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Chronic kidney disease (CKD) is a worldwide health problem for which effective therapeutic methods are still lacking. Traditional
Chinese medicine (TCM) has been indicated as an effective alternative treatment for kidney disease. In this study, a clinically effective
therapy, yiqihuoxue (YQHX) formula, was administrated to adenine-induced kidney disease rats for 6 weeks. We found that the
adenine rats displayed a significant reduction in renal function as evidenced by the increased levels of serum creatinine (Scr), blood urea
nitrogen (BUN), and 24-h urinary albumin level, which were attenuated by the YQHX treatment. The glomerulosclerosis, interstitial
fibrosis, arteriolosclerosis, interstitial inflammation, and tubular dilatation were reversed by the YQHX treatment in the adenine rats.
Furthermore, the hepatic damage characterized by increased levels of aspartate aminotransferase and alanine aminotransferase and
inflammatory cell infiltration was improved by YQHX. In addition, the number of apoptotic cells in the adenine rats was obviously
reduced by the YQHX treatment as manifested by the lower expression level of cleaved caspase-3 protein. Moreover, the YQHX
treatment downregulated the expression levels of fibronectin, type I collagen, α-smooth muscle actin, and TGF-β1 in the adenine rats.
Furthermore, autophagy was activated by the YQHX treatment, whichmanifested as an increased LC3-II and Beclin-1 expression levels
and a decreased p62 level. In conclusion, the YQHX formula might retard the progression of kidney disease by activating autophagy.

1. Introduction

The incidence of chronic kidney disease (CKD) has in-
creased annually, and the deterioration of the air environ-
ment has provided a hotbed for its rapid development [1].
Especially in developing countries, the deterioration of the
air environment, the insufficiency of medical resources, and
the lack of awareness of chronic diseases have all been
contributing to the prevalence of CKD. In China, the in-
cidence of CKD is up to 10.8% and the awareness rate is only
12.5% [2]. CKD is characterized by low creatinine clearance,

high blood urea nitrogen level, and hyperuricemia, con-
comitant with hypoproteinemia and anemia, electrolyte
disturbance, and mineral bone metabolism disorder, as well
as secondary hyperparathyroidism [3]. Along with the
complex and diverse pathogenic features and clinical
symptoms and complications, its molecular biological
mechanisms also remain complicated, making it difficult to
identify effective treatments.

The yiqihuoxue (YQHX) formula is a traditional Chinese
medicine (TCM), which is capable of promoting blood
circulation and removing blood stasis in the theory of TCM.
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The decoction is extracted from 8 distinct herbs, including
Radix Astragali seu Hedysari, Radix Cyathulae, Fructus
Aurantii Immaturus, Rhizoma Polygoni Cuspidati, Rhizoma
Sparganii, Rhizoma Curcumae, Eupolyphaga Seu Steleo-
phaga, and Hirudo (Table 1). Its aqueous extract has been
clinically used for decades and confirmed to be an effective
therapeutic method for the treatment of many types of CKD
owing to its excellent properties of increasing the creatinine
clearance and reducing the urinary protein excretion. By its
network pharmacology, as a TCM formula, the YQHX
decoction may function by delivering the beneficial effects of
its multiple compounds, acting on multiple targets and
pathways [4]. However, the exact mechanism, thereby, the
YQHX formula could contribute to the clinical improve-
ment of CKD is unclear.

Accumulating evidence indicates that fibrotic and ap-
optotic responses play significant roles in CKD progression
and development [5–7]. Autophagy activation is reported to
have protective effects against diverse renal cell injuries, such
as hypoxia, ischemia/reperfusion, oxidative stress, and end-
stage renal fibrosis [8–10]. In addition, proteinuria, as a
damaging factor, can result in renal tubular atrophy and
interstitial fibrosis [11, 12]. In our previous study, we
confirmed that autophagy activation could protect renal
tubular epithelial cells (TECs) from urinary protein-induced
injury [13]. Thus, on the basis of the therapeutic effect of
reducing urinary protein excretion, the YQHX formula was
tested to investigate whether it could further ameliorate the
damage caused by large amounts of proteinuria by activating
the autophagic pathway.

