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Abstract

The association of SNPs from seven candidate genes, including genotype-by-baseline fitness and 

genotype-by-baseline body mass index (BMI) interactions, with incident hypertension over 20 

years was investigated in 2663 participants (1301 blacks, 1362 whites) of the Coronary Artery 

Risk Development in Young Adults Study (CARDIA) Study. Baseline cardiorespiratory fitness 

was determined from duration of a modified Balke treadmill test. A total of 98 SNPs in blacks and 

89 SNPs in whites from seven candidate genes were genotyped. Participants that became 

hypertensive (295 blacks and 146 whites) had significantly higher blood pressure and BMI (both 

races), and lower fitness (blacks only) at baseline than those who remained normotensive. Markers 

at the PPARGC1A and BDKRB2 genes were nominally associated with greater risk of 

hypertension, while one marker each at the BDKRB2 and NOS3 genes were nominally associated 

with lower risk. The association of baseline fitness with risk of hypertension was nominally 

modified by genotype at markers within the ACE, AGT, BDKRB2, and NOS3 genes in blacks and 

the BDKRB2, EDN1, and PPARGC1A genes in whites. BDKRB2 rs4900318 showed nominal 

interactions with baseline fitness on the risk of hypertension in both races. The association of 

baseline BMI with risk of hypertension was nominally modified by GNB3 rs2301339 genotype in 

whites. None of the above associations were statistically significant after correcting for multiple 

testing. We found that SNPs in these candidate genes did not modify the association between 

baseline fitness or BMI and risk of hypertension in CARDIA participants.
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INTRODUCTION

It is estimated that approximately 65 million U.S. adults have hypertension, a well-known 

independent risk factor for cardiovascular disease.1 Hypertension is viewed as a complex 

trait caused by the interaction of multiple susceptibility genes with environmental and 

behavioral factors. Risk factors for hypertension include poor diet, physical inactivity, low 

cardiorespiratory fitness (hereafter referred to as fitness), overweight and obesity, smoking, 

and low education level. Prospective epidemiological studies have shown a lower risk of 

developing hypertension in physically fit compared to unfit individuals.2-5 The Coronary 

Artery Risk Development in Young Adults (CARDIA) Study found that during a 15 year 

follow-up period, participants with low fitness (< 20th percentile) were 3 times more likely 

to develop hypertension than participants with high fitness (≥ 60th percentile), and the 

population attributable risk of developing hypertension due to low fitness was 21%.4 

Furthermore, overweight and obesity are associated with increased risk of developing 

hypertension.6-9 In CARDIA, race- and sex-specific odds ratios (OR) for incident 

hypertension over 10 years of follow-up associated with a 1-standard deviation (SD) 

increase in body mass index (BMI) ranged from 1.33 to 1.66 (P≤0.001).6

However, some individuals will become hypertensive despite being physically fit and/or 

having a normal body weight, whereas others who are unfit and/or overweight may have 

blood pressure values in the normal range. For example, although fitness level was the 

strongest predictor of hypertension risk in the HYPGENE study, 37% of the subjects in the 

highest fitness decile became hypertensive and one third of the subjects in the lowest decile 

remained normotensive during the follow-up period.10 Similarly, whereas exercise training 

and weight loss lower blood pressure on average, there are significant inter-individual 

differences in blood pressure responses to identical interventions.11 The underlying 

mechanisms for inter-individual variation in the effects of regular physical activity on blood 

pressure are still poorly understood, but initial blood pressure level and familial factors are 

involved.11 The HERITAGE Family Study has shown that the heritabilities of endurance 

training–induced changes in hemodynamic phenotypes after completion of a standardized 

endurance-training program vary between 20 and 40%,12-14 and some of the classic 

hypertension candidate genes affect the training responses.15-16 Thus, identifying the 

sources of variation in blood pressure is critical for a better understanding of the 

pathophysiological processes leading to hypertension and the mechanisms by which higher 

levels of fitness or normal weight may protect against hypertension.

Several cross-sectional studies have found significant single nucleotide polymorphism 

(SNP)-by-physical activity and SNP-by-BMI interactions on blood pressure phenotypes 

using the candidate gene approach.17-20 However, similar data on the contribution of genetic 

variation to the antihypertensive effect of increased fitness levels over time are scarce, 

mainly because of the lack of suitable data sets to examine such questions. The CARDIA 
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study is a longitudinal study of black and white young adults that includes measures of 

symptom-limited exercise test duration at three time points over 20 years of follow-up. 

