analysis. All images were

independently labeled by two ophthalmologists licensed in China (each with >5 years of experience). For each photograph, if all

labels were the same, they were regarded as the ground truth. Otherwise, arbitration was performed by a retinal expert with >10 years

of experience in practice.

For patients enrolled in TAH, both slit-lamp photography and retinal images were acquired. When the patients’ retinal images were

labeled poor clarity, slit-lamp photographs of the corresponding eyes were inspected by 2 senior ophthalmologists (each with >10

years of experience) to determine whether poor clarity was caused by refractive media opacities (e.g., cataracts). Accordingly, this

dataset (TAH) included additional classification labels of obscured fundus images (Figure S1).

Development and internal test of DeepFundus
DeepFundus was designed to consist of 12 models to classify retinal images concerning different quality aspects and 1 model for

detecting refractive media opacity from blurred fundus images. Images included from April 2018 to April 2019 were randomly split

in a 7:1.5:1.5 ratio into the training set, internal validation set, and internal test set; no images overlapped among these sets.

Image standardization was performed prior to model construction. All images were downsized to 512 3 512 pixels, and the pixel

values were normalized to an interval between 0 and 1. Data augmentation was used to increase image heterogeneity of the training

dataset and thus reduce the chance of overfitting during the deep learning process. The new samples were obtained through simple

transformations of the original images and corresponded to ‘‘real-world’’ acquisition conditions. Random horizontal and vertical
e1 Cell Reports Medicine 4, 100912, February 21, 2023
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flipping, random rotations up to 90 degrees around the center of the image, and randombrightness shifts within the range of 0.8 to 1.2

were applied to the images of the training set in real time during training.

A state-of-the-art deepCNN architecture, InceptionResNetV2, which incorporates the architectural features of the Inception family

with residual connections, was used to construct the model.30 Python 3.6.13, TensorFlow 1.13.1, and Keras 2.3.1 were used to train

and test the models with an initial learning rate of 0.001. All models were trained up to 500 epochs. In the training process, the vali-

dation loss was assessed after each epoch for model selection. Early stopping was employed, and when the validation loss did not

improve over 120 consecutive epochs, the training process was stopped. Themodel state with the lowest loss was saved as the final

state of themodel. Eachmodel had one input and one output; the input of themodel was a retinal image, and the output function was

a standard binary task for determining whether the quality of the input image was poor in the targeted aspect or whether the blurred

imagewas caused by refractive media opacity. The development environment was based on Ubuntu 16.04.6 with NVIDIA Tesla V100

PCIe 32GB.

External test of DeepFundus
After model development, DeepFundus was externally tested using images collected from February 2020 to October 2022, including

a national validation dataset from 22 hospitals of different levels across China and a non-Chinese ethnicity dataset from Kaggle.

Heatmap generation
To combat the black-box effect in DLSs, we used improvedGrad-CAM (Gradient-weightedClass ActivationMapping) to enhance the

interpretability of DeepFundus.31 The Grad-CAM algorithm can produce a class-specific activation heatmap where each activation

value represents the importance of classifying to that class. Redder regions indicate more significant features. Using this method, a

heatmap was generated to display the location on which the decision of DeepFundus was based.

Clinical assessment of DeepFundus
To evaluate the effectiveness of DeepFundus in real-world implementation, DeepFundus was integrated into an established AI diag-

nostic system for removing unqualified fundus images before diagnosis. We previously developed this AI diagnostic system to detect

multiple retinopathies using fundus images,8 and its DR diagnosis module was recently designated among the first batch of class III

AI-based devices by the National Medical Products Administration (NMPA).32 This experiment was conducted using 8783 retinal im-

ages collected in 3 prospective cohorts (from May 2020 to December 2020) for the analysis of AMD, DR, and optic disc edema. The

definitions for judgment of these included retinopathies were based on previously established criteria.10,11,33 For each quality filter,

fundus images were classified into GQ or PQ groups. The performance of the AI diagnostic system in the GQ groups was compared

to that in the corresponding PQ groups.

Experimental design for quality analysis during model development
To investigate the impact of data quality on the model development phase, we annotated fundus image gradability according to a

new set of standards including 3 quality categories: excellent, adequate and inadequate. ‘‘Excellent’’ means no noticeable quality

defects and all targeted retinopathy lesions gradable; ‘‘Adequate’’ means noticeable quality defects and all targeted retinopathy

lesions gradable; ‘‘Inadequate’’ means severe quality defects and some targeted retinopathy lesions ungradable. These criteria

were applied to three cohorts to establish DLSs separately depicting optic disc edema, referable DR, and drusen. For each task,

4 datasets with the same size but different quality distributions were constructed, and we used a common test set to evaluate model

performance. A total of 3 types of model architectures, including InceptionV3, DenseNet, and InceptionResNetV2, were tested on

these datasets. For each CNN architecture, the hyperparameters were fixed to explore how different quality distributions influence

model performance.

QUANTIFICATION AND STATISTICAL ANALYSIS

The performance of DeepFundus in detecting poor-quality images in terms of each quality aspect was evaluated by calculating the

sensitivity and specificity with 95% confidence intervals (CIs). We plotted a receiver operating characteristic (ROC) curve to show the

ability of the system to evaluate image quality. The ROC curve was created by plotting the ratio of true positive cases (sensitivity)

against the ratio of false-positive cases (1-specificity). The larger the area under the ROC curve (AUC), the better the performance

was inferred to be. All statistical tests were 2-sidedwith a significance level of 0.05. Statistical analyses were conducted using Python

3.6.13.

ADDITIONAL RESOURCES

This study was registered with ClinicalTrials.gov (NCT04289064) and approved by the Institutional Review Board of Zhongshan

Ophthalmic Center at Sun Yat-sen University (IRB-ZOC-SYSU). All procedures followed the tenets of the Declaration of Helsinki.

All patients were informed of the study and signed consent forms before inclusion.
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