2. Materials and Methods

2.1. YQHX Formula. YQHX is a decoction of 8 Chinese
herbal medicines at a ratio of 10 : 5 : 5 : 5 : 4 : 4 : 4 :1 (Table 1).
Aqueous extract granules were prepared in our hospital
(Dongzhimen Hospital, Beijing). Before treatment, the
granules were dissolved with boiled ddH2O to achieve a
concentration of 1 g/ml.

2.2. Animal and Treatment Protocol. Adult male Sprague
Dawley (SD) rats, with body weights of 230–240 g, were
purchased from the Beijing Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China; permission no. SYXK
[Beijing] 2017–0022). All animal experimental studies were
conducted in accordance with the Guidelines onHumanUse
and Care of Laboratory Animals for Biomedical Research,
published by the National Institutes of Health (NIH pub-
lication no. 85–23, revised in 1996). The experimental
protocol was approved and performed by the Ethical Animal
Committees of Dongzhimen Hospital, Beijing University of
Chinese Medicine.

The rats were raised in the Animal Research Institute of
Dongzhimen Hospital, at a constant temperature (22–25°C)
and humidity (40%–70%). All the animals were kept on a 12-
h light/dark cycle and had free access to food and water ad
libitum. After 1 week of acclimatization, the rats were di-
vided randomly into 3 groups as follows: (1) normal control

group (n � 8), (2) adenine group (n � 8), and (3) YQHX-
treated group (adenine +YQHX, n � 8). In the adenine
group and the treatment group, adenine (0.75% w/w) was
intragastrically administered for 4 weeks. The rats in the
YQHX group received 12 g/kg/d dose (translating by the
conversion factor 6.25 with the adult dose 114 g/d in clinical
practice) of the YQHX granule extract orally for 6 weeks
after adenine administration, while the rats in the control
group were given the same volume of saline solution. Three
days before the rats were killed, the 24-h urine of all the rats
were collected and centrifuged at 1500 r/min for 5min. The
animals were sacrificed by exsanguination from the ab-
dominal aorta after anesthesia with 0.3% pentobarbital
(1ml/100 g). Blood was collected into sterile tubes for
centrifugation at 4°C and 3000 rpm for 15min. The left
kidney tissue was fixed with 4% paraformaldehyde (pH 7.4)
and embedded in paraffin for histological staining, while the
right kidney was stored in liquid nitrogen for western
blotting analysis.

2.3. Biochemical Analysis. The levels of serum creatinine
(Scr), blood urea nitrogen (BUN), aspartate aminotrans-
ferase (AST), and alanine aminotransferase (ALT) were
measured using serum detection kits (C011-2, C013-1-1,
C0010-2-1, and C009-2-1; Nanjing Jiancheng Bioengineer-
ing Institute, Nanjing, China) in accordance with the
manufacturer’s instructions. The 24-h urine albumin
quantitative measurement was performed with a rat albumin
enzyme-linked immunosorbent assay kit (ab108789,
Abcam).

2.4. Histological Examination. The paraffin-embedded kid-
neys and livers were cut into 3-μm sections, dewaxed for
3×15min within the xylene reagent tank, and then rehy-
drated using ethyl alcohol in a degradation concentration.
Hematoxylin-eosin (H&E) and periodic acid-Schiff (PAS)
staining were performed to observe pathological changes.
Masson’s trichrome staining (Masson) was applied to each
section as reported for the fibrosis evaluation. Images were
captured using a Zeiss optical microscope with the ZEN 2.3
(blue edition) image capture software.