Thus, the CARDIA cohort represents an excellent resource to examine hypotheses regarding 

the genetic basis of hypertension while taking fitness and BMI levels into account. The 

purpose of the present study was to examine the association of SNPs, as well as SNP-by-

baseline fitness and SNP-by-baseline BMI interactions, in seven candidate genes with risk of 

incident hypertension after 20 years of follow-up in the CARDIA Fitness Study.

METHODS

Study population

Details of recruitment, study design, and methods of the CARDIA study have been 

published elsewhere.21 The initial examination included 5115 black and white men and 

women aged 18-30 years. Participants were recruited to represent proportionate racial, sex, 

age, and education groups from four U.S. communities: Birmingham, AL; Chicago, IL; 

Minneapolis, MN; and Oakland, CA. Six sequential examinations have been conducted from 

the time of initiation of the study in 1985-86 through year 20 (2005-06). Retention rates 

declined from 90% to 72% across examinations.22 All participants provided written 

informed consent, and institutional review boards from each field center and the 

coordinating center approved the study annually.

Genotype data were obtained on 4244 individuals who participated in the baseline 

examination. To be included in analyses of 20 year incident hypertension, participants had to 

have measurements of systolic and diastolic blood pressure (SBP and DBP, respectively) 

from both the baseline and year 20 examinations, be free of hypertension and not be taking 

any blood pressure medication at baseline, and free of other chronic diseases and not 

pregnant at both examinations. At baseline, we excluded participants that did not have data 

for treadmill time or BMI and who reported having or were unsure of their status regarding 

the following health risks: hypertension/blood pressure medication, heart problems, 

diabetes, cancer, and women who were pregnant (total excluded for these reasons: n=967). 

To minimize potential classification errors, parents’ race (reported by the participants) had 

to match that of the participant (n=132 excluded). This resulted in 3145 (1490 blacks, 1655 

whites) healthy participants at baseline. Exclusions at year 20 included participants reporting 

heart problems, cancer, diabetes, HIV, women who were pregnant, and not sure of their 

hypertension/blood pressure medication status (total excluded for these reasons: n=482). 

This resulted in a total cohort of 2663 participants (1301 blacks, 1362 whites) being 

included in analyses of incident hypertension over 20 years of follow-up. There were small 

baseline differences between participants included in the analyses and those excluded. 

Participants included in the analyses were younger (24.6 vs 25.5 years old, P<0.0001), had 

lower BMI (24.0 vs 25.4 kg/m2, P<0.0001), had lower blood pressure (SBP: 109.1 vs 112.8 

mmHg, P<0.0001); DBP: 67.5 vs 70.8 mmHg, P<0.0001), and higher treadmill time (10.04 

vs 9.31 min., P<0.0001) at baseline compared to those excluded.
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Definition of Hypertension

Hypertension was defined at baseline as resting SBP ≥140 mmHg or resting DBP ≥90 

mmHg, or positive responses to the questions, “Has a doctor or nurse ever said you had high 

blood pressure?” or “Have you ever taken medication for high blood pressure?” 

Hypertension at the year 20 examination was defined similarly except the last question was 

phrased, “Are you (currently) taking medications for high blood pressure?” The 

hypertension endpoint is based on blood pressure cut points used in the seventh report of the 

Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure.
23 Thus, hypertensive participants are defined as those who were normotensive at baseline 

but developed hypertension over 20 years of follow-up, whereas normotensive participants 

are those who remained free of hypertension during the 20 year follow-up period. Of 

included incident hypertension cases (n=441 total), 348 (78.9%) were confirmed on the 

basis of hypertension diagnosis and medication, 17 (3.9%) had elevated SBP, 38 (8.6%) had 

elevated DBP, and 38 (8.6%) had both elevated SBP and DBP.

Data Collection

The Coordinating Center and the CARDIA Quality Control Commission monitored quality 

of data collection. The CARDIA Study staff was centrally trained and certified, and 

followed standardized protocols across study centers and examinations. Participants were 

asked to fast for at least 12 hours and to not smoke or engage in heavy physical activity for 

at least 2 hours prior to the examination.

