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Objective: The aim of this study was to examine the fluctuations in CD4+ T cells, CD8+ 
T cells, and natural CD4+CD25+FoxP3+T-regulatory (Treg) cells following an oral glucose 
tolerance test (OGTT) in participants with and those without type 2 diabetes (T2DM).

Methods: 19 Japanese participants with T2DM (DM group) and 21 participants without 
diabetes (non-DM group) were recruited and underwent a 75-g OGTT. The cell numbers 
of leukocytes, lymphocytes, and the T cell compartment, such as CD4+, CD8+, and Treg, 
were calculated for blood samples obtained after an overnight 12 h fast and during a 
75-g OGTT at 60 and 120 min.

results: Before glucose loading, no differences in the cell numbers of leukocytes, 
lymphocytes, CD4+, CD8+, and Treg were observed between the DM group and the 
non-DM group. The proportion of CD8+ was significantly reduced, whereas the pro-
portion of CD4+ was significantly increased, after 120 min of glucose loading in both 
groups. The proportion of Treg was not affected. Furthermore, a significant positive 
correlation was observed between the AUC0–120 min of CD8+ and the change in the free 
fatty acid level following the OGTT (ρ =  0.39, P <  0.05), but not that of glucose or 
insulin.

Conclusion: The proportion of CD4+ T cells was increased and that of CD8+ T cells 
was reduced after glucose loading in both subjects with and without diabetes. These 
findings suggest that glucose loading dynamically affects the balance of the circulating 
T lymphocyte subset, regardless of glucose tolerance.

Keywords: proportion of CD4+ and CD8+ T cells, oral glucose tolerance test, glucose loading, glucose metabolism, 
lymphocytes

Abbreviations: T2DM, type 2 diabetes; BMI, body mass index; Treg, T-regulatory cells; OGTT, oral glucose tolerance test; 
FFA, free fatty acid; DM group, participants with type 2 diabetes; non-DM group, participants without diabetes; HOMA-IR, the 
homeostasis model assessment of insulin resistance; adipocyte IR index, adipocyte insulin resistance index; DPP-4, dipeptidyl 
peptidase 4.
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inTrODUCTiOn

Type 2 diabetes (T2DM) is characterized by two major features: 
peripheral insulin resistance and impaired insulin secretion from 
pancreatic beta cells. Since obesity leads to the enhancement of 
insulin resistance, the morbidity rate for T2DM has increased 
with the increase in the prevalence of obesity (1, 2). The patho-
genesis of obesity and T2DM involves chronic inflammation in 
obese adipose tissue through the acceleration of insulin resistance 
(3, 4). Obese adipose tissue causes inflammatory macrophages to 
infiltrate the visceral adipose tissue (4), promoting the migration 
of not only proinflammatory macrophages, but also peripheral 
blood T cells, thereby exacerbating chronic inflammation (5).

The peripheral blood T cell subset as well as the total periph-
eral leukocyte number is associated with obesity and diabetes 
(6, 7). In morbidly obese (body mass index [BMI] >40 kg/m2) 
participants without T2DM, the peripheral blood CD4+ T  cell 
number and subset both increased. Furthermore, the CD4+ T cell 
number was correlated with the fasting insulin level regardless of 
the blood glucose level (6). The absolute numbers of leukocytes 
and T  cells in the circulation were significantly enhanced in 
obese participants with T2DM, compared with obese participants 
without T2DM (7).

However, these blood samples reflect the steady state, such as 
after an overnight fast. Thus, little is known about the effect of 
acute changes in glucose metabolism induced by glucose loading 
on the peripheral blood T cell subset. This study was conducted 
to examine the fluctuations of CD4+, CD8+, and T-regulatory 
(Treg) cells following a 75-g oral glucose tolerance test (OGTT) 
in Japanese subjects with or without T2DM. To assess the 
relationship with T cell fluctuation, we measured the variations 
in glucose, insulin, and free fatty acid (FFA) levels caused by  
the OGTT.