Glomerulosclerosis index (GSI) was evaluated by
mesangial expansion and sclerosis as described previously
[14]. Fifty glomeruli per animal on PAS-stained kidney
section (×200 magnification) were assessed and graded from
0 to 3 by a semiquantitative score displayed in Table 2. The
GSI for each animal was calculated as a mean value of all
glomerular scores obtained. Tubulointerstitial indexes were
assessed with the method mentioned by Véniant et al. [15].
The parameters of interstitial fibrosis, arteriolosclerosis,
interstitial inflammation, and tubular dilatation were de-
termined, respectively, using a semiquantitative scoring
method on Masson-, PAS-, and HE-stained sections at a
magnification of ×200. Ten fields per kidney were assessed by
assigning a score from 0 to 3 (0� no abnormality, 1�mild,
2�moderate, and 3� severe) according to the severity de-
gree displayed in Table 2. The liver inflammation was
assessed by the method of Ishak et al. [16] on HE-stained

2 Evidence-Based Complementary and Alternative Medicine



sections at a magnification of ×100. The semiquantitative
criteria of lesion degrees are displayed in Table 2. Ten kidney
fields were randomly chosen from each rat in the group of
control (n � 8), adenine (n � 8), and YQHX (n � 8). And the
histologic analysis was performed by two independent in-
vestigators in a blind fashion.

2.5. Immunohistochemistry. After antigen retrieval using a
microwave oven at 95°C, soaking in sodium citrate (pH
6.0) for 20min, and cooling at room temperature (ap-
proximately 25°C), the sections were treated with 3%
hydrogen peroxide for 20min to block the endogenous
peroxidase. After washing with PBS, the blocking serum
was applied for 30min. The sections were incubated with
the anti-TGF-β antibody (ab92486, Abcam, 1 : 50), anti-
collagen-I antibody (ab34710, Abcam, 1 : 100), anti-
α-SMA antibody (55135-1-AP, Proteintech, 1 : 100), and
anti-caspase-3 antibody (ab2302, Abcam, 1 : 50) at 4°C
overnight. The secondary antibody incubation was

performed with an enhanced enzyme-labeled goat anti-
mouse/rabbit IgG polymer reagent (PV 9001/PV9002,
Beijing Zhongshan Jinqiao Biotechnology Co., Ltd., Bei-
jing). The reaction was visualized with 3,3′-dia-
minobenzidine, and the nuclei were counterstained with
hematoxylin. The reproducibility test was conducted using
the same protocol in multiple, randomly selected speci-
mens. All the images were captured as previously de-
scribed, under ×200 or ×400 magnification. Five animals
were randomly selected from each group, and 15 pictures
were taken randomly from each animal slice. The mean
optical density (MOD) of each of the pictures of TGF-β,
α-SMA, and Col-I staining was calculated using the Image-
Pro Plus 6.0 software (Media Cybernetics, USA). The
MOD for each animal was calculated as a mean value of the
total MOD measured from the 15 pictures per rat.
Meanwhile, the expression level of the three proteins was
also assessed by the lesion degree (presented in Supple-
mentary Table 1) according to Gadola et al. [14]. The level
of apoptosis of the kidney indicated by the expression level

Table 1: Different components of YQHX.

Chinese
name Latin name Botanical plant name Main ingredients e.g. English name Family Part used Dose

(g)

Huang
Qi

Radix Astragali
seu Hedysari

Astragalus
membranaceus (Fisch.)

Bge.
var mongholicus (Bge.)

Hsiao

Astragaloside,
astragalus

polysaccharide
Milkvetch root Leguminosae Dried root 30

Chuan
Niu Xi Radix Cyathulae Cyathula officinalis

Kuan.
Cyasterone,
sengosterone

Medicinal
cyathula root Amaranthaceae Dried root 15

Zhi Shi Fructus Aurantii
Immaturus Citrus aurantium L. Flavonoid, volatile oils Immature

orange fruit Rutaceae Dried young
fruit 15

Hu
Zhang

Rhizoma
Polygoni
Cuspidati

Polygonum cuspidatum
Sieb. et Zucc. Resveratrol, emodin

Giant
knotweed
rhizome

Polygonaceae
Dried

rhizome and
root

15

San
Leng

Rhizoma
Sparganii

Spaganium
stoloniferum Buch.-

Ham.