Blood Pressure—Blood pressure was measured using a Hawksley random zero 

sphygmomanometer (WA Baum Company, Copaigue, NY) at baseline and the Omron 

HEM-907XL digital blood pressure monitor (Omron Healthcare, Kyoto, Japan) at year 20. 

Each participant sat in a quiet room for 5-min prior to having three blood pressure 

measurements taken from the right arm at 1-min intervals by trained and certified 

technicians. Systolic and diastolic pressures were recorded as Phase I and Phase V 

Korotkoff sounds. The average of the second and third measurements was used for analyses.

Fitness assessment—Symptom-limited graded exercise treadmill testing was performed 

at baseline according to a modified Balke protocol.24 The test consisted of up to nine 2-min 

stages of progressively increasing difficulty. Stage 1 was at 3.0 mph and 2% grade, stages 

2-6 were at 3.4 mph with grade beginning at 6% and increasing by 4% each stage, stages 7-8 

were at 4.2 mph and 22% and 25% grade respectively, and stage 9 was at 5.6 mph and 25% 

grade. The first six stages could generally be performed by walking. The exercise test 

consisted primarily of walking to facilitate performance by those unaccustomed to jogging 

and to allow for easier replication during future follow-up exams.24 Fitness was defined as 

the duration of the treadmill test in minutes.

Other measurements—Body weight (light clothing) was measured to the nearest 0.23 kg 

using a beam balance scale. Height without shoes was measured to the nearest 0.5 cm using 

a vertically mounted ruler and a metal carpenter’s square. BMI was calculated as weight 

(kg) divided by height squared (m2). Each participant’s age, race, and sex were self-reported 

during the recruitment phase and verified during the baseline clinic visit. Standardized 
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questionnaires were used to obtain data on sociodemographic risk factors such as years of 

education (highest number of years of school completed) and smoking status (current, 

former, and never smoker), as well as diagnosis and treatment of hypertension, diabetes, and 

other conditions.

SNP selection

For the present study, we included SNPs from seven established blood pressure and/or 

fitness candidate genes: angiotensin converting enzyme (ACE), angiotensinogen (AGT), 

bradykinin β2 receptor (BDKRB2), endothelin-1 (EDN1), guanine nucleotide binding 

protein beta-3 subunit (GNB3), endothelial nitric oxide synthase 3 (NOS3), and peroxisome 

proliferative activated receptor gamma coactivator 1 alpha (PPARGC1A).25 TagSNPs 

within these genes with a minor allele frequency (MAF) of greater than 0.05 were derived 

using the Haploview Program26 (http://www.broad.mit.edu/mpg/haploview) based on two 

sources of SNPs: the Caucasian (CEU) and Yoruban (YRI) population from the 

International HapMap project.27 The algorithm used for SNP selection was Haploview’s 

implementation of the Broad Institute’s Tagger software,28 with the R squared cut off for 

Tagger set to 0.8 and the LOD threshold to 2. In addition, Tagger was used in aggressive 

multi-marker mode. All tagSNPs selected by Tagger for the CEU population were included 

in the SNP panel. TagSNPs that were not in blocks, or only tagged themselves in the YRI 

population were not included. Nonsynonymous SNPs with a MAF >0.05 were also included. 

The final SNP set included 101 SNPs in blacks and 90 SNPs in whites with MAF >0.05 and 

Hardy-Weinberg equilibrium (HWE) p ≥ 0.0008 in the CARDIA cohort. The selected SNPs 

capture 50-91% of the common genetic variance reported for the YRI population and 

60-100% for the CEU population according to the International HapMap project Phase 2 

release 24 data (Supplementary Table S1). One SNP in EDN1 and two SNPs in PPARGC1A 

in blacks and one SNP each in NOS3 and PPARGC1A and two SNPs in AGT in whites 

were genotyped that were not reported in HapMap and were not in LD with HapMap 

tagSNPs and therefore potentially capture part of the remaining genetic variation for these 

genes in the YRI and CEU populations.