MaTErialS anD METHODS

Participants
Nineteen Japanese participants with T2DM (DM group) and 21 
without diabetes (non-DM group) over 20 years of age who were 
treated at Hokkaido University Hospital between 2014 and 2015 
were recruited for this study. All the participants were admitted 
to the hospital for endocrinological examinations. The exclusion 
criteria were type 1 diabetes and participants receiving insulin 
therapy. Other exclusion criteria were participants with diabetic 
ketosis or coma, serious infection, pregnancy or lactation, and 
participants scheduled to undergo surgery. Participants were 
also excluded if they were receiving medications that could 
influence glucose metabolism, such as glucocorticoids, growth 
hormone treatment, and immunosuppressants. The protocol for 
this research was reviewed by the institutional review board of 
Hokkaido University Hospital (013-0083) and conformed to the 
provisions of the Declaration of Helsinki. Signed informed con-
sent was obtained from all the participants. All the evaluations 
were performed at Hokkaido University Hospital. The clinical 
examination consisted of a medical history, physical examina-
tion, and anthropometric measurements.

Clinical and laboratory Evaluation
The weight and height of the participants were measured using 
a calibrated scale after they had removed their shoes and any 
heavy clothing. The plasma glucose and serum insulin levels were 
measured after an overnight 12-h fast and during a 75-g OGTT at 
30, 60, 90, and 120 min. The serum FFA levels and cell numbers of 
leukocytes, lymphocytes, and T cell subsets, such as CD4+, CD8+, 
and Treg were calculated for blood samples obtained after an 
overnight 12-h fast and during a 75-g OGTT at 60 and 120 min.

The plasma glucose level was measured using an automated 
glucose analyzer (GA 08 II; A&T Corporation) based on the GOD 
immobilized 02 electrode method. The serum insulin level was 
measured using the E-test TOSOH II (IRI) (Tosoh Corporation) 
based on a fluorescence-enzyme immunoassay. The total leukocyte 
count was measured using the XE-5000 automated hematology 
analyzer (Sysmex), the FFA was measured using NEFA-SS “EIKEN” 
based on an enzymatic method, and the other biochemical  
parameters were measured using a conventional automated ana-
lyzer between January 2014 and March 2015 at Hokkaido University 
Hospital. The leukocyte subpopulations were determined using 
flow cytometry with fluorescent monoclonal antibodies for CD4, 
CD8, and CD25 (Beckman Coulter) and the Human Regulatory 
T Cell Whole Blood Staining Kit (eBioscience).

Body mass index was calculated as the weight in kilograms 
divided by the height in meters squared. Participants were regarded 
as having a diagnosis of diabetes if they had a history of diabetes 
and were receiving oral hypoglycemic agents or had either a 
plasma HbA1c value of more than 48 mmol/mol (6.5%), a fasting 
plasma glucose (FPG) level of >7 mmol/L, or a 120-min value of 
>11.1 mmol/L in a 75-g OGTT (8). Insulin sensitivity was esti-
mated using the homeostasis model assessment of insulin resist-
ance (HOMA-IR), calculated as [fasting plasma insulin (μU/mL)  
×  FPG (mmol/L)]/22.5. The homeostasis model assessment of 
β-cell function (HOMA-β) was calculated using the following for-
mula: 20 × fasting insulin (μIU/mL)/fasting glucose (mmol/mL) 
/3.5 (9). The adipocyte insulin resistance index (adipocyte IR 
index) was calculated as fasting serum FFA (μEq/L)  ×  fasting 
serum insulin (μU/mL)  ×  10−3 (10). Glucose-stimulated insu-
lin secretion was evaluated based on the insulinogenic index 
(Δinsulin [0–30 min]/Δglucose [0–30 min]), which estimates the 
early-phase of insulin secretion based on an OGTT (11). For the 
CD4+ and CD8+ parameters, the area under the concentration-
time curve for 0–120 min (AUC0–120 min) was calculated using the 
trapezoid rule.