Phenethyl alcohol,
Quinol

Common
buried rubber Sparganiaceae Dried tuber 12

E Zhu Rhizoma
Curcumae

Curcuma phaeocaulis
Val. Curzerenone, borneol Zedoray

rhizome Zingiberaceae Dried
rhizome 12

Tu Bie
Chong

Eupolyphaga Seu
Steleophaga

Eupolyphaga sinensis
Walker Amino acids, fatty acids Ground beetle Corydidae Dried body 12

Shui Zhi Hirudo Hirudo nipponica
Whitman Amino acids, hirudin Leech Hirudinidae Dried body 3

Table 2: Semiquantitative criteria for renal and hepatic lesions.

Degree
Kidney lesions Liver lesions

Glomerulosclerosis Interstitial
fibrosis Arteriolosclerosis Interstitial

inflammation
Tubular
dilatation Portal inflammation

0 Normal ≤5% renal
cortex

No or little intimal
incrassation

No or little
inflammation No dilatation None

1 ≤25% mesangial
expansion/sclerosis

6∼25% renal
cortex

Intimal incrassation leads to
lumen stenosis ≤15%

10%∼25%
renal cortex

≤25% renal
cortex tubule

Mild, some/all
portal areas

2 25%∼50% mesangial
expansion/sclerosis

26%∼50%
renal cortex

Increased intimal incrassation
leads to lumen stenosis ≤25%

26%∼50%
renal cortex

26∼50% renal
cortex tubule

Moderate, some or
all portal areas

3 ≥50% mesangial
expansion/sclerosis

>50% renal
cortex

Severe intimal incrassation
leads to lumen stenosis ≥50%

>50% renal
cortex

≥50% renal
cortex tubule

Moderate/marked,
all portal area
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of caspase-3 was calculated from the ratio of apoptotic cells
to the total renal cells.

2.6. Immunofluorescence. The paraffin-embedded kidney
tissues were cut into 3-μm sections, dewaxed, rehydrated,
and antigen retrieved as previously described. To increase
the cell membrane permeability to antibodies, 0.2% Triton
100X (Solarbio, T8200) was extracted. After incubation
with the blocking serum for 1 hour at room temperature
(approximately 25°C), the sections were stained with the
anti-LC3B antibody (ab51520, Abcam, 1 : 1000) and the
anti-p62 antibody (ab56416, Abcam, 1 : 200) at 4°C over-
night, followed by the donkey anti-rabbit/mouse IgG
(H + L) highly crossadsorbed secondary antibody (A-
21206/A-21203, Invitrogen, 1 : 1000). The nuclei were
counterstained with 4′6-diamidino-2-phenylindole. Im-
age acquisition and processing were performed as previ-
ously described. The immunofluorescence staining was
assessed with a semiquantitative scoring method by two
independent observers unware of the treatment received
by each group.

2.7.Western Blotting Assay. Total protein lysate extraction
from the renal cortical section of the kidney tissue was
performed using a radioimmunoprecipitation assay lysis
buffer (C1053, Applygen, Beijing) with a protease in-
hibitor (KGP603, Nanjing KeyGen Biotech Co., Ltd.),
and the protein lysate concentration was determined
using a BCA protein assay kit (P1511-2, Applygen) based
on the manufacturer’s instructions. Equal amounts of
kidney cortex protein were loaded into 12%/8% SDS-
PAGE and transferred into PVDF membranes. After
being blocked with 5% nonfat milk for 1 h at room
temperature, the membranes were incubated with pri-
mary antibodies on the bed temperature incubator at 4°C
overnight. The primary antibodies were as follows: LC3B
(ab51520, Abcam, 1 : 2000), p62 (ab56416, Abcam, 1 :
1000), Bcl-2 (ab194583, Abcam, 1 : 500), TGF-β
(ab92486, Abcam, 4ug/ml), FN (ab2413, Abcam, 1 : 1000),
α-SMA (55135-1-AP, Proteintech, 1 : 1000), and Col-I
(ab34710, Abcam, 1 : 1000). Then, the PVDF membranes
were incubated with HRP-conjugated second antibodies
(SA00001-1 and SA00001-2, Proteintech, 1 : 5000).
β-Actin (66009-1-Ig, Proteintech, 1 : 1000) was used as
the loading control for protein expression. The chem-
iluminescence signals were visualized using the ECL Plus
western blotting detection reagents (B500021, Pro-
teintech). Densitometric analysis of the band optical
density was performed using the ImageJ 1.51K software
(National Institutes of Health, USA).