Genotyping

Genotyping of the polymorphisms was performed using a two step approach. SNPs were 

multiplexed in a reaction using the iPLEX MassARRAY genotyping system (Sequenom, 

Inc.; San Diego, CA). SNPs that did not perform well on this platform were then genotyped 

using TaqMan Pre-Validated SNP assays (Applied Biosystems; Foster City, CA). Details for 

PCR conditions and primer sequences are available on request. Genotyping was successfully 

performed in 82% of the original SNP set (n=354 SNPs from 17 genes) of the CARDIA 

Fitness Study. Replicate samples (n=206) were randomly dispersed throughout the 

genotyping plate set. Only SNPs that had a minimum concordance of 99% were used for 

further analyses.

Statistical Analysis

All statistical analyses were performed with SAS version 9.1 (SAS Institute Inc, Cary, NC). 

Means and SD were computed for all descriptive characteristics by race. Differences in 

continuous and categorical variables between incident hypertensives and normotensives by 
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race were assessed using t-tests and chi-square tests, respectively. HWE was tested in the 

included SNPs of each race by comparing observed genotype frequencies to expected 

frequencies using the ALLELE procedure in SAS. The pair-wise linkage disequilibrium 

(LD) among the SNPs was assessed using the ldmax program available in the GOLD 

software package.29 Logistic regression modeling was used to assess the contribution of age, 

sex, BMI, fitness, DBP, SBP, smoking, follow-up time, and education to the risk of incident 

hypertension by race. All variables were based on baseline values except for follow-up time. 

ORs and 95% confidence intervals (CI) were calculated for each variable in the multivariate 

models.

Logistic regression modeling was used to test the contributions of SNPs, as well as SNP-by-

baseline fitness and SNP-by-baseline BMI interactions to the risk of incident hypertension. 

In the basic models testing the association of SNPs with hypertension, each SNP was 

entered individually into the model with baseline values of age, sex, fitness, BMI, DBP, and 

SBP included as covariates. BMI was log transformed because of its skewed distribution. 

The common allele homozygotes served as the reference group in the basic models. 

Interactions between SNPs and baseline fitness (dichotomous trait: high/low) and SNPs and 

baseline BMI (dichotomous trait: high/low) were tested by including interaction terms 

(SNP*fitness group; SNP*BMI group) in the basic logistic regression models. In the 

interaction models, baseline fitness and BMI values were dichotomized into low- and high- 

groups based on race- and sex-specific median cut points. Specifically, low- and high-fitness 

groups based on race- and sex-specific median cut points of baseline treadmill time (blacks: 

males-11.5 min., females-7.5 min.; whites: males-12.6 min., females-9.3 min.), and low- and 

high-BMI groups based on race- and sex-specific median cut points of baseline BMI 

(blacks: males- 23.5 kg/m2, females- 23.7 kg/m2; whites: males- 23.6 kg/m2, females- 21.8 

kg/m2) were used. Baseline values of age, sex, fitness (BMI interaction model), BMI (fitness 

interaction model), DBP, and SBP were included as covariates in the interaction models. 

The interaction models tested for the main effect of each SNP, as well as the SNP interaction 

term (SNP*fitness group or SNP*BMI group) in the total sample stratified by race. Post-hoc 

analyses of nominally significant interactions were performed using race-specific analyses 

stratified by baseline fitness or BMI group, with no further adjustment for fitness or BMI. 

The common allele homozygotes in the low-fitness or low-BMI group served as the 

reference group (OR=1.0) in the interaction models.

Participants were grouped by minor allele carrier status for SNPs with MAF <10% showing 

nominally significant (p<0.05) associations with incident hypertension. Minor allele carrier 

status was also used when the cell size for a genotype-by-hypertension or genotype-by-

hypertension-by fitness or BMI group was less than 10. Since multiple SNPs were used in 

the association analyses, we applied a multiple testing correction proposed by Nyholt.30 

Briefly, the method uses spectral decomposition of matrices of pairwise LDs (r) to estimate 

variance of eigenvalues. The effective number of independent SNPs (Meff) at each gene can 

be calculated based on the ratio of observed eigenvalue variance (λobs) and its maximum 