Statistical analysis
The results were expressed as the means  ±  SD. Differences 
between two groups were analyzed for statistical significance 
using the Mann–Whitney U test. We also used the Wilcoxon 
signed test to compare the parameters at 0 min and at 120 min 
after glucose loading. The correlation coefficients were calculated 
using a Spearman rank-order correlation. A P value <0.05 was 
considered statistically significant. We performed the statistical 
analyses using JMP 11 (SAS Institute Inc., Cary, NC, USA) and 
Microsoft Excel Statistics 2011 for Mac (SSRI Co. Ltd., Tokyo, 
Japan).
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TablE 1 | Baseline characteristics of the total, participants with type 2 diabetes (DM), and participants without diabetes (non-DM) groups.

Total DM non-DM P value

n 40 19 21
Age (years) 55.0 ± 14.3 61.6 ± 13.1 49.0 ± 12.8 <0.01
Female sex (%) 57.5 52.6 61.9 0.55
BMI (kg/m2) 25.8 ± 6.1 26.1 ± 6.8 25.5 ± 5.6 0.82
HbA1c (mmol/mol) 43.8 ± 11.6 50.6 ± 13.5 37.6 ± 4.0 <0.01
HbA1c (%) 6.2 ± 1.1 6.8 ± 1.2 5.6 ± 0.4 <0.01
FPG (mmol/L) 5.9 ± 1.8 6.6 ± 2.4 5.2 ± 0.5 <0.01
FPI (μU/mL) 5.5 ± 3.8 5.7 ± 4.1 5.4 ± 3.7 0.81
Total cholesterol (mg/dL) 193.4 ± 32.7 182.0 ± 31.9 203.6 ± 30.7 0.05
Triglyceride (mg/dL) 135.9 ± 88.3 133.7 ± 100.8 137.8 ± 77.9 0.34
HDL cholesterol (mg/dL) 54.6 ± 15.5 52.6 ± 16.5 56.4 ± 14.6 0.32
LDL cholesterol (mg/dL) 120.8 ± 31.4 112.1 ± 36.3 128.7 ± 24.4 0.06
Free fatty acid (μEq/L) 672.5 ± 381.0 679.0 ± 298.8 666.6 ± 450.2 0.32
HOMA-IR 1.5 ± 1.3 1.8 ± 1.6 1.3 ± 0.9 0.49
Homeostasis model assessment of β-cell function 1.1 ± 0.8 1.0 ± 0.8 1.2 ± 0.8 0.56
Insulinogenic Index 9.0 ± 9.7 5.2 ± 3.8 12.4 ± 12.0 <0.01
Adipocyte IR index 4.4 ± 5.3 4.5 ± 4.3 4.2 ± 6.2 0.47

Values are the mean ± SD.
BMI, body mass index; FPG, fasting plasma glucose; FPI, fasting plasma insulin; HOMA-IR, homeostasis model assessment of insulin resistance; adipocyte IR index, adipocyte 
insulin resistance index.

TablE 2 | Absolute numbers of leukocyte subpopulations in peripheral blood of participants before glucose loading.

Total DM non-DM P value

Leukocytes (/μL) 6292.3 ± 1990.0 6466.7 ± 2332.9 6142.9 ± 1687.5 0.96
Lymphocytes (/μL) 2159.3 ± 954.7 2001.2 ± 636.7 2294.8 ± 1159.9 0.78
CD4+ (/μL) 963.5 ± 369.3 896.5 ± 290.9 1020.9 ± 423.9 0.38
CD8+ (/μL) 598.6 ± 279.5 582.7 ± 277.8 612.2 ± 287.1 0.80
Treg (/μL) 83.9 ± 38.5 78.6 ± 38.1 88.6 ± 39.2 0.32
CD4+/CD8+ 1.8 ± 0.6 1.7 ± 0.6 1.8 ± 0.6 0.91
Treg/CD4+ 0.08 ± 0.02 0.09 ± 0.03 0.09 ± 0.02 0.70

Values are the mean ± SD.
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rESUlTS