2.8. Statistical Analysis. Data were expressed as mean± SD.
Multiple comparisons between the groups were performed
using one-way analysis of variance. A p value of <0.05 was
considered statistically significant. GraphPad Prism v6.0 was
applied for the analyses.

3. Results

3.1. YQHX Treatment Preserved Renal and Hepatic Function
in theAdenine Rats. Renal function parameters including Scr
and BUN were assessed, as well as the 24-h urine albumin.
Compared with the control group, the adenine group had
significantly elevated Scr and BUN levels, which were obvi-
ously reduced by the YQHX treatment (Figures 1(a) and
1(b)). Moreover, 24-h urine albumin level was high in the
adenine group but decreased in the YQHX group
(Figure 1(c)). The data mentioned above indicated that the
model of kidney disease was established successfully, and
YQHX treatment had the effect of improving renal function
in the adenine rats. To investigate the adenine-induced he-
patic damage, the parameters including ALT and AST were
assessed.The results show that the increased levels of the both
parameters were decreased by the YQHX treatment, indi-
cating the protective effects of the formula on liver function.

3.2. YQHX Treatment Ameliorated Renal and Hepatic
Pathological Injury in theAdenineRats. In the present study,
H&E, PAS, and Masson were performed to further evaluate
the effects of YQHX on the morphological changes of
kidney tissues. In the H&E and PAS staining, compared
with the control group, the model group showed significant
damage, including diffuse glomerulosclerosis and inter-
stitial fibrosis, arteriolosclerosis, infiltration of numerous
inflammatory cells, and obvious renal tubular dilation,
which were significantly improved by the YQHX treatment
(Figures 2(a), 2(b) and Table 3). Masson’s trichrome
staining revealed that renal fibrosis was significantly re-
duced in the YQHX group as compared with the adenine
group (Figure 2(c) and Table 3). Besides, livers of the rats
were examined by H&E staining and the result showed that
the liver tissue treated with adenine was infiltrated by
massive inflammatory cells in the portal area. Notably, the
YQHX group has shown an ameliorative effect as reduced
inflammation cell infiltration, indicating the protective
effects of the formula towards hepatic injury induced by
adenine (Figure 2(d) and Table 3).

3.3. YQHX Attenuated Renal Fibrosis in the Adenine Rats.
To further observe the molecular biological changes of the
kidney tissue, we examined the expression levels of fibrotic
markers. Consistent with the result of Masson’s staining, an
increased deposition of collagen manifested as increased
collagen-I level and the α-smooth muscle actin (α-SMA)
level was upregulated in the adenine rats, both of which were
reversed in the YQHX treatment group (Figures 3(a) and
3(b)). A known marker of fibrosis, transforming growth
factor-1 (TGF-β1), was examined using immunohisto-
chemical staining and western blotting. With both methods,
TGF-β1 showed an increased level in the adenine group as
compared with the control group, which was improved by
the YQHX treatment (Figures 3(c) and 3(f)). And the same
results were observed by the lesion-based scoring method
(Supplementary Figure 1). In addition, the western blot was
applied to detect the expression levels of a-SMA and
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Figure 1: YQHX treatment improved the renal and hepatic function of the adenine rats. (a–c) After treatment with the YQHX formula, the
levels of serum creatinine, BUN, 24-h urine albumin in the adenine group were reduced. (d and e) The levels of serum ALT and AST were
assayed and found to be reduced in the YQHX group as compared with the adenine group. Adenine group: adenine-induced kidney disease
rat. n � 8 per group. ∗∗p< 0.01 and ∗∗∗p< 0.001.
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Figure 2: Continued.
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fibronectin (FN). As shown in Figures 3(d) and 3(e), the
expression levels of α-SMA and FN were all upregulated in
the adenine group and reduced in the YQHX treatment
group.