(M): Meff = 1 + (M-1) (1- (Var λobs/M)). This procedure was performed separately for each 

gene locus and the effective number of SNPs from each locus was then added over all loci to 

derive the total number of effective SNPs. The total number of effective SNPs can then be 

used to adjust the standard α level (e.g., 5%) using a standard Bonferroni correction. Since 
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LD between the SNPs differed between black and white participants, the total effective 

number of SNPs was also different (98 in blacks, 64 in whites). Thus, in our study the 

corrected threshold for statistical significance was set to P<0.0005 in black participants and 

P<0.0008 in white participants. Post-hoc power analyses were performed using QUANTO 

version 1.2.4 (http://hydra.usc.edu/gxe).31

Results

Table 1 shows the baseline characteristics of participants by race and 20 year incident 

hypertension status. In black participants, hypertensives (n=295) were significantly older, 

had higher BMI and resting blood pressure (both SBP and DBP), and were less fit at 

baseline than normotensives. In whites, a higher proportion of hypertensives were men, 

whereas a higher proportion of normotensives were women. Furthermore, in white 

participants, hypertensives (n=146) were significantly heavier and had higher BMI and 

resting blood pressure (both SBP and DBP) at baseline compared to normotensives. Overall, 

a higher proportion of subjects with low fitness at baseline were hypertensive (blacks: 26% 

of low-fit group, whites: 12%) compared to subjects that were in the high-fitness group at 

baseline (blacks: 20% of high-fit group, whites: 9%), with the difference being significant in 

blacks only (P=0.01). Similarly, a higher proportion of hypertensives were in the high-BMI 

compared to low-BMI group at baseline in both races (blacks: 27% of high-BMI group 

compared to 18% of low-BMI group, P<0.0001; whites: 14% of high-BMI group vs 8% of 

low-BMI group, P=0.001).

Results of the multivariate logistic regression models for the risk of incident hypertension by 

race are shown in Table 2. In both races, baseline SBP showed the strongest association with 

the risk of hypertension, followed by baseline DBP. Greater baseline fitness level was 

associated with lower risk of hypertension in both races, whereas no other variables were 

significantly associated with incident hypertension. The allele frequencies, HWE, and the 

pairwise LD among all included SNPs are summarized by race in supplementary Tables S2-

S3. The results for the association of SNPs with incident hypertension and SNP-by-baseline 

fitness and SNP-by-baseline BMI interactions for all SNPs are summarized by race in 

supplementary Tables S4-S5.

Association of SNPs with incident hypertension

The nominally significant associations of SNPs with incident hypertension by race are 

presented in Table 3. SNPs from four genes (AGT, ACE, EDN1, and GNB3) were not 

associated with incident hypertension in either race. The minor alleles of three PPARGC1A 

SNPs in blacks and two PPARGC1A and three BDKRB2 SNPs in whites were nominally 

associated (p<0.05) with greater risk of incident hypertension (Table 3). In contrast, the 

minor alleles at the BDKRB2 rs8016905 locus in blacks and the NOS3 rs1808593 locus in 

whites were nominally associated with a lower risk of incident hypertension. None of these 

associations were statistically significant when taking into account the race-specific multiple 

testing corrected thresholds for statistical significance.
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SNP-by-Fitness interactions and incident hypertension

There was no evidence of SNP-by-fitness interactions on the risk of incident hypertension in 

either race for SNPs in the GNB3 gene locus. The BDKRB2 rs4900318 marker showed 

nominally significant interactions with baseline fitness level on the risk of incident 

hypertension in both black and white participants (Table 4), although the interaction patterns 

and minor alleles differed by race (Figure 1). In blacks, participants who were high-fit at 

baseline and homozygous for the common allele (A/A) of the BDKRB2 rs4900318 marker 

had a 44% lower risk of incident hypertension, while no association was observed in low-fit 

participants (Figure 1a). In whites, minor allele homozygotes (A/A) of the BDKRB2 

rs4900318 marker had an over 3-fold greater risk of incident hypertension only in 

participants that were high-fit at baseline (Figure 1b).