Nineteen Japanese participants in the DM group and 21 in the 
non-DM group were enrolled in this study. Among the DM 
group, 13 were treated without hypoglycemic medication; the 
remainder were treated with a dipeptidyl peptidase 4 (DPP-4) 
inhibitor (n = 2), a biguanide (n = 1), a glucagon-like peptide-1 
receptor agonist (n  =  1), a combination of sulfonylurea and 
a biguanide (n = 1), a combination of a DPP-4 inhibitor and a 
biguanide (n  =  1), or a triple-drug combination of sulfonylu-
rea, a biguanide, and a DPP-4 inhibitor (n  =  1). The baseline 
clinical and metabolic characteristics of both groups are shown 
in Table  1. As expected, the participant age, HbA1c level, and 
FPG level were significantly higher in the DM group than in the 
non-DM group. Meanwhile, the insulinogenic index in the DM 
group was significantly lower than that in the non-DM group. 
No statistically significant differences in sex, BMI, fasting serum 
insulin, total cholesterol, triglycerides, low-density lipoprotein 
cholesterol, high-density lipoprotein cholesterol, or FFA levels or 
the HOMA-IR or adipocyte IR index were observed between the 
two groups. These results indicated that the participants in the 
DM group were not in a hyperinsulinemic state, although they 
did have impaired insulin secretion. As shown in Table  2, the 

mean numbers of leukocytes and lymphocytes before glucose 
loading were comparable between the two groups. Detailed flow 
cytometric analyses revealed no differences in the CD4+, CD8+, 
or Treg cell numbers or the CD4+/CD8+ or Treg/CD4+ ratios 
between the two groups.

Next, we investigated whether the T cell subset fluctuates after 
glucose loading during an OGTT (Figure 1). The absolute num-
bers of leukocytes had decreased significantly after 120 min of 
glucose loading in both groups (DM group, 6,466.7 ± 2,332.9 to 
6066.7 ± 2262.5/μL, P < 0.01; non-DM group, 6,142.9 ± 1,687.5 
to 5919.0 ± 1546.2/μL, P < 0.05). The proportion of lymphocytes 
was not modified after 120 min of glucose loading in both groups 
(DM group, 31.8 ± 7.3 to 30.2 ± 7.4%, P = 0.09; non-DM group, 
37.9 ± 15.7 to 37.2 ± 15.2%, P = 0.07). Within the T cell subset, 
the proportion of CD4+ cells increased significantly, as shown 
in Figure 2A, whereas the proportion of CD8+ cells decreased 
significantly (Figure  2B) at 120  min after glucose loading in 
both groups. Likewise, a significant increase in the CD4+/CD8+ 
ratio, which fluctuates together with the variations in CD4+ and 
CD8+ T  cell numbers, was observed after glucose loading in 
both groups (Figure 2C). The proportion of Treg cells were not 
modified at 120 min after glucose loading in both groups (DM 
group, 78.6 ± 38.1 to 81.0 ± 45.8/μL, P = 0.07; non-DM group, 
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FiGUrE 2 | (a) Proportion of CD4+ T cells, (b) proportion of CD8+ T cells, and (C) CD4+/CD8+ ratio after 120 min of glucose loading during an oral glucose 
tolerance test in the participants with type 2 diabetes (filled bar) and the participants without diabetes (open bar). *P < 0.05 vs. 0 min, **P < 0.01 vs. 0 min.

FiGUrE 1 | (a) Serum glucose and (b) insulin levels were measured at 30 min intervals before and for 120 min after an oral glucose tolerance test in the DM (solid 
line) and non-DM (dotted line) groups.
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88.6 ± 39.2 to 86.1 ± 36.7/μL, P = 0.47). The Treg/CD4+ ratio were 
not different after 120 min of glucose loading in both groups (DM 
group, 0.09 ± 0.03 to 0.09 ± 0.03; P = 0.07, and non-DM group, 
0.09 ± 0.02 to 0.09 ± 0.02; P = 0.47). No significant differences in 
any of these absolute numbers or the proportions at 0 or 120 min 
were observed between the DM group and the non-DM group.