3.4. YQHX Ameliorated Apoptosis in Kidney Tissue in the
Adenine Rats. Apoptosis was reported to have important
relationships with fibrosis. In the present research, we
further detected the apoptosis level in the kidney tissue by
immunohistochemical analysis of the well-recognized
marker of apoptosis, cleaved caspase-3, and western blot
examination of the antiapoptotic protein Bcl-2. The high
expression level of cleaved caspase-3 in the adenine group
was significantly reversed by the YQHX treatment

(Figure 4(a)). We found an increased Bcl-2 level in the
YQHX treatment group as compared with the adenine group
(Figure 4(b)).These data indicate that YQHX has a beneficial
effect on renal apoptosis amelioration.

3.5. YQHX Activated Autophagy by Autophagic Induction in
the Adenine Rats. We detected LC3-II and p62 expression
levels in the rat kidneys in all the groups by immunofluores-
cence staining. As shown in Figure 5(a), the expression level of
LC3-II was slightly increased in the adenine group as compared
with the control group. Prominently higher LC3-II levels were
found in the YQHX group than in the adenine group.
Meanwhile, the expression of the autophagy substrate p62 was
significantly increased in the adenine group and reduced by the
YQHX treatment (Figure 5(b)). To further confirm the results,
western blot analysis was performed to observe the expression
levels of both LC3-II and p62 in the kidney tissues and the
results were obviously consistent with the immunofluorescence
staining (Figure 5(c)). Moreover, to examine the autophagic
induction activity, the expression levels of Beclin-1 and ATG-5
were examined. The Beclin-1 expression showed the same
pattern as the LC3-II expression level (Figure 6(a)). However,
ATG-5 showed a lower level in the adenine group but was
restored in the YQHX group (Figure 6(b)).

4. Discussion

CKD is a worldwide health problem, characterized by a
prominent histomorphological change of glomerular
sclerosis and tubular fibrosis in response to a series of
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Figure 2: Morphological examination of the kidney and liver about the effect of the YQHX treatment on adenine rats. (a–c) Kidney HE,
PAS, and Masson staining: the control group shows normal tubular and glomeruli architecture. The adenine group shows glomerulo-
sclerosis (▲), interstitial fibrosis (◆), arteriolosclerosis (※), interstitial inflammation (←), and tubular dilatation (∗). The YQHX group
shows amelioration of the renal structure. All the images are shown at a magnification of ×200, scale bar� 50 μm. (d) Liver HE staining:
portal inflammation (★) was slightly ameliorated by YQHX. Images are shown at a magnification of ×100, scale bar� 100 μm. Adenine
group, adenine-induced kidney disease rat; YQHX, yiqihuoxue group.

Table 3: Effect of YQHX treatment on some histopathological
parameters in adenine rats.

Control Adenine YQHX
Kidney lesion
Glomerulosclerosis 0.1± 0.02 1.5± 0.04△ 1.3± 0.04△###
Interstitial fibrosis 0.0± 0.0 2.6± 0.6△ 2.3± 0.6△###
Arteriolosclerosis 0.0± 0.0 2.4± 0.7△ 2.1± 0.6△##
Interstitial

inflammation 0.0± 0.0 2.8± 0.4△ 2.0± 0.7△###

Tubular dilatation 0.0± 0.0 2.6± 0.5△ 2.1± 0.6△###
Liver lesion
Portal inflammation 0.1± 0.2 2.1± 0.5△ 1.2± 0.4△###