Blacks—One SNP each at the AGT, NOS3, and ACE genes and three SNPs at the 

BDKRB2 gene showed nominally significant interactions with baseline fitness level on the 

risk of incident hypertension in black participants (Table 4). High-fit participants carrying 

the minor allele of the ACE rs4303 marker had a 55% lower risk of incident hypertension, 

while no association was observed in participants that were low-fit at baseline 

(Supplementary Figure S1). Minor allele homozygotes at the NOS3 rs3918188 marker had 

an almost two-fold greater risk of incident hypertension only in participants low-fit at 

baseline, while no association was observed in high-fit participants (Supplementary Figure 

S2). Within the BDKRB2 gene, minor allele homozygotes of the rs945039 marker had a 

64% lower risk of incident hypertension only in high-fit participants, whereas minor allele 

homozygotes of the rs4905474 marker had two-fold greater risk of incident hypertension 

only in high-fit participants (Supplementary Figure S3).

Whites—Two SNPs each at the BDKRB2 and PPARGC1A genes and the EDN1 

rs2071943 marker showed nominally significant interactions with baseline fitness level on 

the risk of incident hypertension in white participants (Table 4). Minor allele carriers of the 

PPARGC1A rs2932965 marker had a 55% lower risk of incident hypertension only in high-

fit participants, whereas common allele homozygotes of the PPARGC1A rs6838600 marker 

had a 45% lower risk of incident hypertension only in high-fit participants (Supplementary 

Figure S4). Additional figures showing nominal SNP-by-fitness interactions can be found in 

Supplementary Figures S5-S7. None of the SNP-by-fitness interaction terms in either race 

were statistically significant when taking into account the race-specific multiple testing 

corrected thresholds for statistical significance.

SNP-by-BMI interactions and incident hypertension

The SNP-by-BMI interaction term was nominally significant for the GNB3 rs2301339 

marker in white participants (P=0.006). In white participants, minor allele carriers of the 

GNB3 rs2301339 marker showed a 64% lower risk of incident hypertension compared to 

common allele homozygotes in the low-baseline BMI group, while genotype was not 

associated with incident hypertension risk among high-baseline BMI subjects 

(Supplementary Figure S8). However, none of the SNP-by-BMI interaction terms in either 

race were statistically significant when taking into account the race-specific multiple testing 

corrected thresholds for statistical significance.

Sarzynski et al. Page 8

J Hum Hypertens. Author manuscript; available in PMC 2012 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

We found no statistically significant evidence of the main effects of almost 100 SNPs from 

seven blood pressure candidate genes on incident hypertension while taking into account 

baseline values of age, sex, BMI, fitness, and blood pressure (both DBP and SBP). 

Furthermore, the panel of SNPs tested did not modify the association between the risk of 

incident hypertension over 20 years and baseline fitness or BMI. The candidate gene 

approach of the present study has been previously used in numerous studies of hypertension 

with inconsistent results.32-33 A possible explanation for the lack of success of this approach 

may be related to an incorrect a priori assumption that predisposition to hypertension is 

driven by classical blood pressure regulating genes such as AGT or EDN1.34 As such, 

genome-wide association studies (GWASs) have become the most common approach to 

identify susceptibility genes for common diseases, since GWASs are unbiased by prior 

assumptions about the DNA alterations responsible for phenotypic variation. The results 

from recent GWASs for other complex diseases suggest that truly causative, common, 

consistently associated variants may not have an obvious physiological relationship to the 

common disease.

The evidence from GWASs for the existence of genetic susceptibility variants for 

hypertension remains also weak and inconsistent, and the early published GWASs for 

hypertension did not even find any genetic variant significantly associated with hypertension 

at the genome-wide level.35-36 Furthermore, none of the SNPs previously identified in 

candidate gene studies showed evidence of an association with hypertension in these early 

GWASs. These results may be caused by several factors. It is possible that hypertension 

may have fewer common risk alleles with large effect sizes compared to other common 

diseases and that the true hypertension susceptibility variants may not be represented on the 

chips used for GWAS genotyping.34 Furthermore, hypertension may be more susceptible 

than other complex phenotypes to misclassification bias due to the presence of latent 

hypertension in the control population.37 Phenotyping error along with population 

stratification, insufficient statistical power, lack of consideration of LD in the human 

genome, and imprecise selection of genetic markers are also possible explanations for the 

failure of the candidate gene approach.34

A better understanding of the interactions between environmental and genetic factors 

constitutes a key issue in the understanding of the pathogenesis of hypertension.38 The 

evidence suggests that most of the susceptibility genes for common diseases such as 

hypertension do not have a strong primary etiological role in predisposition to disease, but 