To reveal the factors influencing the fluctuation of T  cell 
subsets, we examined the relations between the fluctuations in 

the T cell subsets and the parameters reflecting insulin sensitivity 
and insulin secretion in all the participants. As shown in Table 3, 
these parameters were not correlated with the AUC0–120  min of 
CD4+ or CD8+ during the OGTT.

Since the fluctuation in glucose metabolism caused by 
the OGTT could affect the fluctuation of the T  cell subset, we 
performed additional correlation analyses by calculating the 
change in the plasma glucose, serum insulin, and FFA levels 
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TablE 3 | Correlations between fluctuations in T cells and parameters reflecting 
insulin sensitivity and insulin secretion.

aUC0–120 min  
of CD4+ 

(×103/μl × min)

aUC0–120 min  
of CD8+ 

(×103/μl × min)

ρ P value ρ P value

Body mass index (kg/m2) 0.22 0.17 0.20 0.23
the homeostasis model  
assessment of insulin resistance

0.24 0.14 0.12 0.48

Homeostasis model  
assessment of β-cell function

0.19 0.24 0.09 0.59

Insulinogenic Index −0.03 0.86 0.08 0.65
Adipocyte insulin resistance index 0.21 0.19 0.09 0.59
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and the AUC0–120 min of CD8+ (ρ = 0.39, P < 0.05), but not of CD4+, 
following the OGTT (Figure 4).

DiSCUSSiOn

This study reported alterations in the peripheral T cell subset fol-
lowing glucose loading in both subjects with and those without 
diabetes. The main findings of our study were the following: 
(1) the proportion of CD4+ T cells increased and that of CD8+ 
T cells decreased after glucose loading during a 75-g OGTT in 
both participants with and those without diabetes, and (2) the 
fluctuation of CD8+ was associated with that of FFA after glucose 
loading, but not the elevation of the glucose and insulin levels. 
Thus, glucose loading can change the balance of the peripheral 
T cell subset regardless of glucose tolerance.

As reported in morbidly obese participants under a steady 
state condition, the increased peripheral blood CD4+ T  cell 
number might result from increased CD4+ T  cell proliferation 
(6). However, few studies have focused on the effect of acute 
changes in glucose metabolism arising from glucose loading on 
the peripheral blood T cell subset. Although our study showed 
that the proportion of CD4+ T cells increased and that of CD8+ 

FiGUrE 3 | Correlations between changes in glucose or insulin levels and fluctuations in peripheral blood CD4+ or CD8+ T cells. (a) Correlation between the change 
in glucose0–120 min and the AUC0–120 min of CD4+. (b) Correlation between the change in glucose0–120 min and the AUC0–-120 min of CD8+. (C) Correlation between the 
change in insulin0–120 min and the AUC0–120 min of CD4+. (D) Correlation between the change in insulin0–120 min and the AUC0–120 min of CD8+.

during the OGTT. As a matter of course, the glucose and insulin 
levels increased significantly after glucose loading, whereas the 
FFA levels decreased significantly after glucose loading during 
the OGTT (data not shown). Although no correlations were 
found between the change in glucose or insulin levels and the 
AUC0–120 min of CD4+ or CD8+ (Figure 3), a significant positive 
correlation was observed between the change in the FFA level  
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T cells decreased after glucose loading, the reason why the pro-
portions of CD4+ and CD8+ T cells changed after glucose loading 
remains unclear. Several mechanisms, such as changes in thymic 
output, peripheral proliferation, and altered redistribution, can 
be considered. Since adipose tissue-derived FFA has been shown 
to enhance T  cell proliferation (7, 12), we speculated that the 
fluctuation of FFA after glucose loading might have dynamically 
affected T  cell proliferation and the balance of the circulating 
T  cell subset. Therefore, a future challenge will be to elucidate 
the mechanism of the changes in the proportions of CD4+ and 
CD8+ T cells.