Values in the table are means± SD; △, p< 0.001 vs. the control group;##,
p< 0.01;###, p< 0.001 vs. the adenine group.
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injuries.Thus, it is important to find a therapeutic approach
to restore renal function. In the present study, the YQHX
formula, a clinical effective medication, showed a signifi-
cant renal protective effect in adenine rats by decreasing the
concentrations of Scr, BUN, and 24-h urine albumin.
Furthermore, histological analysis revealed an obvious
restorative function of the YQHX formula in ameliorating
the renal damage such as glomerulosclerosis, interstitial
fibrosis, arteriolosclerosis, interstitial inflammation, and
tubular dilatation. However, the histological staining of the
kidney was only conducted on the left kidneys. While
several reports mentioned that the two kidneys responded
differently towards the injury [17]. Thus, the histological
changes of the right kidneys need further studies to con-
firm. In addition, the YQHX treatment showed a protective
effect towards liver function by lowering the levels of ALT
and AST. Besides, the inflammation cell infiltration in-
duced by adenine was also ameliorated by the YQHX
treatment, indicating its antiinflammation effects.

Renal fibrosis is related to the diverse production and
release of bioactive mediators and metabolites, which were
shown to be toxic to TECs [18]. However, some researchers
also indicated that TECs not only are victims of various
damage factors but also play the role of fibrogenic cells by
releasing a series of growth factors such as transforming
growth factor-β (TGF-β), connective tissue growth factor,
and vascular endothelial growth factor [19]. The TGF-β
signaling pathway has been regarded as a distinguishing
marker of tubulointerstitial fibrosis, which contributes to
the phenotypic conversion program of epithelial-mesen-
chymal transition (EMT) by gaining the mesenchymal
features (including α-smooth muscle actin, interstitial
matrix component type-I collagen, and FN) [20–22].
Furthermore, owing to the increase in the fibrotic factors,
an excessive deposition of the extracellular matrix (ECM)
occurred, consisting of some collagens and fibrotic proteins
(Col-I, Col-III, FN, etc.) in the tubulointerstitial area [23].
Thus, in the present study, the levels of TGF-β, as well as
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Figure 3: YQHX treatment reduced the expression of renal fibrosis-relative proteins. (a–c) Immunohistochemical staining of α-SMA, Col-I,
and TGF-β1 in the control, adenine, and YQHX groups.The number of rats per group was 5, and 10 pictures were taken from each rat. Scale
bar: 50 μm. Original magnification: ×200. The optical intensity of the abovementioned proteins was measured. ∗∗∗p< 0.001. (d–f) Western
blotting analysis results showing increased protein levels of α-SMA, FN, and TGF-β1 in the adenine group, which were decreased by the
YQHX treatment. Adenine group, adenine-induced kidney disease rat; YQHX, yiqihuoxue group.
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α-SMA, Col-I, and FN were detected. Notably, the results
showed that the elevated levels of fibrotic markers were
significantly downregulated by the YQHX treatment in-
dicating that the mechanisms of YQHX might be involved
in the inhibition of the TGF-β signaling pathway.

Apoptosis is a form of programmed cell death and
plays an important role in maintaining the normal growth
of organisms and eliminating aging and malignant cells in
the body [24]. However, the process of apoptosis is pre-
cisely regulated in vivo, and whether insufficient or ex-
cessive apoptosis can both lead to the occurrence of
related diseases such as cell fibrosis and necrosis [25, 26].
In particular, numerous research studies have suggested
that apoptosis of renal cells may result in the development
of renal fibrosis and cell death [27, 28]. In the process of
the mitochondrial apoptotic pathway, abnormal expres-
sion of the antiapoptotic protein Bcl-2 can promote the
release of cyto-C from cell mitochondria [29]. Thereafter,
cyto-C combined with the apoptotic protein-activating
factor 1 to form a complex, induces activation of the
caspase family in a cascaded manner and eventually leads
to cell apoptosis by a key apoptotic proteinase, caspase-3
[30]. Owing to the initiation and progress of apoptosis in
the renal cells, the cell microenvironment was altered,
causing the release of TGF-β, Ang-II, and other inflam-
matory mediators, which together triggered renal in-
flammation and fibrosis [31]. Thus, in the present study,
we detected the apoptosis level of CKD rats and found that
the overexpression of caspase-3 and decreased Bcl-2 level
were reversed by the YQHX formula, which suggests that
the beneficial effect of YQHX might be related to the
regulation of apoptosis.