rather act as response modifiers to exogenous environmental factors.38 To be sure, the 

context dependency of the genetic risk is evident in previous studies of hypertension. A 

genetic marker may have a modest effect on risk in individuals who maintain a low 

environmental risk, but a major effect in a high-risk environment.39 The ability to detect 

gene-environment interactions is highly dependent not only on the magnitude of effect and 

sample size but also on the precision with which the outcome and environmental exposures 

are measured.40,41 The detection of SNP-by-fitness and SNP-by-BMI interactions in the 

current study was aided by the objective assessment of both baseline fitness and BMI, which 

should help keep our potential phenotypic error low. The CARDIA study uses a 
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standardized data collection strategy, which supported the prospective verification of 

hypertension cases and controls over 20 years of follow-up. In addition, we used a strict 

classification of hypertension along with stringent inclusion criteria including minimizing 

potential racial admixture bias and controlling for baseline values of possible effect 

modifiers, in order to eliminate participants with prevalent disease and include only those 

participants that were apparently healthy and non-hypertensive at baseline.

However, there were several limitations of the present study. The number of incident 

hypertension cases in both races was somewhat limited which resulted in modest power to 

detect associations between hypertension and common SNPs, especially in white 

participants. Under an additive model, the genotype effect sizes detectable at 80% power on 

incident hypertension ranged from odds ratios (OR) of 1.51 to 1.88 in blacks and ORs from 

1.70 to 2.14 in whites with MAF ranging from 0.10 to 0.50 using the multiple testing 

corrected thresholds (p=0.0005 in blacks and p=0.0008 in whites). These ORs are 

considerably higher than would be realistically expected (OR = 1.1-1.3) for common SNPs 

and diseases based on recent GWAS reports. For example, the number of cases that would 

be needed to detect OR = 1.2 with 80% power (a priori) is at least 5 times greater than in our 

study.

All of the nominally significant SNPs found in this study, except for the ACE rs4303 

marker, were located in non-coding regions and the mechanism of their association with 

incident hypertension and/or interaction with fitness or BMI is unknown. Additionally, the 

sequence variants nominally associated with incident hypertension risk were different in 

blacks and whites. There are several possibilities for the observed difference. A partially 

different panel of markers was used in each race, as blacks and whites differed in MAF 

values. As exhibited in the present study, specific SNPs may have differing contributions 

and may not capture the same degree of information in each ethnic group. Differences in 

baseline values of variables such as blood pressure, BMI, and fitness may have altered the 

physiological pathways leading to 20 year incident hypertension in each ethnic group. 

Significantly fewer white participants became hypertensive over 20 years of follow-up 

compared to black participants. Furthermore, the association of baseline fitness and incident 

hypertension was not as strong in whites as it was in blacks. Since we stratified baseline 

fitness and BMI levels into dichotomous variables using median cut points, we may have 

missed potentially significant interactions that may be uncovered only at the high or low 

ends of the fitness and BMI distributions.

Perspectives

We found that the tested SNPs in selected candidate genes did not modify the association 

between the risk of hypertension over 20 years with baseline fitness or baseline BMI in 

CARDIA participants. Despite these negative results, there is a need for additional genetic 

association studies of hypertension that incorporate behavioral and physiological traits to 

better understand whether there are interactions between DNA sequence variation and 

lifestyle factors affecting blood pressure. However, even if such genetic and environmental 

interactions were shown in cohort studies, they would need to be tested in clinical trials 

before being used to revise treatment guidelines.43 Evidence from clinical trials could help 
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identify individuals whose blood pressure is favorably responsive to increased 

cardiorespiratory fitness. In ‘responsive’ individuals, support might be offered to achieve a 

higher level of fitness. Whereas in ‘non-responsive’ individuals, increased physical activity 

levels should nonetheless be promoted given the other health benefits of exercise,44 but 

other strategies for blood pressure reduction would have to be used to ensure optimal risk 

reduction.

What is known about this topic

• There is large inter-individual variation in blood pressure levels among fitness 

and body weight categories.

• Although numerous pathways and genes thought to be involved in blood 

pressure regulation have been identified, the genes that confer susceptibility to 

hypertension remain to be fully identified.

• While several studies have shown the association between candidate gene 

polymorphisms and hypertension is modified by weight status, few studies have 

examined whether the association between fitness level and hypertension is 

modified by genetic variation.