Regarding the association between the changes in the T cell 
subset and insulin resistance, a significant positive correlation 
was observed between the AUC0–120 min of CD8+ and the change 
in the FFA level, but not the glucose or insulin levels, after 
glucose loading (Figures 3 and 4). In other words, the decrease 
in CD8+ T cells was associated with a decrease in the FFA level 
after glucose loading. FFA is mobilized from triglycerides, stored 
in adipose tissue through the process of lipolysis (13). Insulin 
secretion after glucose loading inhibits lipolysis in adipose tissue 
(14). Under the condition of insulin resistance in adipose tissue, 
insulin is unable to suppress lipolysis, resulting in a lack of FFA 
suppression after glucose loading. Our results suggest that an 
inadequate decrease in CD8+ T cells after glucose loading might 
reflect insulin resistance in adipose tissues. However, no cor-
relation was found between insulin resistance in adipose tissue 
estimated according to the adipocyte IR index and the change 
in the AUC0–120 min of CD8+ (Table 3). The adipocyte IR index is 
not an appropriate parameter for examining the acute changes in 
glucose metabolism that occur following glucose loading because 
the adipocyte IR index is calculated using fasting plasma FFA and 
insulin levels, but not parameters that are examined after glucose 
loading. Further additional consideration is needed to elucidate 
the association between the fluctuations of FFA levels and CD8+ 
T cells. The association between the changes in the proportion 
of the T cell subset and the FFA levels prompted us to examine 
the association between the changes in the proportion of the 
T cell subset and other serum lipid profiles. As a result, the total 

cholesterol, triglycerides, low-density lipoprotein cholesterol, 
and high-density lipoprotein cholesterol levels were found not to 
be correlated with the changes in the proportion of CD4+ or CD8+ 
during the OGTT (Tables S3–S5 and S8).

As suggested in several reports, DPP-4 inhibitors, biguanide, 
cholesterol-lowering agents, angiotensin II receptor blockers 
(ARB), and angiotensin-converting enzyme inhibitors could 
cause changes in the proportion of T lymphocytes (15–19). We, 
therefore, performed a sub-analysis divided according to each 
medication. In the DM group, four participants were treated 
with a DPP-4 inhibitor. Similar baseline characteristics and 
changes in the proportion of the T cell subset during an OGTT 
were observed between the 15 subjects who were not taking a 
DPP-4 inhibitor in the DM group and the 19 subjects in the DM 
group (Tables S1 and S2). In the DM group, four participants 
were treated with biguanide. Similar baseline characteristics and 
changes in the proportion of the T cell subset during an OGTT 
were observed in the 15 subjects who were not taking biguanide 
in the DM group and the 19 subjects in the DM group (Tables 
S9 and S10). In the DM and non-DM groups, five participants in 
each group were treated with statin. And one patient was treated 
with fibrate and one patient was treated with ezetimibe in the 
DM groups. Similar baseline characteristics and changes in the 
proportion of the T cell subset during an OGTT were observed in 
a non-cholesterol-lowering agent group (n = 28) of participants 
who were not taking cholesterol-lowering agent and a cholesterol-
lowering agent group (n = 12) of participants who were receiving 
medications for dyslipidemia (Tables S6, S7, S11 and S12). Also, 
four participants in DM group and one patient in NDM group 
were treated with ARB. Similar baseline characteristics and 
changes in the proportion of the T cell subset during an OGTT 
were observed in a non-ARB group (n = 35) of participants who 
were not taking ARB and an ARB group (n = 5) of participants 
who were receiving ARB (Tables S13–S15). We suggest that the 
use of medication had no practical impact on our results.

A previous study has already reported that the proportion of 
T cells was changed after glucose loading in subjects without dia-
betes (20). Our study reported alterations in the T cell subset in 

FiGUrE 4 | Correlations between the change in the free fatty acid (FFA) level and fluctuations in peripheral blood CD4+ or CD8+ T cells. (a) Correlation between the 
change in FFA0–120 min and the AUC0–120 min of CD4+. (b) Correlation between the change in FFA0–120 min and the AUC0–120 min of CD8+.
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