Autophagy has been reported as an important
mechanism for maintaining cell homeostasis under
conditions of cell stress, which is related closely to cell
apoptosis and fibrosis [32, 33]. In recent years, mounting
evidence has proved that autophagy is involved in the
development of kidney disease, especially in renal fibrosis
[34]. However, whether autophagy activation protects
renal cells from injury remains controversial [9, 35]. It is
reported that autophagy activation protects renal cells
from injury induced by aristolochic acid, cisplatin, or
cyclosporine A [36–38]. However, in the model of is-
chemia/reperfusion or tunicamycin-induced renal in-
jury, increased autophagic activity contributes to TECs
death [39, 40]. Therefore, autophagy activation plays a
different role in different state of the kidney or the stress
factors.

In our previous study [13], we detected the autophagy
level in a high-grade proteinuria rat model developed by a
cationic bovine serum albumin (C-BSA) injection, treated
with or without rapamycin (an autophagy agonist). We
found that the TECs of the model rats showed an increased
expression level of microtubule-associated protein 1 light
chain 3 (LC3)-II (a key maker of autophagosome), which
were dramatically further upregulated in rapamycin-treated
rats. Moreover, a lower p62 expression level and apoptosis
were observed in the TECs of the rapamycin group, which
indicated that autophagy response might be a protective
mechanism in renal cells against injuries induced by urinary
proteins.

In the present study, the adenine-induced kidney
disease rat model, which was characterized by increased
proteinuria and many diverse complications, was applied

(A) (B)

(a) (b)

Cl
ea

ve
d 

ca
sp

as
e-

3
Control Adenine

YQHX
∗∗∗

∗∗∗

0

1

2

3

4

Re
la

tiv
e r

at
io

 o
f

cle
av

ed
 ca

sp
as

e-
3

Adenine YQHXControl

∗∗
∗

Adenine YQHXControl
0.0

0.5

1.0

1.5

Re
lat

iv
e r

at
io

 o
f B

cl-
2

Bcl-2

β-Actin

Control Adenine YQHX

Figure 4: YQHX treatment attenuated renal apoptosis in the adenine rats. (a) Immunohistochemical staining was performed to detect renal
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to examine the therapeutic effect of the YQHX formula. As
the results showed, the expression pattern of LC3-II in the
adenine rats was similar with the previous study, which
was further increased by the YQHX treatment. While, the
increased p62 expression in the adenine group was re-
duced by the YQHX treatment. Nevertheless, both the
elevated expressions of LC3-II and p62 in the adenine
group could be a result of degradation obstruction in
downstream, such as lysosome injury or failed fusion of
autophagosomes and lysosomes to form autolysosomes,
which might have been repaired by the YQHX treatment.
However, in another case, the autophagic induction from

upstream evidenced by increased LC3-II might be a self-
restoration effect of the adenine rats, trying to repair the
injury during the last 6 weeks. But the limited autophagy
activation was not enough to degrade the largely accu-
mulated p62 induced by the adenine injury. While, in the
YQHX group, p62 was degraded by the remarkably
strengthened autophagic induction. Thus, the exact
working point on autophagy induction or degradation
needs a further research. To further investigate the cause
of autophagic induction, we have evaluated it by detecting
a key protein, Beclin-1, which contributes to autopha-
gosome formation [41]. The expression pattern of Beclin-1
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was exactly consistent with that of LC3-II. In addition,
another autophagic induction-relative protein, ATG-5,
was also tested and showed an uptrend in the YQHX
group as compared with the adenine group. Therefore, we
suggest that the YQHX formula might improve autophagy
activation by inducing the expression of Beclin-1. The
possible mechanisms of YQHX on kidney disease are
summarized in Figure 7.

5. Conclusions

The YQHX formula improves renal function and has an
antifibrosis effect in the kidney disease. Its renoprotective
effect may be attributed to the activation of the autophagic
pathway. Our findings suggest that an increase in autophagy
flux induced by TCM might provide a promising novel
approach for treating the kidney disease.
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