What this study adds

• This study examined SNP-by-fitness and SNP-by-BMI interactions on incident 

hypertension (over 20 years of follow-up) in a large biracial cohort.

• The SNPs from seven blood pressure candidate genes did not modify the 

association between fitness or BMI and risk of hypertension in CARDIA 

participants.

• A limitation of this study is the modest number of incident hypertension cases, 

which resulted in limited power to detect associations between hypertension and 

common SNPs, especially in white participants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
BDKRB2 rs4900318-by-fitness interactions on the risk of incident hypertension in black (a) 

and white (b) participants of the CARDIA Study. Genotype distribution by hypertension and 

fitness group is given below the figure.
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Table 1

Baseline (1985-86) characteristics, by race and year 20 (2005-06) incident hypertension status, of healthy 

participants without hypertension: the CARDIA Fitness Study

Blacks Incident Hypertension Status

Variables*

Normotensive
(n=1006)
mean (SD) or %

Hypertensive
(n=295)
mean (SD) or % P value

Sex (male/female) 469/538 122/173 0.1134

Age, yrs 23.8 (3.7) 24.5 (3.7) 0.0047

Weight, kg 70.4 (15.6) 73.8 (17.2) 0.0016

BMI, kg/m2 24.3 (5.0) 25.7 (5.3) <0.0001

Treadmill time, min 9.4 (2.8) 8.7 (2.6) 0.0002

SBP, mmHg 109.1 (9.7) 112.9 (9.1) <0.0001

DBP, mmHg 66.8 (9.0) 70.3 (9.0) <0.0001

Current Smoker, % 37.1 38.1 0.8721

Education, yrs 13.1 (1.8) 13.2 (1.9) 0.3025

Follow-up time, yrs 20.1 (0.4) 20.1 (0.4) 0.7782

Whites Incident Hypertension Status

Variables*

Normotensive
(n=1216)
mean (SD) or %

Hypertensive
(n=146)
mean (SD) or % P value

Sex (male/female) 564/654 86/61 0.0052

Age, yrs 25.2 (3.4) 25.7 (3.4) 0.0569

Weight, kg 68.5 (13.4) 72.2 (13.3) 0.0013

BMI, kg/m2 23.2 (3.5) 24.5 (3.6) <0.0001

Treadmill time, min 10.9 (2.6) 10.6 (2.4) 0.2865

SBP, mmHg 107.5 (9.6) 114.5 (10.1) <0.0001

DBP, mmHg 67.0 (8.2) 71.7 (8.9) <0.0001

Current Smoker, % 33.7 35.1 0.6556

Education, yrs 14.7 (2.3) 14.8 (2.5) 0.7138

Follow-up time, yrs 20.1 (0.4) 20.2 (0.4) 0.2244

*
All variables based on baseline values except for follow-up time.
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Table 2

Multivariate odds ratios (OR) and 95% confidence intervals (CI) by race for predictors of 20 year incident 

hypertension: the CARDIA Fitness Study

Variables OR 95% CI OR 95% CI

Blacks Whites

Age, yrs 1.04 (1.00-1.09) 1.05 (0.99-1.11)

Sex (M vs F) 1 vs 2 0.85 (0.54-1.33) 1.13 (0.65-1.95)

BMI, kg/m2 1.02 (0.98-1.05) 1.05 (0.99-1.11)

Treadmill time, min 0.88* (0.81-0.95) 0.89δ (0.80-0.98)

SBP, mmHg 1.06† (1.03-1.08) 1.06† (1.03-1.09)

DBP, mmHg 1.04‡ (1.02-1.06) 1.03δ (1.01-1.06)

Current Smoker (Y vs N) 1.21 (0.88-1.67) 1.17 (0.79-1.74)

Education, yrs 0.96 (0.88-1.05) 0.97 (0.89-1.06)

Follow-up time, yrs 1.00 (0.69-1.45) 1.41 (0.89-2.20)

Model included all listed variables. All variables based on baseline values except for follow-up time. OR based on increase of one unit for 
continuous variables and 1.0 for categorical variables.

*
P ≤ 0.002;

†
P < 0.0001;

‡
P < 0.0002;

δ
P ≤ 0.02
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